• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩步沉積法制備Br或Cl摻雜的有機(jī)-無(wú)機(jī)雜化鈣鈦礦太陽(yáng)電池

    2016-12-29 05:42:49王艷青聶林輝李楠楠史成武
    物理化學(xué)學(xué)報(bào) 2016年11期
    關(guān)鍵詞:合肥工業(yè)大學(xué)宣城雜化

    王艷青 李 龍 聶林輝 李楠楠 史成武,

    (1合肥工業(yè)大學(xué)宣城校區(qū)化工與食品加工系,安徽宣城242000;2合肥工業(yè)大學(xué)化學(xué)與化工學(xué)院,合肥230009)

    兩步沉積法制備Br或Cl摻雜的有機(jī)-無(wú)機(jī)雜化鈣鈦礦太陽(yáng)電池

    王艷青1,*李 龍1聶林輝1李楠楠2史成武1,2

    (1合肥工業(yè)大學(xué)宣城校區(qū)化工與食品加工系,安徽宣城242000;2合肥工業(yè)大學(xué)化學(xué)與化工學(xué)院,合肥230009)

    采用控制前驅(qū)體濃度的兩步沉積法和插入PbI2層的DMSO分子(PbI2(DMSO)復(fù)合體)分別與MAX (MA=CH3NH3,X=I,Br)或MAX(X=I,Cl)進(jìn)行的分子內(nèi)交換法,實(shí)現(xiàn)了Br或Cl的摻雜并合成了厚度為300 nm左右的混合鹵化物鈣鈦礦MAPbI3-xBrx和MAPbI3-xClx膜。MAX前驅(qū)體溶液中含5%(摩爾分?jǐn)?shù),下同) MABr或15%MACl所生成的Br或Cl摻雜鈣鈦礦膜能提高鈣鈦礦太陽(yáng)電池的光伏性能,進(jìn)一步提高M(jìn)ABr或MACl的含量并不會(huì)明顯改變摻雜量,但會(huì)形成小的白色顆?;蛘哚樋祝@些將對(duì)電池的性能產(chǎn)生不利影響。前驅(qū)體溶液含5%MABr的MAPbI3-xBrx鈣鈦礦太陽(yáng)電池所獲得的能量轉(zhuǎn)換效率(PCE)為13.2%,含15% MACl的MAPbI3-xClx鈣鈦礦太陽(yáng)電池獲得了最高13.5%的PCE。

    鈣鈦礦太陽(yáng)電池;PbI2(DMSO)復(fù)合體;摻雜;兩步沉積

    1 Introduction

    In 2009,Kojima et al.1incorporated perovskite semiconductor nanocrystals into photovoltaic devices and reported a power conversion efficiency(PCE)of 3.8%.Since then,perovskite solarcells(PSCs)have been intensively studied in the last few years due to the tremendous improvements in devices architecture2,3,film formation methodologies4-6,and compositional engineering7-10of perovskite materials and led to dramatically improved in PCE,up to 20.8%with the perovskite films in a single step from a solution containing a mixture of FAI,PbI2,MABr,and PbBr2(where FAI stands for CH(NH2)2I and MABr stands for CH3NH3Br)11.The rapid increase in performance is due to the innate desirable properties of perovskite absorbers,including favourable direct band gap,large adsorption coefficient,high carrier mobilities,and long carrier diffusion lengths5,12-16.

    As we know,the earlier developed perovskite solar cells,both mesostructured and planar heterojunction ones,were mainly employed the triiodide(MAPbI3)perovskite absorbers with the thickness of~300 nm13,17-19,and thicker film is not practicable due to it limited electron and hole diffusion lengths20.In 2013,Snaith et al.21reported that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite(MAPbI3-xClx),a factor of~5 to 10 greater than the absorption length.While the bandgap of MAPbI3-xClxis almost identical to MAPbI3,the Cl doped perovskite compounds have been shown longer charge carrier diffusion lengths.Therefore,doping is necessary to outstanding performance perovskite solar cells,and many methods have been used.For example,Mosca et al.22using self-organization process to prepared MAPbI3-xClxmixed halide perovskite and found that the Cl doping dramatically improved the charge transport within the perovskite layer,but the Cl incorporation in the iodide-based structure was possible only below 3%-4%independent of the components ratio in the precursor solution.Mhaisalkar et al.23reported that both the addition of Cl and sequential deposition methods were employed to enhance the performance.In almost all studies,a mixture of PbCl2and excess MAI in a 1:3 molar ration in dimethylformamide(DMF)solution was used24,25.To the best of our knowledge,no study reported the Br or Cl doping via the two-step deposition method through the controlled concentration of the precursor solution.

    On the other hand,formation of highly pure perovskite film with uniform,dense and full surface coverage is critical issue in PSCs for improving the PCE,and various methods such as sequential deposition,additive-assisted deposition,two-step spincoating,and solvent engineering have been proposed and utilized to synthesize high quality perovskite films with full surface coverage by controlling the crystallization behavior26-29.As to solvent engineering,intramolecular exchange has been reported to deposit high-quality FAPbI3films and dramatically improve the PCE of PSCs recently,involving FAPbI3crystallization by the direct intramolecular exchange of dimethylsulfoxide(DMSO) intercalated in PbI2(PbI2(DMSO)complex)with FAI easily,because FAIs possess higher affinity toward PbI2relative to DMSO, and did not induce volume expansion due to the similar molecular sizes of DMSO and FAI30.Furthermore,N-methyl-2-pyrrolidone (NMP)molecule was also demonstrated that it can be intercalated into layered PbI2and the PbI2(NMP)complex successfully converted into high-performance perovskite through intramolecular exchange with(FAI)0.85(MABr)0.1527,the MABr content was introduced for stabilizing perovskite phase and highly crystallinity of perovskite films,as well as band-gap tuning5,7.Very recently, an intramolecular exchange of DMSO with MAI enabled the PbI2(DMSO)x(0≤x≤1.86)complexes to deform their shape and finally to be an ultraflat and dense film of MAPbI331.

    Herein,we report mixed halide perovskites of MAPbI3-xBrxand MAPbI3-xClxwith film thickness of about 300 nm were synthesized through the Br or Cl doping,by means of the two steps deposition of controlled concentration of the precursor solution and the intramolecular exchange of PbI2(DMSO)complex with MAX(X=I,Br)or MAX(X=I,Cl),respectively.The crosssectional and surface morphology,crystal phase and absorption spectra of the precursor and the mixed perovskite thin films were systematically investigated by scanning electron microscopy (SEM),X-ray diffraction(XRD)and ultraviolet-visible spectroscopy(UV-Vis),respectively,and the photovoltaic performance of the planar perovskite solar cells were evaluated.

