• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Active disturbance rejection control for precise position tracking of piezoelectric actuators①

    2015-04-17 06:27:07ZhengZhaoying鄭兆瑛LuQishuaiZhangSijiong
    High Technology Letters 2015年3期

    Zheng Zhaoying (鄭兆瑛), Lu Qishuai, Zhang Sijiong

    (*National Astronomical Observatories / Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(**Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(***University of Chinese Academy of Sciences, Beijing 100049, P.R.China)

    ?

    Active disturbance rejection control for precise position tracking of piezoelectric actuators①

    Zheng Zhaoying (鄭兆瑛)******, Lu Qishuai***, Zhang Sijiong②

    (*National Astronomical Observatories / Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(**Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(***University of Chinese Academy of Sciences, Beijing 100049, P.R.China)

    Positioning with high precision piezoelectric actuators is widely used. To overcome positioning inaccuracy caused by hysteresis and creep of actuators, a precise tracking method for piezoelectric actuators using active disturbance rejection control (ADRC) has been proposed in this paper. This method, in real-time, actively estimates and compensates parameter uncertainties, nonlinear factors such as hysteresis, and external disturbances in the tracking system. Precise tracking of the piezoelectric actuator can be achieved without any form of feedforward compensations. The experimental results demonstrate that the active disturbance rejection controller can reduce tracking errors by over 90% comparing with those using the PID controller. Those features of the proposed control method are very suitable for applications in adaptive optics.

    active disturbance rejection control (ADRC), piezoelectric actuators, position tracking

    0 Introduction

    Piezoelectric actuators can implement micrometers and even nanometers positioning. In recent years, piezoelectric actuators are increasingly applied in scanning probe microscopes[1], atomic force microscopes[2,3], micropositioning mechanisms[4,5], aerospace applications[6]and adaptive optics systems[7,8]. However, there are some disadvantages of piezoelectric actuators such as hysteresis, creep and so on. Those disadvantages of piezoelectric actuators result in positioning inaccuracy and limiting the whole system performances in which piezoelectric actuators are used as the correcting units. The control methods to improve the accuracy for the position tracking of piezoelectric actuators are needed.

    To achieve highly precise positioning for piezoelectric actuators, a lot of researches on control algorithms for these devices have been done in recent years. In order to suppress the effect of hysteresis of piezoelectric actuators, the main nonlinear constituent, on their positioning, piezoelectric actuators can be driven by charge[9]. However, the implementation of the charge amplifier is complex and expensive. For this reason the piezoelectric actuators driven by voltage are widely chosen in many applications. For previous researches on suppressing the effect of hysteresis of piezoelectric actuators, a theoretical hysteresis model is firstly established, then the inversion of the hysteresis as a feedforward is set up in a control loop to compensate the positioning inaccuracy caused by the hysteresis[10]. Song, et al.[11]built up a classical Preisach model, and applied the inverse model and a feedback controller to eliminate the hysteresis for the micro position tracking control. However, this method only applies to low frequency input and is rate-dependent. Guo, et al.[12]proposed a real-time inverse hysteresis compensation method with a modified Prandtl-Ishlinskii model. Ru, et al.[13]applied a novel mathematical model obtained based on Prandtl-Ishlinskii operator to characterizing hysteresis and employed an adaptive inverse control algorithm to reduce hysteresis. Zhu, et al.[14]developed an ellipse-like model to describe the hysteresis of piezoelectric actuators and the accuracy of tracking control has been improved by a real-time feedforward controller with the inverse model. However, these methods are also rate-dependent. Eielsen, et al.[15]argued an online adaptive nonlinear hysteresis compensation method for certain periodic desired trajectories. However, the certain periodic trajectories are only suited for scanning applications of piezoelectric actuators, such as atomic force microscopes. Our main purpose for control piezoelectric actuators is to precisely regulate a tip/tilt mirror to achieve a high image quality. These rate-dependent control methods are not appropriate for the applications in adaptive optics. Li, et al.[16]proposed a fuzzy hysteresis model (FHM), and developed the enhanced adaptive hybrid controller to achieve high performance tracking. Although the algorithm is rate-independent, it is highly complex. Because atmospheric turbulences change rapidly, the control method must be simple and suitable for the real-time implementation in adaptive optics.

    Active disturbance rejection control (ADRC)[17-19]is a control algorithm that satisfies the requirements of adaptive optics systems aforementioned. ADRC technique has been widely applied in many fields[20-22]. The gist of the ADRC algorithm is explained as follows. Taking the second order system as an example, the system is taken as a double integrator model, and an extended state observer (ESO) built up for this system model, in which there is an extra extended state variable used for estimating modeling errors, parameter uncertainties, internal and external disturbances in the system. The control algorithm actively compensates for all the factors mentioned above in real-time with updated estimation of those by the ESO so as to achieve precise position tracking of actuators. Moreover, the advantages of the ADRC algorithm are of low complexity and requiring a little prior information of the real system. To verify the effectiveness of the ADRC algorithm on position tracking of piezoelectric actuators, several cases of trajectories are designed to track in a series of experiments.