    2 Experimental

    2.1Preparation of PbI2(DMSO)complex

    All chemicals were of analytical grade and were used as received without further purification.In order to obtained the PbI2(DMSO)complex,rather than the PbI2(DMSO)2complex30,the equal molar ratio of PbI2to DMSO after mixing was needed and the synthesized process including two steps and controlled concentration:first by dissolved 2.0 mmol PbI2powder in 2 mL DMF at 70°C with magnetic stirring,then added 1.8 mmol DMSO in it dropwise,and stirred evenly;secondly,0.6 mmol PbI2powder and then 0.8 mmol DMSO were added,the solution was stirred at 70°C for 24 h,then the 1.3 mol·L-1PbI2(DMSO)complex was obtained.

    2.2Fabrication of solar cells

    Fluorine-doped tin oxide(FTO)glass was patterned by etching with Zn metal powder and 2 mol·L-1HCl aqueous solution,then the substrates were cleaned with a detergent diluted in deionized water,and rinsed with deionized water,acetone and ethanol.To make a dense blocking layer of TiO232,0.23 mol·L-1acidic solution of titanium isopropoxide in isopropanol was spin-coated onto the clean substrates at 2000 r·min-1for 30 s,then sintered at 500°Cfor 1 h.To make the MAPbI3-xBrxperovskite layers,the PbI2(DMSO)complex was spin-coated on the TiO2compact layer at 3000 r·min-1for 20 s,and dried at the glove box with controlled humidity at 10%for 1 h,emerald green film formed.Then,20 μL of 0.35 mol·L-1mixed MAI and MABr in isopropanol solution,in which the molar ratios of MABr were 0%,5%,and 10%,respectively,was dropped onto the PbI2(DMSO)complex film,spin up to 5000 r·min-1for 30 s and heated on a heat plate at 70°C for 30 min.The MAPbI3-xClxperovskite layers were prepared along the same procedures with the molar ratios of MACl were 5%,10%and 15%in the MAI and MACl mixed solution and obtained the 0.465 mol·L-1isopropanol solution.The hole-transporting layer wasdeposited by spin-coating a solution of 2,2′,7,7′-tetrakis-(N,N-dip-methoxyphenylamine)-9,9′-spirobifluorene(spiro-OMeTAD), 4-tert-butylpyridine(tBP),lithium bis(trifluoromethanesulphonyl) imide(Li-TFSI)and tris-(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III)bis(trifluoromethylsulphonyl)imide in chlorobenzene onto the perovskite layer film.Then a 60-nm-thick Au counter electrode was deposited by thermal evaporation.For all measurements,solar cells were equipped with a 3 mm×3 mm aperture to define the active area.

    2.3Characterization

    The XRD patterns of the PbI2(DMSO)complex and corresponding intramolecular exchange products were measured using Cu Kαradiation(λ=0.154056 nm,40 kV and 40 mA)(D/ MAX2500 V,Rigaku,Japan).Ascanning rate of 0.026(°)·s-1was applied to record the patterns in the 2θ range of 5°-80°.The surface and cross-sectional morphology were observed using field emission scanning electron microscope(FE-SEM,Sirion200,FEI, USA).The UV-Vis absorption spectra were recorded by the ultraviolet spectrophotometer(U-3900H,Hitachi,Japan).The photovoltaic performance of perovskite solar cells was measured with a solar simulator(Oriel,Newport,USA,AM 1.5,100 mW· cm?2)and a Keithley 2420 source meter controlled by Testpoint software.The irradiation intensity was calibrated with standard crystalline silicon solar cell(Oriel,Newport,USA).

    3 Results and discussion

    3.1Crystal structure,optical absorption andmorphology of PbI2and PbI2(DMSO)films

    Fig.1 showed the XRD spectra of films fabricated by employing the PbI2and PbI2(DMSO)complex in DMF.In case of the PbI2film,the diffraction peak at 12.7°indicated that the pure PbI2crystal was utilized to deposit the film.The PbI2(DMSO)complex yielded almost invisible peak at 12.7°but a strong diffraction peak at 9.8°,which indicative of an increased distance between PbI2layers due to DMSO molecules intercalating between these layers according to the Bragg equation27,33.

    Fig.2 demonstrated the absorbance of PbI2and the PbI2(DMSO) complex.In the case of PbI2,the absorption band-edge located at round 525 nm is attributed to the band-gap excitation of crystallized PbI2thin film31.With the intercalated of DMSO in PbI2layers,the absorption band-edge exhibited an obvious blue shift to 475 nm,means that the formation of the complex can change the grain size and the thickness of the PbI2(DMSO)film.

    Fig.1 XRD patterns of PbI2and PbI2(DMSO)films

    Fig.2 UV-Vis spectra of PbI2and PbI2(DMSO)films

    The morphology difference of the PbI2and the PbI2(DMSO) film was shown in Fig.S1(see the Supporting Information),the PbI2(DMSO)film from the PbI2(DMSO)complex precursor solution shows almost a fully coverage surface without pin-holes and a dense layer with thickness of~235 nm above the TiO2compact layer.In contrast,the PbI2film shows a non-continuous PbI2island of~200 nm with rough surface coverage,and a loose layer with thickness of~152 nm.Therefore,the PbI2(DMSO)film has been utilized for the purpose of highly quality perovskite films.