    This paper is arranged as follows. In the first section, an experimental system is described in detail and a simple model of piezo platform is given. The second section presents the ADRC method. The experimental results are provided in Section 3. Finally, this paper ends with conclusions in Section 4.

    1 System description

    1.1 Experimental setup

    An experimental system, as shown in Fig.1, has been established for the investigation of the ADRC control algorithm. The architecture of the experimental system is depicted in the sketch as shown in Fig.2. It consists of a piezo tip/tilt platform with inbuilt strain gauge sensors to measure its angle changes, a servo controller card, voltage amplifiers, a sensor processing module, and Zynq-7000 with a digital-to-analogue (D/A) board and an analog-to-digital (A/D) board.

    Fig.1 Experimental platform

    Fig.2 Sketch of the experimental architecture

    The piezo tip/tilt platform employed is from PI (Physik Instrumente), which has the nominal 2 mrads angular displacement range corresponding to a range of operating voltage from 0 to 100V. The servo controller card can be switched servo status on and off. When the servo status is in the off mode, there’s only a slew rate limiter active. Voltage amplifiers with a fixed gain of 10 provide voltage ranging from -20V to +120V. The sensor processing module is connected with both the platform and Zynq-7000. The voltage conversion ranges of the D/A and A/D boards are from 0V to 3.3V with 12-bit resolution. Zynq-7000 includes the programmable logic (PL) and the processing system (PS). The D/A and A/D cards are driven by PL, and the real-time control algorithm is run on PS. In these experiments, the sampling frequency of the control loop is set at 5kHz.

    1.2 Piezo tip/tilt platform

    As shown in Fig.3, when control input voltage changes, the voltage of one PZT (Piezoelectric Ceramic Transducer) actuator of each pair increases and the voltage of the other decreases by the exact same magnitude. It may be simply modeled as a lightly damped second order system. The angular displacement of platform in tip axis is modeled as

    (1)

    M(t)=nU(t)+φ(U,t)

    (2)

    where n is the proportional coefficient between moment M(t) and the control voltage U(t), φ(U,t) is the moment caused by nonlinear factors such as hysteresis of piezoelectric actuators, uncertain disturbances and so on.

    Fig.3 Working principle of one axis motion (from PI user manual)

    2 Active disturbance rejection control (ADRC)

    In this paper, linear active disturbance rejection control (ADRC) is applied to control the piezo tip/tilt platform. The dynamics of the platform in tip axis can be regarded as

    (3)

    where b=n/J.

    Fig.4 Block diagram of the control system

    2.1 ESO design

    (4)

    The Luenberger observer of this system expressed by Eq.(4) in state-form space is designed as

    (5)

    λ(s)=s3+l1s2+l2s+l3=(s+ω0)3

    (6)

    So the observer poles are all placed at -ωoin Laplace s-plane. This design can let the observer gain vector L of ESO be easily tuned by just changing the observer bandwidth ωo. Thus only adjusting the observer bandwidth ωo, the three components of the observer gain vector L can be tuned. The larger the ωois, the faster and the more accurate the observer is. However, a larger ωoalso increases noise sensitivity, and is limited by hardware constraints. Hence a proper ωoshould be tuned between the tracking performance and hardware constraints.

    2.2 Control Algorithm

    (7)

    Disregarding the estimation error, the model of the platform in tip axis is reduced to a double integrator,

    (8)

    The original problem is simplified to a much simpler one, which can be dealt by a proportional-derivative (PD) controller

    U0(t)=kp[θd(t)-z1(t)]-kdz2(t)

    (9)

    (10)

    where ωcis the bandwidth of the controller. Obviously, the larger it is, the faster the response speed is. However, like ωo, ωcis tuned based on the competing requirements of tracking performance, noise sensitivity and stability margin.

    3 Experimental results

    3.1 Single frequency triangular trajectory

    The frequency of the desired triangular trajectory in this experiment is 10Hz and the amplitude of that is 50μrad. To show the characteristics of the ADRC algorithm, the tracking results using ADRC are compared with ones using PID and hybrid controllers[16], shown in Fig.5. The hybrid control algorithm takes more than 1ms. Even if FHM is identified at first, the hybrid controller without updating FHM online still takes about 20μs. ADRC just takes less than 1μs. As shown in Fig.5, because of the precise position tracking of ADRC algorithm, the trajectory tracked by ADRC controller (the blue dash curve) nearly coincides with the desired one (the black solid curve). ADRC controller can obtain 1.01μrad maximum tracking error, and the root mean square (RMS) error is 0.29μrad, which is about the noise level. The RMS error with the PID controller is 3.29μrad, and that with hybrid controller is 1.14μrad. Compared with PID controller, the ADRC controller reduces RMS error by 91.2%. And ADRC controller reduces time cost significantly.

    Fig.5 Tracking performances of ADRC comparing with those of servo card at 10Hz with 50μrad triangular waveform trajectory

    3.2 Single frequency sinusoidal trajectory

    Fig.6 shows the experimental result of the desired single sinusoidal trajectory, whose frequency is 50Hz and amplitude is 50μrad. The maximum error decreased from 23.60μrad with PID controller to 1.84μrad with ADRC controller, and reduced by 92%. The reduction of RMS error of angular displacement tracking is approximately 98% for the ADRC controller compared with that of the PID controller. More experimental results of the desired trajectories with other different frequencies and amplitudes are shown in Table 1.

    Fig.6 Tracking performances of ADRC comparing with those of servo card at 50Hz with 50μrad sinusoidal waveform trajectory

    Table 1 Tracking errors using ADRC and servo card as to several sinusoidal trajectories with different frequencies and amplitudes

    Desiredtrajectory(μrad)ErrorMAX(μrad)PIDADRCErrorRMS(μrad)PIDADRC50@50Hz23.601.8415.400.3225@50Hz12.041.507.670.29100@50Hz45.563.8430.610.4850@100Hz40.213.6627.430.6050@30Hz15.551.489.990.3950@10Hz6.320.973.600.28

    3.3 Multiple frequencies sinusoidal trajectory

    To further demonstrate the advantages of ADRC controller method, the tracking experiment with a multiple frequencies sinusoidal trajectory is implemented. The desired trajectory is 300+60sin(40πt)+40sin(100πt)+20sin(200πt)μrad. The experimental result is shown in Fig.7. Using the PID controller, the maximum tracking error of angular displacement is 36.12μrad, and the RMS tracking error is 18.16μrad. However, the ADRC controller can obtain 3.48μrad maximum error, decreased by 90.37%, and 0.45μrad RMS error, decreased by 97.52%.

    Fig.7 Tracking performances of ADRC comparing with those of servo card for multiple frequency sinusoidal trajectory

    4 Conclusions

    In this paper, a control algorithm, active disturbance rejection control, has been developed for piezoelectric actuators. The control algorithm is model independent and more tolerant to uncertain dynamics and unknown disturbances. The hysteresis and creep of piezoelectric actuators can be treated as parts of the unknown disturbances. The ADRC control algorithm actively estimates and compensates disturbances to control systems in real-time, such that precise tracking of the piezoelectric actuators without any hysteresis models can be implemented. This algorithm is of low complexity, and takes less than 1μs on the Zynq-7000 platform. So ADRC suits for real-time implementation. The experimental results clearly show the effectiveness of this algorithm. It provides a reduction of more than 90% tracking error compared with that of PID controller card. ADRC is suitable for controlling requirements of adaptive optics and other areas for precise positioning.

    Acknowledgement

    Many thanks to Dr. Li Changwei at Nanjing Institute of Astronomical Optics & Technology.

    [ 1] Yeh H C, Ni W T, Pan S S. Digital closed-loop nanopositioning using rectilinear flexure stage and laser interferometry. Control Engineering Practice, 2005, 13(5): 559-566

    [ 2] Habibullah, Pota H R, Petersen I R, et al. Creep, hysteresis, and cross-coupling reduction in the high-precision positioning of the piezoelectric scanner stage of an atomic force microscope. IEEE Transactions on Nanotechnology, 2013, 12(6): 1125-1134

    [ 3] Leang K K, Zou Q Z, Devasia S. Feedforward control of piezoactuators in atomic force microscope systems. IEEE Control Systems Magazine, 2009, 29(1): 70-82

    [ 4] Hwang D, Byun J, Jeong J, et al. Robust design and performance verification of an in-plane XY theta micropositioning stage. IEEE Transactions on Nanotechnology, 2011, 10(6): 1412-1423

    [ 5] Li Y M, Xu Q S. Design and robust repetitive control of a new parallel-kinematic XY piezostage for micro/nanomanipulation. IEEE-Asme Transactions on Mechatronics, 2012, 17(6): 1120-1132

    [ 6] Sente P A, Labrique F M, Alexandre P J. Efficient control of a piezoelectric linear actuator embedded into a servo-valve for aeronautic applications. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1971-1979

    [ 7] Kanno I, Kunisawa T, Suzuki T, et al. Development of deformable mirror composed of piezoelectric thin films for adaptive optics. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(2): 155-161