    3.2Crystal structure,optical absorption andmorphology of MAPbI3-xBrxand MAPbI3-xClxfilms

    Fig.3 XRD patterns of MAPbI3-xBrxfilms withdifferent MABr molar ratios

    Fig.3 and Fig.4 presented the XRD patterns of the MAPbI3-xBrxfilms with different MABr molar ratios and the MAPbI3-xClxfilms with different MACl molar ratios,respectively.Due to the chloride-iodide mixed halide perovskites exhibit low miscibility22,34and poor solubility of PbCl2in DMF23,higher contents of precursor were expected,therefore the concentration of MAI and MABr mixed in isopropanol solution was 0.35 mol·L-1,and that of MAI and MACl mixed in isopropanol solution was 0.465 mol·L-1.In Fig.3,the diffraction peak around 14.28°,which was assigned to the(110)diffraction plane of MAPbI323,shifting with the changemolar ratio of MABr in precursor solution(see Fig.3 inset),and means that the successful doping of Br into the MAPbI3-xBrxperovskite,similar results were shown in Fig.4 with those MAPbI3-xClxfilms.The energy-dispersive X-ray spectroscopy (EDX)results from Table S1(Supporting Information)also indicated that Br and Cl were incorporated in an iodide-based structure.The substitution of Br and I are reversible in perovskite material,and the ability of Br subtituting I is lower than the I substituting Br,then the doping amount of Br in the MAPbI3-xBrxfilms with MABr molar ratio of 10%was not improved significantly than the molar ratio of 5%ones,similar results were obtained in those MAPbI3-xClxfilms(Table S1).

    Fig.4 XRD patterns of MAPbI3-xClxfilms with different MACl molar ratios

    The UV-Vis absorption spectra of the MAPbI3-xBrxfilms with different MABr molar ratios and the MAPbI3-xClxfilms with different MACl molar ratios were presented also,the increasing absorption band-edge shift blue along with the increasing of MABr(see Fig.5),which means the successful doping of Br in the MAPbI3-xBrx,this was in agreement with the XRD results,and similar result was obtained in those MAPbI3-xClxproducts(see Fig.6).

    To compare the crystalline morphologies of the perovskite films,top-view surface images and cross-sectional images were shown in Figs.7-10.The MAPbI3-xBrxperovskite films deposited from 0%MABr showed both small and large grain size up to~400 nm(see Fig.7(a,d)),the film with small grain size decreased significantly for the perovskite film formed from the 5%MABr (see Fig.7(b,e)),but film from the 10%MABr showed obvious small white particles(see Fig.7(c,f)),maybe due to the formation of perovskite materials with cubic structures35,36.Fig.8 showed the thickness of these perovskite films with 0,5%,and 10%MABr were 240,290,and 288 nm,respectively,the doping of Br results in thickness increase of the perovskite films.In addition,it is easy to find that some white particles formed at the interface between the TiO2layer and the perovskite thin films when with 5%MABr from the cross-sectional SEM images(see Fig.8(b)),which was not clear in the surface images(see Fig.7(b,e)),and more white particles in the perovskite films with the 10%MABr(see Fig.8 (c)),then may result in increased electron recombination.Fig.9 clearly shown the MAPbI3-xClxperovskite films deposited from 10%MACl with nonuniform grain size and with pin-holes(see Fig.9(a,d)),a relative uniform and full-coverage perovskite film formed from the 15%MACl(see Fig.9(b,e)),but when the content of MACl increases to 20%,significant pin-holes were generated though the perovskite film was unifrom(see Fig.9(c,f)). The thickness of MAPbI3-xClxperovskite films with 10,15,and 20%MACl were 267,317 and 314 nm,respectively(see Fig.10). In brief,the 5%MABr and 15%MACl products showed superior crystal structure and morphology in the MAPbI3-xBrxand MAPbI3-xClxperovskite films,respectively.

    Fig.5 UV-Vis spectra of MAPbI3-xBrxfilms with different MABr molar ratios

    Fig.6 UV-Vis spectra of MAPbI3-xClxfilms with different MACl molar ratios

    3.3Photovoltaic performance of planar perovskitesolar cells

    Fig.7 Surface SEM images of MAPbI3-xBrxfilm with different molar ratios of MABr

    Fig.8 Cross-sectional SEM images of MAPbI3-xBrxfilm with different molar ratios of MABr

    Fig.9 Surface SEM images of MAPbI3-xClxfilm with different molar ratios of MACl

    The values of photovoltaic parameters of the perovskite solar cells derived from PbI2(DMSO)complex with MAI via intramolecular exchange with different molar ratios of MABr or MACl were given in Table 1.As to the planar MAPbI3-xBrxperovskite film deposited by intramolecular exchange between PbI2(DMSO) complex and 0.35 mol·L-1MAX(X=I,Br),MAX with 5% MABr exhibited better photovoltaic performance than those with 0 and 10%ones,giving an open-circuit voltage(Voc)of 1.00 V,a short-circuit current density(Jsc)of 18.0 mA·cm-2,a fill factor (FF)of 71.2%and an average PCE of 12.9%(4 cells)along with the maximum PCE of 13.2%.Meanwhile,the planar MAPbI3-xClxperovskites film deposited by intramolecular exchange between PbI2(DMSO)complex and 0.465 mol·L-1MAX(X=I,Cl),MAX with 15%MACl exhibited better photovoltaic performance than those with 10%and 20%ones,gives Voc=1.03 V,Jsc=17.6 mA· cm-2,FF=74.2%,and an average PCE of 13.4%(4 cells)along with the maximum PCE of 13.5%.The doping of Br or Cl in the perovskite film can improve the photovoltaic performance of PSCs with the precursor of MAX containing 5%MABr or 15% MACl,respectively,while further increase in the content of MABr or MACl in the precursor did no lead to significant changes in doping amounts,but small white particles or pin-holes were formed in mixed perovskite materials obviously,therefore resulted in adverse effects on the performance of perovskite solar cells.

    Fig.10 Cross-sectional SEM images of MAPbI3-xClxfilm with different molar ratios of MACl

    Table 1 Values of photovoltaic parameters of the perovskite solar cells derived from PbI2(DMSO)complex with MAI via intramolecular exchange with different molar ratios of MABr or MACl

    4 Conclusions

    In summary,uniform,dense and full coverage of mixed halide perovskites of MAPbI3-xBrxand MAPbI3-xClxwith film thickness of about 300 nm were synthesized through the Br or Cl doping, thanks to the two-step deposition of controlled concentration of the precursor solution and the intramolecular exchange of PbI2(DMSO)complex with MAX(X=I,Br)or MAX(X=I,Cl), respectively.The doping of Br or Cl in the perovskite film can improve the photovoltaic performance of PSCs with suitable amount of MABr or MACl in the MAX precursor solutions.The MAPbI3-xBrxperovskite solar cells with 5%MABr exhibited superior photovoltaic performance than the 0%and 10%MABr ones,the maximum PCE was 13.2%,as to the MAPbI3-xClxperovskite solar cells,mixed perovskite from 15%MACl exhibited superior photovoltaic performance than the 10%and 20%MACl ones,and the highest PCE recorded was 13.5%.Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Kojima,A.;Teshima,K.;Shirai,Y.;Miyasaka,T.J.Am.Chem. Soc.2009,131(17),6050.doi:10.1021/ja809598r