    [ 8] Sato M, Tsuda S, Kanno I, et al. Development of piezoelectric MEMS deformable mirror. Microsystem Technologies Micro and Nano systems Information Storage and Processing Systems, 2011, 17(5-7): 931-935

    [ 9] Zhang J, Zhang L S, Feng Z H. Integration of strain feedback and charge drive for high-performance of piezoelectric actuators. Review of Scientific Instruments, 2013, 84(5): 54705-54705

    [10] Qin Y D, Tian Y L, Zhang D W, et al. A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications. IEEE-ASME Transactions on Mechatronics, 2013, 18(3): 981-989

    [11] Song G, Zhao J Q, Zhou X Q, et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE-ASME Transactions on Mechatronics, 2005, 10(2): 198-209

    [12] Gu G Y, Yang M J, Zhu L M. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Review of Scientific Instruments, 2012, 83(6): 65106-65106

    [13] Ru C H, Chen L G, Shao B, et al. A hysteresis compensation method of piezoelectric actuator: Model, identification and control. Control Engineering Practice, 2009, 17(9): 1107-1114

    [14] Gu G Y, Zhu L M. Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sensors and Actuators a-Physical, 2011, 165(2): 303-309

    [15] Eielsen A A, Gravdahl J T, Pettersen K Y. Adaptive feed-forward hysteresis compensation for piezoelectric actuators. Review of Scientific Instruments, 2012, 83(8): 85001-85001

    [16] Li P Z, Yan F, Ge C, et al. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model. Review of Scientific Instruments, 2012, 83(8): 85114-85114

    [17] Gao Z. Active disturbance rejection control: A paradigm shift in feedback control system design. In: Proceedings of the 2006 American Control Conference, Minneapolis, United States, 2006. 2399-2405

    [18] Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906

    [19] Gao Z. Scaling and bandwidth parameterization based controller tuning. In: Proceedings of the 2003 American Control Conference, Denver, United States, 2003. 4989-4996

    [20] Sun B S, Gao Z Q. A DSP-based active disturbance rejection control design for a 1-kW H-bridge dc-dc power converter. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1271-1277

    [21] Zheng Q, Dong L, Dae H L, et al. Active disturbance rejection control for MEMS gyroscopes. In: Proceedings of the 2008 American Control Conference, Seattle, United States, 2008. 4425-4430

    [22] Gao Z, Hu S, Jiang F. A novel motion control design approach based on active disturbance rejection. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, United States, 2001. 4877-4882

    [23] Ljung L. System identification. City: Wiley Online Library, 1999

    Zheng Zhaoying, born in 1984, received his Ph.D. degree from the University of Chinese Academy of Sciences. Now he works in the Nanjing Institute of Astronomical Optics & Technology. His research focuses on high performance control in adaptive optics.

    10.3772/j.issn.1006-6748.2015.03.014

    ①Supported by the National Natural Science Foundation of China (No. 11373048).

    ②To whom correspondence should be addressed. E-mail: sjzhang@niaot.ac.cn Received on Feb. 27, 2014***