    (2) Heo,J.H.;Im,S.H.;Noh,J.H.;Mandal,T.N.;Lim,C.S.; Chang,J.A.;Lee,Y.H.;Kim,H.J.;Sarkar,A.;Nazeeruddind, M.K.;Gratzel,M.;Seok,S.I.Nat.Photonics 2013,7(6),486. doi:10.1038/nphoton.2013.80

    (3) Lee,M.M.;Teuscher,J.;Miyasaka,T.;Murakami,T.N.; Snaith,H.J.Science 2012,338(6107),643.doi:10.1126/ science.1228604

    (4) Burschka,J.;Pellet,N.;Moon,S.J.;Humphry-Baker,R.;Gao, P.;Nazeeruddin,M.K.;Gratzel,M.Nature 2013,499(7458), 316.doi:10.1038/nature12340

    (5)Jeon,N.J.;Noh,J.H.;Kim,Y.C.;Yang,W.S.;Ryu,S.;Seok, S.I.Nat.Mater.2014,13(9),897.doi:10.1038/nmat4014

    (6) Liu,M.;Johnston,M.B.;Snaith,H.J.Nature 2013,501(7467), 395.doi:10.1038/nature12509

    (7) Noh,J.H.;Im,S.H.;Heo,J.H.;Mandal,T.N.;Seok,S.I. Nano Lett.2013,13(4),1764.doi:10.1021/nl400349b

    (8) Lee,J.W.;Seol,D.J.;Cho,A.N.;Park,N.G.Adv.Mater.2014, 26(29),4991.doi:10.1002/adma.201401137

    (9) Pellet,N.;Gao,P.;Gregori,G.;Yang,T.Y.;Nazeeruddin,M. K.;Maier,J.;Gr?tzel,M.Angew.Chem.Int.Ed.2014,53(12), 3151.doi:10.1002/anie.201309361

    (10) Liu,X.P.;Kong,F.T.;Chen,W.C.;Yu,T.;Guo,F.L.;Chen,J.; Dai,S.Y.Acta Phys.-Chim.Sin.2016,32(6),1347.[劉雪朋,孔凡太,陳汪超,于 婷,郭福領(lǐng),陳 健,戴松元.物理化學(xué)學(xué)報(bào),2016,32(6),1347.]doi:10.3866/PKU.WHXB201603143

    (11) Bi,D.;Tress,W.;Dar,M.I.;Gao,P.;Luo,J.;Renevier,C.; Schenk,K.;Abate,A.;Giordano,F.;Correa Baena,J.P.; Decoppet,J.D.;Zakeeruddin,S.M.;Nazeeruddin,M.K.; Gr?tzel,M.;Hagfeldt,A.Sci.Adv.2016,2(1),e1501170. doi:10.1126/sciadv.1501170

    (12) Snaith,H.J.J.Phys.Chem.Lett.2013,4(21),3623. doi:10.1021/jz4020162

    (13) Chen,Q.;Zhou,H.;Hong,Z.;Luo,S.;Duan,H.S.;Wang,H. H.;Liu,Y.;Li,G.;Yang,Y.J.Am.Chem.Soc.2014,136(2), 622.doi:10.1021/ja411509g

    (14) Kim,H.S.;Im,S.H.;Park,N.G.J.Phys.Chem.C 2014,118 (11),5615.doi:10.1021/jp409025w

    (15) Zhou,H.;Chen,Q.;Li,G.;Luo,S.;Song,T.B.;Duan,H.S.; Hong,Z.;You,J.;Liu,Y.;Yang,Y.Science 2014,345(6196), 542.doi:10.1126/science.1254050

    (16) Wu,N.;Shi,C.;Li,N.;Wang,Y.;Li,M.Mater.Res. Innovations 2016,20(5),338.doi:10.1080/ 14328917.2016.1144247

    (17) Malinkiewicz,O.;Yella,A.;Lee,Y.H.;Espallargas,G.M.; Graetzel,M.;Nazeeruddin,M.K.;Bolink,H.J.Nat.Photonics 2014,8(2),128.doi:10.1038/nphoton.2013.341

    (18) Zhang,J.;Shi,C.;Chen,J.;Ying,C.;Wu,N.;Wang,M.Journal of Semiconductors 2016,37(3),033002.doi:10.1088/1674-4926/37/3/033002

    (19) Liu,D.;Gangishetty,M.K.;Kelly,T.L.J.Mater.Chem.A 2014,2(46),19873.doi:10.1039/C4TA02637C

    (20) Xing,G.;Mathews,N.;Sun,S.;Lim,S.S.;Lam,Y.M.;Gr?tzel, M.;Mhaisalkar,S.;Sum,T.C.Science 2013,342(6156),344. doi:10.1126/science.1243167

    (21) Stranks,S.D.;Eperon,G.E.;Grancini,G.;Menelaou,C.; Alcocer,M.J.P.;Leijtens,T.;Herz,L.M.;Petrozza,A.;Snaith, H.J.Science 2013,342(6156),341.doi:10.1126/ science.1243982

    (22) Colella,S.;Mosconi,E.;Fedeli,P.;Listorti,A.;Gazza,F.; Orlandi,F.;Ferro,P.;Besagni,T.;Rizzo,A.;Calestani,G.; Gigli,G.;DeAngelis,F.;Mosca,R.Chem.Mater.2013,25 (22),4613.doi:10.1021/cm402919x

    (23) Dharani,S.;Dewi,H.A.;Prabhakar,R.R.;Baikie,T.;Shi,C.; Yonghua,D.;Mathews,N.;Boix,P.P.;Mhaisalkar,S.G. Nanoscale 2014,6(22),13854.doi:10.1039/C4NR04007D

    (24) Tidhar,Y.;Edri,E.;Weissman,H.;Zohar,D.;Hodes,G.;Cahen, D.;Rybtchinski,B.;Kirmayer,S.J.Am.Chem.Soc.2014,136 (38),13249.doi:10.1021/ja505556s

    (25) Zhao,Y.;Zhu,K.J.Phys.Chem.C 2014,118(18),9412. doi:10.1021/jp502696w

    (26) Yi,C.;Li,X.;Luo,J.;Zakeeruddin,S.M.;Gr?tzel,M.Adv. Mater.2016,28(15),2964.doi:10.1002/adma.201506049