    蜜桃在线观看..| 夜夜骑夜夜射夜夜干| 日韩制服丝袜自拍偷拍| 9191精品国产免费久久| 色视频在线一区二区三区| 久久影院123| 日韩不卡一区二区三区视频在线| 欧美人与性动交α欧美软件| 亚洲精品av麻豆狂野| 我的亚洲天堂| 美女福利国产在线| 国产精品亚洲av一区麻豆 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品无大码| 满18在线观看网站| 女性生殖器流出的白浆| 男人舔女人的私密视频| 在现免费观看毛片| 精品少妇内射三级| xxxhd国产人妻xxx| 天美传媒精品一区二区| 亚洲国产精品一区三区| 2018国产大陆天天弄谢| 伦理电影免费视频| 欧美日韩亚洲国产一区二区在线观看 | 精品少妇黑人巨大在线播放| 国产伦理片在线播放av一区| 午夜免费观看性视频| 涩涩av久久男人的天堂| 国产精品久久久久久久久免| 性色av一级| 妹子高潮喷水视频| 久久精品久久久久久久性| 女人被躁到高潮嗷嗷叫费观| 男人舔女人的私密视频| 乱人伦中国视频| 黑人巨大精品欧美一区二区蜜桃| 女人被躁到高潮嗷嗷叫费观| 九九爱精品视频在线观看| 亚洲av成人不卡在线观看播放网 | 久久久久视频综合| 亚洲综合色网址| 美女扒开内裤让男人捅视频| 大片电影免费在线观看免费| 久久午夜综合久久蜜桃| 国产精品欧美亚洲77777| 午夜久久久在线观看| 亚洲一级一片aⅴ在线观看| 少妇的丰满在线观看| 国产亚洲欧美精品永久| 国产激情久久老熟女| 欧美另类一区| 久久久久精品国产欧美久久久 | 亚洲精品中文字幕在线视频| 亚洲精品一区蜜桃| 搡老岳熟女国产| 国产精品国产av在线观看| 少妇精品久久久久久久| 国产亚洲精品第一综合不卡| 十八禁高潮呻吟视频| av线在线观看网站| 老司机靠b影院| 999久久久国产精品视频| 九九爱精品视频在线观看| 亚洲成人免费av在线播放| h视频一区二区三区| 日韩欧美一区视频在线观看| 精品国产一区二区三区四区第35| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三卡| h视频一区二区三区| 国产成人午夜福利电影在线观看| 亚洲欧美色中文字幕在线| 精品国产一区二区三区四区第35| 青春草视频在线免费观看| 久久久精品免费免费高清| av视频免费观看在线观看| 一区福利在线观看| 欧美av亚洲av综合av国产av | 青草久久国产| 国产国语露脸激情在线看| 色婷婷av一区二区三区视频| 爱豆传媒免费全集在线观看| 中文精品一卡2卡3卡4更新| 亚洲欧洲精品一区二区精品久久久 | 午夜日本视频在线| 天天躁夜夜躁狠狠久久av| 91国产中文字幕| 欧美人与性动交α欧美精品济南到| 久久性视频一级片| 国产精品人妻久久久影院| 日本猛色少妇xxxxx猛交久久| 亚洲伊人久久精品综合| 一级片免费观看大全| 叶爱在线成人免费视频播放| 亚洲,欧美精品.| 婷婷成人精品国产| 黄色 视频免费看| 极品少妇高潮喷水抽搐| 少妇精品久久久久久久| 尾随美女入室| 欧美激情极品国产一区二区三区| 啦啦啦 在线观看视频| 19禁男女啪啪无遮挡网站| 在线天堂最新版资源| 1024视频免费在线观看| 香蕉国产在线看| 操出白浆在线播放| 国产精品秋霞免费鲁丝片| 免费av中文字幕在线| 在线观看国产h片| 日本av手机在线免费观看| 亚洲婷婷狠狠爱综合网| 五月天丁香电影| 亚洲精品在线美女| 国产在线一区二区三区精| 亚洲成人免费av在线播放| 欧美黑人精品巨大| 国产精品一区二区在线观看99| 国产黄色免费在线视频| 免费观看a级毛片全部| 99热网站在线观看| 777米奇影视久久| 久久ye,这里只有精品| av国产精品久久久久影院| 老司机亚洲免费影院| 国产精品一区二区精品视频观看| 亚洲欧美激情在线| 欧美日韩亚洲高清精品| 亚洲少妇的诱惑av| 亚洲精品久久成人aⅴ小说| 国产伦理片在线播放av一区| 黄色视频不卡| 一级毛片黄色毛片免费观看视频| 交换朋友夫妻互换小说| 精品一区二区三区四区五区乱码 | 18禁国产床啪视频网站| 午夜福利免费观看在线| 亚洲国产精品一区二区三区在线| 麻豆av在线久日| 成人黄色视频免费在线看| 七月丁香在线播放| 男女边吃奶边做爰视频| 国产精品女同一区二区软件| 国产免费一区二区三区四区乱码| 曰老女人黄片| 熟妇人妻不卡中文字幕| 国产成人系列免费观看| 亚洲精品一二三| 亚洲av日韩在线播放| 日韩大片免费观看网站| 色视频在线一区二区三区| 久久国产亚洲av麻豆专区| a级毛片黄视频| 