    (27) Jo,Y.;Oh,K.S.;Kim,M.;Kim,K.H.;Lee,H.;Lee,C.W.; Kim,D.S.Adv.Mater.Interfaces 2016,3(10),1500768. doi:10.1002/admi.201500768

    (28) Heo,J.H.;Song,D.H.;Im,S.H.Adv.Mater.2014,26(48), 8179.doi:10.1002/adma.201403140

    (29) Li,Y.;He,X.L.;Ding,B.;Gao,L.L.;Yang,G.J.;Li,C.X.;Li, C.J.J.Power Sources 2016,320,204.doi:10.1016/j. jpowsour.2016.04.098

    (30) Yang,W.S.;Noh,J.H.;Jeon,N.J.;Kim,Y.C.;Ryu,S.;Seo,J.; Seok,S.I.Science 2015,348(6240),1234.doi:10.1126/science. aaa9272

    (31) Li,W.;Fan,J.;Li,J.;Mai,Y.;Wang,L.J.Am.Chem.Soc.2015, 137(32),10399.doi:10.1021/jacs.5b06444

    (32) Docampo,P.;Ball,J.M.;Darwich,M.;Eperon,G.E.;Snaith, H.J.Nat.Commun.2013,4,2761.doi:10.1038/ncomms3761

    (33) Wang,Z.K.;Li,M.;Yang,Y.G.;Hu,Y.;Ma,H.;Gao,X.Y.; Liao,L.S.Adv.Mater.2016,doi:10.1002/adma.201600626

    (34) Unger,E.L.;Bowring,A.R.;Tassone,C.J.;Pool,V.L.;Gold-Parker,A.;Cheacharoen,R.;Stone,K.H.;Hoke,E.T.;Toney, M.F.;McGehee,M.D.Chem.Mater.2014,26(24),7158. doi:10.1021/cm503828b

    (35) Jeon,N.J.;Noh,J.H.;Yang,W.S.;Kim,Y.C.;Ryu,S.;Seo,J.; Seok,S.I.Nature 2015,517(7535),476.doi:10.1038/ nature14133

    (36) Stoumpos,C.C.;Malliakas,C.D.;Kanatzidis,M.G.Inorg. Chem.2013,52(15),9019.doi:10.1021/ic401215x

    Organic-Inorganic Hybrid Perovskite Solar Cells Processed with Br or Cl Doping via a Two-Step Deposition

    WANG Yan-Qing1,*LILong1NIE Lin-Hui1LINan-Nan2SHICheng-Wu1,2
    (1Department of Chemical Engineering and Food Processing,Xuancheng Campus,Hefei University of Technology,Xuancheng 242000,Anhui Province,P.R.China;2School of Chemistry and Chemical Engineering,Hefei University of Technology, Hefei 230009,P.R.China)

    Mixed halide perovskites of MAPbI3-xBrxand MAPbI3-xClx(MA=CH3NH3)with film thickness of about 300 nm were synthesized through the Br or Cl doping,thanks to the two steps deposition of controlled concentration of the precursor solution and the intramolecular exchange of DMSO molecules intercalated in PbI2(PbI2(DMSO)complex)with MAX(X=I,Br)or MAX(X=I,Cl),respectively.The doping of Br or Cl in the perovskite film can improve the photovoltaic performance of PSCs with the precursor of MAX contains 5%(in mole fraction,same below)MABr or 15%MACl,respectively,while further increase in the content of MABr or MACl in the precursor did not lead to significant changes in doping amounts,but small white particles or pin-holes were formed in mixed perovskite materials,therefore resulted in adverse effects on the performance of solar cells.The MAPbI3-xBrxperovskite solar cells with 5%MABr in precursor solution showed a power conversion efficiency(PCE)of 13.2%,and the MAPbI3-xClxperovskite solar cells with 15%MACl in precursor solution showed the highest PCE of 13.5%.

    Perovskite solar cell;PbI2(DMSO)complex;Doping;Two-step deposition

    O644

    10.3866/PKU.WHXB201607272

    Received:May 25,2016;Revised:July 27,2016;Published online:July 27,2016.

    *Corresponding author.Email:yqwang@hfut.edu.cn;Tel:+86-563-3831302.

    The project was supported by the National Natural Science Foundation of China(51472071,51272016,51072043)and Startup Foundation of Hefei University of Technology,China(JZ2014HGBZ0371,JZ2014HGBZ0358).

    國(guó)家自然科學(xué)基金(51472071,51272016,51072043)和校博士啟動(dòng)基金(JZ2014HGBZ0371,JZ2014HGBZ0358)資助項(xiàng)目

    猜你喜歡
    合肥工業(yè)大學(xué)宣城雜化
    安徽宣城:村里有群姑娘叫『小花』
    司爾特宣城公司舉行消防演練
    合肥工業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)投稿須知
    《宣城小鎮(zhèn)》
    流行色(2020年1期)2020-04-28 11:16:38
    《合肥工業(yè)大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
    α-細(xì)辛腦脂質(zhì)聚合物雜化納米粒的制備及表征
    宣城以外看宣城
    元素雜化阻燃丙烯酸樹(shù)脂的研究進(jìn)展
    化學(xué)教學(xué)中的分子雜化軌道學(xué)習(xí)
    元素雜化阻燃聚苯乙烯的研究進(jìn)展
    亚洲av电影在线进入| 欧美激情久久久久久爽电影 | 两个人免费观看高清视频| 999久久久精品免费观看国产| 久久婷婷成人综合色麻豆| 欧美在线黄色| 国产精品99久久99久久久不卡| 免费观看精品视频网站| 久久久久精品国产欧美久久久| 丰满迷人的少妇在线观看| xxx96com| 亚洲国产欧美网| 又黄又爽又免费观看的视频| 亚洲成人免费电影在线观看| 国产无遮挡羞羞视频在线观看| 80岁老熟妇乱子伦牲交| 桃红色精品国产亚洲av| 精品少妇久久久久久888优播| 欧美日韩av久久| 无遮挡黄片免费观看| 欧美激情 高清一区二区三区| 免费在线观看完整版高清| 97人妻天天添夜夜摸| 老司机午夜十八禁免费视频| 大码成人一级视频| 我的亚洲天堂| 欧美激情久久久久久爽电影 | 99热国产这里只有精品6| 精品无人区乱码1区二区| 制服人妻中文乱码| 国产99久久九九免费精品| 欧美乱色亚洲激情| 在线观看www视频免费| 久久国产精品男人的天堂亚洲| 久热这里只有精品99| 人妻一区二区av| 男女免费视频国产| 一区二区三区精品91| 夜夜爽天天搞| 欧美精品一区二区免费开放| 国产单亲对白刺激| 久久久国产一区二区| 久久影院123| 热re99久久国产66热| 午夜激情av网站| 老熟女久久久| 亚洲久久久国产精品| 亚洲一区二区三区欧美精品| 亚洲成国产人片在线观看| 午夜免费鲁丝| 欧美国产精品va在线观看不卡| 悠悠久久av| 80岁老熟妇乱子伦牲交| 久久国产精品大桥未久av| 天天操日日干夜夜撸| 亚洲色图 男人天堂 中文字幕| 成人国语在线视频| xxx96com| 欧美激情久久久久久爽电影 | 国产麻豆69| 亚洲一区高清亚洲精品| 多毛熟女@视频| 免费av中文字幕在线| 久久久久国产一级毛片高清牌| 夜夜夜夜夜久久久久| 午夜久久久在线观看| xxx96com| 亚洲自偷自拍图片 自拍| 不卡一级毛片| 日韩 欧美 亚洲 中文字幕| 啦啦啦免费观看视频1| svipshipincom国产片| 最新在线观看一区二区三区| 日韩欧美在线二视频 | avwww免费| 黄色视频不卡| 亚洲一码二码三码区别大吗| 桃红色精品国产亚洲av| av天堂久久9| 麻豆乱淫一区二区| 美女高潮到喷水免费观看| 一进一出抽搐动态| 王馨瑶露胸无遮挡在线观看| 中文亚洲av片在线观看爽 | av免费在线观看网站| 国产欧美日韩一区二区三区在线| 一进一出好大好爽视频| 男女之事视频高清在线观看| 欧美色视频一区免费| 人成视频在线观看免费观看| 中国美女看黄片| bbb黄色大片| 三级毛片av免费| 国产极品粉嫩免费观看在线| 日韩一卡2卡3卡4卡2021年| www.精华液| 国产精品欧美亚洲77777| 黑人欧美特级aaaaaa片| 国产激情久久老熟女| 精品久久久久久久久久免费视频 | 69精品国产乱码久久久| 十分钟在线观看高清视频www| 成熟少妇高潮喷水视频| 一区二区三区精品91| 亚洲精品国产一区二区精华液| 最新美女视频免费是黄的| 久久久久视频综合| 欧美精品av麻豆av| 欧美激情高清一区二区三区| 国产黄色免费在线视频| 黄色视频,在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久午夜电影 | 国产欧美日韩一区二区三| videos熟女内射| av天堂在线播放| 久久国产乱子伦精品免费另类| 免费在线观看完整版高清| 欧美日本中文国产一区发布| 精品乱码久久久久久99久播| 久久狼人影院| 久久中文看片网| 又大又爽又粗| 色综合欧美亚洲国产小说| 热re99久久国产66热| 成人国产一区最新在线观看| 亚洲视频免费观看视频| 亚洲精品美女久久久久99蜜臀| 黑人操中国人逼视频| 成人三级做爰电影| 精品第一国产精品| 看黄色毛片网站| 欧美国产精品va在线观看不卡| 美女视频免费永久观看网站| 国产不卡一卡二| 99精国产麻豆久久婷婷| a在线观看视频网站| 欧美中文综合在线视频| 黑人操中国人逼视频| 精品久久久久久,| 亚洲精华国产精华精| 精品一区二区三区av网在线观看| 无遮挡黄片免费观看| 老鸭窝网址在线观看| 久久影院123| 久久久久久久国产电影| 69av精品久久久久久| 久久影院123| www.自偷自拍.com| 久久99一区二区三区| 制服人妻中文乱码| 日韩成人在线观看一区二区三区| 欧美日韩成人在线一区二区| 精品国产国语对白av| 精品国产一区二区三区四区第35| 制服诱惑二区| 亚洲国产精品合色在线| av有码第一页| 伦理电影免费视频| 国产男靠女视频免费网站| 在线看a的网站| 久久ye,这里只有精品| 欧美成人午夜精品| 午夜免费观看网址| 视频区图区小说| 怎么达到女性高潮| 999久久久精品免费观看国产| 精品久久久久久久毛片微露脸| 大片电影免费在线观看免费| 天天躁夜夜躁狠狠躁躁| 一级,二级,三级黄色视频| 怎么达到女性高潮| 一区二区日韩欧美中文字幕| 精品久久久久久电影网| 黄网站色视频无遮挡免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久精品人妻al黑| 一级黄色大片毛片| ponron亚洲| 国产免费av片在线观看野外av| 国产精品自产拍在线观看55亚洲 | 亚洲国产精品合色在线| 天天影视国产精品| 国产一区二区三区在线臀色熟女 | 欧美日韩瑟瑟在线播放| 国产精品九九99| 精品久久蜜臀av无| 热re99久久精品国产66热6| 美女高潮到喷水免费观看| 免费在线观看亚洲国产| 日日爽夜夜爽网站| 悠悠久久av| videosex国产| 