黑人巨大精品欧美一区二区蜜桃| 日韩电影二区| 女性生殖器流出的白浆| 一级片免费观看大全| 成人手机av| 成人国语在线视频| 又粗又硬又长又爽又黄的视频| 国产精品 欧美亚洲| 啦啦啦视频在线资源免费观看| 黄色视频在线播放观看不卡| 搡老岳熟女国产| 精品国产乱码久久久久久男人| 国产欧美日韩综合在线一区二区| 国产精品一区二区在线不卡| 国产精品熟女久久久久浪| 99热全是精品| 欧美成人精品欧美一级黄| 黑人巨大精品欧美一区二区蜜桃| 亚洲第一av免费看| 99国产综合亚洲精品| 久久久亚洲精品成人影院| 欧美人与性动交α欧美精品济南到| 香蕉国产在线看| 一级毛片 在线播放| 男女边吃奶边做爰视频| 卡戴珊不雅视频在线播放| 亚洲欧美一区二区三区国产| 亚洲熟女毛片儿| 国产成人系列免费观看| 深夜精品福利| videosex国产| 麻豆av在线久日| 国产 一区精品| 日本色播在线视频| 亚洲熟女精品中文字幕| 国产精品亚洲av一区麻豆 | 久久久久久久大尺度免费视频| 男女午夜视频在线观看| 一区二区日韩欧美中文字幕| 看十八女毛片水多多多| 成年人免费黄色播放视频| 高清黄色对白视频在线免费看| 两性夫妻黄色片| 又粗又硬又长又爽又黄的视频| 两个人看的免费小视频| 毛片一级片免费看久久久久| 国产片特级美女逼逼视频| 亚洲国产欧美日韩在线播放| 久久97久久精品| 一级毛片电影观看| 男男h啪啪无遮挡| 黄色视频在线播放观看不卡| 女的被弄到高潮叫床怎么办| 一级爰片在线观看| 国产xxxxx性猛交| 在线天堂中文资源库| 亚洲av日韩在线播放| 日韩制服骚丝袜av| 在线观看国产h片| netflix在线观看网站| 久久久久久人人人人人| 在线观看一区二区三区激情| 人人妻人人澡人人爽人人夜夜| 又大又爽又粗| 熟女少妇亚洲综合色aaa.| 一二三四中文在线观看免费高清| 在线免费观看不下载黄p国产| 亚洲伊人色综图| 亚洲欧美成人精品一区二区| 高清黄色对白视频在线免费看| 成人黄色视频免费在线看| 欧美国产精品一级二级三级| 亚洲精品久久午夜乱码| 99热全是精品| 日韩视频在线欧美| 久久久久久久久久久免费av| 日韩一本色道免费dvd| 大码成人一级视频| av国产久精品久网站免费入址| 久久久久久久大尺度免费视频| 国产成人午夜福利电影在线观看| 男的添女的下面高潮视频| 日本vs欧美在线观看视频| 18禁裸乳无遮挡动漫免费视频| 日本av手机在线免费观看| 最近手机中文字幕大全| 久久人人爽人人片av| 精品视频人人做人人爽| 亚洲欧美精品自产自拍| 亚洲伊人久久精品综合| 天堂8中文在线网| 妹子高潮喷水视频| 午夜福利一区二区在线看| 国产免费福利视频在线观看| 日韩制服骚丝袜av| 校园人妻丝袜中文字幕| 国产无遮挡羞羞视频在线观看| 亚洲伊人色综图| 亚洲在久久综合| 亚洲激情五月婷婷啪啪| 少妇人妻 视频| 精品一区二区三区av网在线观看 | 成人三级做爰电影| 精品国产国语对白av| 晚上一个人看的免费电影| 80岁老熟妇乱子伦牲交| 国产熟女欧美一区二区| 99热国产这里只有精品6| 大码成人一级视频| 色播在线永久视频| 欧美 日韩 精品 国产| 蜜桃在线观看..| av.在线天堂| 午夜激情久久久久久久| 男男h啪啪无遮挡| 天天躁夜夜躁狠狠躁躁| 国产欧美亚洲国产| 只有这里有精品99| 成年女人毛片免费观看观看9 | 免费黄频网站在线观看国产| 久久精品人人爽人人爽视色| 十八禁人妻一区二区| 男女边吃奶边做爰视频| 丰满少妇做爰视频| 97在线人人人人妻| 国产精品.久久久| 成人国产麻豆网| 日本欧美国产在线视频| 国产精品香港三级国产av潘金莲 | 精品国产一区二区三区久久久樱花| 日本午夜av视频| 两个人看的免费小视频| 九色亚洲精品在线播放| 一区二区日韩欧美中文字幕| 亚洲av国产av综合av卡| 一级片'在线观看视频| 亚洲综合精品二区| 午夜福利视频在线观看免费| 90打野战视频偷拍视频| 国产麻豆69| 午夜福利影视在线免费观看| 欧美日韩亚洲高清精品| 亚洲国产日韩一区二区| 亚洲欧洲国产日韩| 一区二区三区乱码不卡18| 天天躁夜夜躁狠狠躁躁| 日韩,欧美,国产一区二区三区| 国产精品一国产av| 我的亚洲天堂| 高清在线视频一区二区三区| 国产av精品麻豆| 一边亲一边摸免费视频| 欧美国产精品va在线观看不卡| 在线观看人妻少妇| 美女脱内裤让男人舔精品视频| 日韩精品有码人妻一区| 久久人人爽av亚洲精品天堂| 97人妻天天添夜夜摸| 国产午夜精品一二区理论片| a级毛片在线看网站| 高清av免费在线| 国产乱来视频区| 久久毛片免费看一区二区三区| 