99热国产这里只有精品6| 精品国产国语对白av| 国产野战对白在线观看| 免费女性裸体啪啪无遮挡网站| 国产亚洲欧美98| 在线观看舔阴道视频| 亚洲精品在线观看二区| 满18在线观看网站| 国产高清国产精品国产三级| 国产精品免费视频内射| 热99久久久久精品小说推荐| 中国美女看黄片| 国产aⅴ精品一区二区三区波| 国产精品亚洲一级av第二区| 午夜福利一区二区在线看| 美女国产高潮福利片在线看| 91在线观看av| 丝袜在线中文字幕| 人人妻人人爽人人添夜夜欢视频| 亚洲一区二区三区欧美精品| 黑人猛操日本美女一级片| 午夜激情av网站| 天天影视国产精品| a级毛片在线看网站| 欧美国产精品一级二级三级| 久久国产精品影院| 午夜亚洲福利在线播放| 一级毛片高清免费大全| 在线永久观看黄色视频| bbb黄色大片| 黄色成人免费大全| 黄色视频,在线免费观看| xxx96com| 午夜福利一区二区在线看| 老司机午夜十八禁免费视频| 黄色 视频免费看| 男女免费视频国产| 国产亚洲精品一区二区www | 变态另类成人亚洲欧美熟女 | 国产欧美日韩一区二区三| x7x7x7水蜜桃| 一区二区三区激情视频| 交换朋友夫妻互换小说| 色综合婷婷激情| 午夜免费观看网址| 日韩欧美在线二视频 | 欧美国产精品一级二级三级| 在线观看一区二区三区激情| 免费在线观看黄色视频的| 午夜激情av网站| 老司机影院毛片| 黄片播放在线免费| 他把我摸到了高潮在线观看| 成人三级做爰电影| 天天躁狠狠躁夜夜躁狠狠躁| 老司机午夜十八禁免费视频| 欧美精品啪啪一区二区三区| 久久精品国产亚洲av香蕉五月 | 亚洲精品国产精品久久久不卡| 中文字幕另类日韩欧美亚洲嫩草| 精品无人区乱码1区二区| 韩国av一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 狠狠婷婷综合久久久久久88av| 99久久综合精品五月天人人| 成年人午夜在线观看视频| av天堂在线播放| 亚洲七黄色美女视频| 国产亚洲欧美精品永久| 一本综合久久免费| 亚洲成人免费电影在线观看| a级片在线免费高清观看视频| 最近最新中文字幕大全免费视频| bbb黄色大片| 午夜日韩欧美国产| 国产一区有黄有色的免费视频| 国产有黄有色有爽视频| 亚洲成a人片在线一区二区| 亚洲av成人一区二区三| 国产男靠女视频免费网站| 亚洲av熟女| 久久人人爽av亚洲精品天堂| 国产免费av片在线观看野外av| 国产精品亚洲av一区麻豆| 亚洲专区中文字幕在线| 国产av又大| 老司机在亚洲福利影院| 男女免费视频国产| 天天躁日日躁夜夜躁夜夜| 男女床上黄色一级片免费看| 国产高清videossex| 免费少妇av软件| 欧美日韩福利视频一区二区| 亚洲中文字幕日韩| 99riav亚洲国产免费| 欧美 亚洲 国产 日韩一| 国产欧美亚洲国产| 人妻丰满熟妇av一区二区三区 | 国产欧美日韩综合在线一区二区| 麻豆成人av在线观看| 亚洲精品中文字幕一二三四区| 中文字幕高清在线视频| 日韩欧美三级三区| 正在播放国产对白刺激| 丰满的人妻完整版| 女警被强在线播放| 又黄又爽又免费观看的视频| 精品免费久久久久久久清纯 | 久久精品国产清高在天天线| 精品欧美一区二区三区在线| 国产精品久久久av美女十八| 中文字幕色久视频| 欧美av亚洲av综合av国产av| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区蜜桃| bbb黄色大片| 热re99久久精品国产66热6| 亚洲五月天丁香| www日本在线高清视频| 午夜福利免费观看在线| 热re99久久国产66热| 成年人免费黄色播放视频| 亚洲精品国产色婷婷电影| 妹子高潮喷水视频| 午夜福利乱码中文字幕| 久久久久久人人人人人| 一二三四社区在线视频社区8| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| videos熟女内射| 电影成人av| 99精品在免费线老司机午夜| 涩涩av久久男人的天堂| 久久精品91无色码中文字幕| xxxhd国产人妻xxx| 亚洲熟妇中文字幕五十中出 | 亚洲av成人一区二区三| 久久国产精品大桥未久av| 日日摸夜夜添夜夜添小说| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久| 精品国产一区二区三区四区第35| 欧美另类亚洲清纯唯美| 丁香欧美五月| 自拍欧美九色日韩亚洲蝌蚪91| 色在线成人网| 18禁裸乳无遮挡动漫免费视频| 韩国精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 天天躁夜夜躁狠狠躁躁| 很黄的视频免费| 大型黄色视频在线免费观看| 国产精品秋霞免费鲁丝片| 久久久久久久国产电影| 美女 人体艺术 gogo| 悠悠久久av| 亚洲熟女精品中文字幕| 欧美日韩亚洲高清精品| av福利片在线| 亚洲 国产 在线| 18禁黄网站禁片午夜丰满| 飞空精品影院首页| 日韩有码中文字幕| 乱人伦中国视频| 午夜老司机福利片| 中文亚洲av片在线观看爽 | 久久ye,这里只有精品| 可以免费在线观看a视频的电影网站| 老司机亚洲免费影院| 国产av一区二区精品久久| 中文字幕人妻熟女乱码| 女人爽到高潮嗷嗷叫在线视频| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 国产乱人伦免费视频| 俄罗斯特黄特色一大片| 精品第一国产精品| 久久中文看片网| 亚洲欧洲精品一区二区精品久久久| 午夜福利一区二区在线看| 在线播放国产精品三级| 国产蜜桃级精品一区二区三区 | 国产又色又爽无遮挡免费看| 午夜成年电影在线免费观看| 亚洲视频免费观看视频| 国产aⅴ精品一区二区三区波| 午夜免费观看网址| 怎么达到女性高潮| 日韩熟女老妇一区二区性免费视频| 亚洲色图综合在线观看| 国产精品一区二区在线观看99| 在线国产一区二区在线| 少妇裸体淫交视频免费看高清 | 中文字幕高清在线视频| 国产精品av久久久久免费| 韩国av一区二区三区四区| 精品国产一区二区三区久久久樱花| 欧美乱码精品一区二区三区| 香蕉丝袜av| 国产精品久久久久成人av| 黄频高清免费视频| 老熟妇乱子伦视频在线观看| 亚洲精华国产精华精| 女同久久另类99精品国产91| 亚洲色图 男人天堂 中文字幕| 黄色 视频免费看| 亚洲人成电影免费在线| 精品亚洲成a人片在线观看| 亚洲免费av在线视频| 国产一区有黄有色的免费视频| 大码成人一级视频| 精品国产美女av久久久久小说| 91大片在线观看| 精品久久久久久,| 久久这里只有精品19| 激情视频va一区二区三区| 欧美亚洲日本最大视频资源| 亚洲成av片中文字幕在线观看| 久久久国产成人精品二区 | 久久婷婷成人综合色麻豆| cao死你这个sao货| 美国免费a级毛片| 国产精品九九99| 人人澡人人妻人| 午夜福利乱码中文字幕| 欧美色视频一区免费| 老熟妇乱子伦视频在线观看| 久久香蕉国产精品| 亚洲国产中文字幕在线视频| 婷婷成人精品国产| 最近最新免费中文字幕在线| 亚洲国产欧美网| 欧美激情 高清一区二区三区| 两人在一起打扑克的视频| 国产精品久久久久久精品古装| 狠狠狠狠99中文字幕| 免费观看精品视频网站| 久久狼人影院| 最新在线观看一区二区三区| 飞空精品影院首页| 麻豆av在线久日| av电影中文网址| 精品人妻熟女毛片av久久网站| 午夜成年电影在线免费观看| 国产男靠女视频免费网站| 亚洲一区高清亚洲精品| 黄色女人牲交| 免费观看精品视频网站| 欧美日韩亚洲综合一区二区三区_| 欧美乱色亚洲激情| 中国美女看黄片| 不卡一级毛片| 午夜老司机福利片| 老司机靠b影院| 十八禁人妻一区二区| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 人人妻人人澡人人爽人人夜夜| 亚洲自偷自拍图片 自拍| 亚洲精华国产精华精| 妹子高潮喷水视频| 精品久久久久久电影网| 在线观看免费视频网站a站| 久久热在线av| 午夜福利免费观看在线| 激情在线观看视频在线高清 | 黄色 视频免费看| 精品久久久久久电影网| av欧美777| av福利片在线| 亚洲一卡2卡3卡4卡5卡精品中文| 免费日韩欧美在线观看| 国产又色又爽无遮挡免费看| 999久久久精品免费观看国产| 精品亚洲成国产av| 超色免费av| 亚洲午夜精品一区,二区,三区| 大陆偷拍与自拍| 精品国内亚洲2022精品成人 | 亚洲专区中文字幕在线| 高清毛片免费观看视频网站 | 少妇 在线观看| 大陆偷拍与自拍| 亚洲中文日韩欧美视频| 人人妻人人爽人人添夜夜欢视频| 国产高清videossex| avwww免费| 国产亚洲欧美98| 激情视频va一区二区三区| 一级片免费观看大全| 一本大道久久a久久精品| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| 亚洲第一青青草原| 91麻豆av在线| 日本五十路高清| x7x7x7水蜜桃| 久久香蕉精品热| 人成视频在线观看免费观看| 欧美乱色亚洲激情| 99在线人妻在线中文字幕 | 老汉色∧v一级毛片| 1024视频免费在线观看| 高清欧美精品videossex| 99热只有精品国产| 欧美在线一区亚洲| 国产精品永久免费网站| 国产野战对白在线观看| 国产黄色免费在线视频| 免费一级毛片在线播放高清视频 | 免费黄频网站在线观看国产| 亚洲五月天丁香| 久久精品亚洲精品国产色婷小说| 国产av一区二区精品久久| 男人的好看免费观看在线视频 | 午夜免费鲁丝| 高清视频免费观看一区二区| 最近最新中文字幕大全电影3 | 日本一区二区免费在线视频| 欧美日韩av久久| 国产亚洲精品久久久久5区| 亚洲av成人一区二区三| 日本a在线网址| 一本大道久久a久久精品| 免费人成视频x8x8入口观看| 水蜜桃什么品种好| 欧美日韩成人在线一区二区| 飞空精品影院首页| 日韩欧美国产一区二区入口| 男人操女人黄网站| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片 | 午夜91福利影院| 久久精品人人爽人人爽视色| 一级毛片高清免费大全| 黑丝袜美女国产一区| 高清欧美精品videossex| 最近最新中文字幕大全免费视频| 成年版毛片免费区| 中亚洲国语对白在线视频| 精品一区二区三区视频在线观看免费 | 美女视频免费永久观看网站| 日本一区二区免费在线视频| 老熟女久久久| 精品久久久久久电影网| 色在线成人网| 国产单亲对白刺激| 国产一区有黄有色的免费视频| 可以免费在线观看a视频的电影网站| 天天躁狠狠躁夜夜躁狠狠躁| 成人国语在线视频| 国产又色又爽无遮挡免费看| 多毛熟女@视频| 国产av一区二区精品久久| 黄色丝袜av网址大全| 另类亚洲欧美激情| 夫妻午夜视频| 精品国产美女av久久久久小说| 中文字幕最新亚洲高清| 亚洲男人天堂网一区| 在线av久久热| 波多野结衣av一区二区av| 可以免费在线观看a视频的电影网站| 国产野战对白在线观看| 婷婷丁香在线五月| 午夜福利欧美成人| 免费av中文字幕在线| 99re在线观看精品视频| 国产男女内射视频| 日本五十路高清| 日韩视频一区二区在线观看| 高清欧美精品videossex| 欧美精品人与动牲交sv欧美| 久久香蕉精品热| 69精品国产乱码久久久| 少妇粗大呻吟视频| 日本vs欧美在线观看视频| 亚洲成人免费av在线播放| 成年女人毛片免费观看观看9 | 亚洲精品美女久久久久99蜜臀| 久久国产精品人妻蜜桃| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| 国产精品久久久人人做人人爽| 中文字幕另类日韩欧美亚洲嫩草| av电影中文网址| 国产精品久久视频播放| 麻豆成人av在线观看| 欧美成狂野欧美在线观看| 成人av一区二区三区在线看| 一进一出抽搐动态| 成人国产一区最新在线观看| 国产精品秋霞免费鲁丝片| 婷婷精品国产亚洲av在线 | av免费在线观看网站| 精品免费久久久久久久清纯 | 欧美日韩成人在线一区二区| 精品电影一区二区在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲男人天堂网一区| 咕卡用的链子| 久久精品91无色码中文字幕| 一进一出抽搐gif免费好疼 | 免费观看精品视频网站| 极品教师在线免费播放| 久热爱精品视频在线9| 免费观看a级毛片全部| 极品少妇高潮喷水抽搐| 亚洲欧洲精品一区二区精品久久久| 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 中文字幕人妻丝袜制服| 又黄又爽又免费观看的视频| 一边摸一边抽搐一进一小说 | 久久性视频一级片| 亚洲精品在线美女| 久久久精品国产亚洲av高清涩受| 天天影视国产精品| 9色porny在线观看| 国产精品九九99| 无限看片的www在线观看|