亚洲精品视频女| 成人18禁高潮啪啪吃奶动态图| av女优亚洲男人天堂| 老司机靠b影院| 啦啦啦 在线观看视频| 国产极品粉嫩免费观看在线| 少妇猛男粗大的猛烈进出视频| 久久久久久人妻| 欧美最新免费一区二区三区| 99久久精品国产亚洲精品| 丰满少妇做爰视频| 亚洲成人免费av在线播放| 肉色欧美久久久久久久蜜桃| 国产一区二区在线观看av| 王馨瑶露胸无遮挡在线观看| 韩国精品一区二区三区| 亚洲成人av在线免费| 中国三级夫妇交换| 午夜日韩欧美国产| 涩涩av久久男人的天堂| 成人亚洲欧美一区二区av| 女人精品久久久久毛片| 精品久久久精品久久久| 亚洲国产毛片av蜜桃av| 国产成人精品无人区| √禁漫天堂资源中文www| 一级黄片播放器| 欧美黄色片欧美黄色片| 视频在线观看一区二区三区| 美女扒开内裤让男人捅视频| 中文字幕精品免费在线观看视频| 国产野战对白在线观看| 在线天堂最新版资源| 一级片'在线观看视频| 777久久人妻少妇嫩草av网站| 成人午夜精彩视频在线观看| 在线观看免费日韩欧美大片| 黑人欧美特级aaaaaa片| 国产精品久久久久久久久免| 国产熟女欧美一区二区| svipshipincom国产片| 久久久久久人人人人人| 老鸭窝网址在线观看| 久久久久久久久免费视频了| 久久精品久久久久久久性| 欧美激情 高清一区二区三区| 观看av在线不卡| 精品少妇内射三级| 国产亚洲av片在线观看秒播厂| 亚洲av中文av极速乱| 好男人视频免费观看在线| 亚洲人成网站在线观看播放| 99久久精品国产亚洲精品| 飞空精品影院首页| 国产免费福利视频在线观看| 国产日韩一区二区三区精品不卡| 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 精品第一国产精品| 欧美97在线视频| 欧美日韩福利视频一区二区| 久热爱精品视频在线9| 久久久国产精品麻豆| www.熟女人妻精品国产| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 亚洲综合精品二区| 岛国毛片在线播放| 人人澡人人妻人| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 一区二区三区激情视频| 叶爱在线成人免费视频播放| 国产成人免费无遮挡视频| 精品一品国产午夜福利视频| 婷婷色综合大香蕉| 一本大道久久a久久精品| 1024香蕉在线观看| 极品人妻少妇av视频| 9热在线视频观看99| 久久精品国产亚洲av涩爱| 各种免费的搞黄视频| 激情视频va一区二区三区| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 国产一区有黄有色的免费视频| 这个男人来自地球电影免费观看 | 999久久久国产精品视频| 中文欧美无线码| 国产精品免费视频内射| 亚洲七黄色美女视频| 少妇猛男粗大的猛烈进出视频| 成年动漫av网址| 观看av在线不卡| 久久久久精品性色| 国产精品二区激情视频| av片东京热男人的天堂| 国产亚洲av高清不卡| 亚洲人成77777在线视频| xxx大片免费视频| 一级黄片播放器| 国产免费现黄频在线看| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 亚洲精品美女久久av网站| 日日撸夜夜添| 黄色视频在线播放观看不卡| 捣出白浆h1v1| 亚洲综合色网址| 青春草国产在线视频| av有码第一页| 色综合欧美亚洲国产小说| 亚洲三区欧美一区| 女人久久www免费人成看片| 性少妇av在线| 国产精品免费视频内射| 久久国产精品大桥未久av| 人人澡人人妻人| 国产精品久久久av美女十八| 成人手机av| 欧美 亚洲 国产 日韩一| 91精品三级在线观看| √禁漫天堂资源中文www| 91成人精品电影| 大香蕉久久成人网| 老司机深夜福利视频在线观看 | 一区二区三区四区激情视频| 一个人免费看片子| 91aial.com中文字幕在线观看| 夜夜骑夜夜射夜夜干| 午夜福利,免费看| 国产精品人妻久久久影院| 国产欧美日韩一区二区三区在线| 国产成人精品久久二区二区91 | 欧美成人精品欧美一级黄| 香蕉国产在线看| 欧美亚洲日本最大视频资源| 久久久久久久久久久久大奶| 亚洲国产精品成人久久小说| 亚洲色图综合在线观看| 免费少妇av软件| 美女主播在线视频| 亚洲精品第二区| 国产福利在线免费观看视频| 人人澡人人妻人| 午夜影院在线不卡| 如日韩欧美国产精品一区二区三区| 99九九在线精品视频| 欧美老熟妇乱子伦牲交| 99久久精品国产亚洲精品| 最近的中文字幕免费完整| 波野结衣二区三区在线| 国产精品三级大全| 97在线人人人人妻| 亚洲精品日韩在线中文字幕| 毛片一级片免费看久久久久| 考比视频在线观看| 久久久精品国产亚洲av高清涩受| 97人妻天天添夜夜摸| 国产成人精品福利久久| 亚洲成国产人片在线观看| 青春草国产在线视频| 国产成人精品无人区| 啦啦啦在线免费观看视频4| 亚洲国产看品久久| 欧美日韩一级在线毛片| av女优亚洲男人天堂| 成人免费观看视频高清| 男女高潮啪啪啪动态图| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 97在线人人人人妻| 极品人妻少妇av视频| 日韩制服丝袜自拍偷拍| 成人黄色视频免费在线看| 老司机影院成人| 国产精品.久久久| 久久影院123| 巨乳人妻的诱惑在线观看| 免费在线观看黄色视频的| 久热爱精品视频在线9| 精品国产露脸久久av麻豆| 久久久久久久久免费视频了| 精品视频人人做人人爽| 少妇人妻 视频| 黄网站色视频无遮挡免费观看| 久久精品国产亚洲av高清一级| 免费观看性生交大片5| 欧美变态另类bdsm刘玥| 中国三级夫妇交换| 纯流量卡能插随身wifi吗| 色精品久久人妻99蜜桃| 欧美日韩国产mv在线观看视频| 亚洲男人天堂网一区| 免费久久久久久久精品成人欧美视频| 九九爱精品视频在线观看| 久久精品亚洲av国产电影网| 在线 av 中文字幕| 成人亚洲欧美一区二区av| 日本爱情动作片www.在线观看| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 欧美日韩亚洲高清精品| 又大又爽又粗| 久久久久网色| 国产精品av久久久久免费| 男男h啪啪无遮挡| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 高清在线视频一区二区三区| 少妇被粗大猛烈的视频| 一区二区三区激情视频| 欧美精品人与动牲交sv欧美| 最近手机中文字幕大全| 亚洲av日韩精品久久久久久密 | 成人亚洲欧美一区二区av| xxxhd国产人妻xxx| 国产一卡二卡三卡精品 | 天天躁日日躁夜夜躁夜夜| 在线天堂中文资源库| 丰满迷人的少妇在线观看| 午夜福利乱码中文字幕| 少妇的丰满在线观看| 国产深夜福利视频在线观看| 看非洲黑人一级黄片| 蜜桃国产av成人99| 免费高清在线观看视频在线观看| 曰老女人黄片| 51午夜福利影视在线观看| av国产久精品久网站免费入址| 久久鲁丝午夜福利片| 久久热在线av| 热99久久久久精品小说推荐| 大片电影免费在线观看免费| 国产又爽黄色视频| 国产97色在线日韩免费| 亚洲图色成人| 免费在线观看黄色视频的| 国产精品久久久久久精品古装| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 久久女婷五月综合色啪小说| 久久久久久久精品精品| 国产毛片在线视频| 综合色丁香网| 99re6热这里在线精品视频| 中国国产av一级| 免费看不卡的av| 欧美中文综合在线视频| 少妇精品久久久久久久| 最近最新中文字幕免费大全7| 丝瓜视频免费看黄片| 日韩大码丰满熟妇| 在线免费观看不下载黄p国产| 久久精品国产亚洲av高清一级| 国产在视频线精品| 国产精品av久久久久免费| 精品国产国语对白av| 亚洲人成77777在线视频| 精品少妇内射三级| 午夜福利免费观看在线| 男男h啪啪无遮挡| 亚洲av日韩精品久久久久久密 | 亚洲天堂av无毛| 国产无遮挡羞羞视频在线观看| 国产黄频视频在线观看| 一级黄片播放器| 丝袜人妻中文字幕| 欧美成人午夜精品| 汤姆久久久久久久影院中文字幕| 国产精品一区二区精品视频观看| 电影成人av| 97精品久久久久久久久久精品| 男女边摸边吃奶| 国产乱来视频区| 国产黄频视频在线观看| 热re99久久精品国产66热6| 国产黄频视频在线观看| 国产无遮挡羞羞视频在线观看| 国产 一区精品| 18禁动态无遮挡网站| 国产欧美日韩综合在线一区二区| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人看| 99久久人妻综合| 精品久久蜜臀av无| 天天影视国产精品| 日韩av免费高清视频| 久久精品aⅴ一区二区三区四区| 大片电影免费在线观看免费| 秋霞伦理黄片| 欧美另类一区| 亚洲第一av免费看| 日本一区二区免费在线视频| 欧美 日韩 精品 国产| 日本午夜av视频| 久久人人爽人人片av| 狠狠精品人妻久久久久久综合|