(首都醫(yī)科大學(xué)附屬北京天壇醫(yī)院神經(jīng)內(nèi)科,北京 100050)
腦卒中防治50年來,由于抗血小板和降壓降脂等二級預(yù)防治療,缺血性腦卒中的年復(fù)發(fā)率降低近50%[1]。其中,抗血小板治療因可以顯著降低缺血性腦卒中的卒中復(fù)發(fā)率,已被多個國家治療指南推薦為卒中二級預(yù)防的重要組成部分[2-3]。
血小板通過黏附、聚集、釋放、收縮等過程形成血栓,抗血小板藥物則主要通過抑制血小板而達(dá)到抗血栓形成的目的。上世紀(jì)80年代,阿司匹林作為抗血小板藥物被美國食品和藥物管理局批準(zhǔn)上市后,陸續(xù)有多種抗血小板藥物通過批準(zhǔn)并被廣泛應(yīng)用于臨床。上世紀(jì)90年代,作為最先且最廣泛被應(yīng)用于臨床的抗血小板藥物,阿司匹林被認(rèn)為是缺血性腦卒中一級、二級預(yù)防及急性期治療不可或缺的藥物[4-6]。然而,循證醫(yī)學(xué)證據(jù)表明,阿司匹林僅能將卒中患者心血管事件的復(fù)發(fā)風(fēng)險降低13%,仍有30%~40%的患者在接受阿司匹林抗血小板治療期間出現(xiàn)新發(fā)腦缺血事件[7]。究其原因,阿司匹林抵抗可能是主要因素[8]。隨后,研究者開始尋求新的、更安全有效的抗血小板藥物,氯吡格雷便應(yīng)運而生。經(jīng)典的CAPRIE(Clopidogrel versus Aspirin in Patients at Risk of Ischaemic Events)研究表明,長期服用氯吡格雷75 mg/d與阿司匹林325 mg/d相比,卒中復(fù)發(fā)風(fēng)險相對降低8.7%[9],由此確定了氯吡格雷在全球范圍內(nèi)缺血性卒中預(yù)防及治療的一線用藥地位。
為進(jìn)一步優(yōu)化抗血小板治療的方案,降低卒中患者血管事件復(fù)發(fā)風(fēng)險,本世紀(jì)初,研究者開始嘗試將阿司匹林與其他抗血小板藥物聯(lián)合應(yīng)用于缺血性腦血管病二級預(yù)防。早期的三大臨床隨機(jī)對照試驗,即MATCH (Management of ATherothrombosis with Clopidogrel in High-risk patients)、PRoFESS(Prevention Regimen For Effectively avoiding Second Strokes)及SPS3(Secondary Prevention of Small Subcortical Strokes)研究表明,阿司匹林聯(lián)合其他抗血小板藥物用于抗血小板治療可增加出血風(fēng)險26%~42%,出血抵消獲益[10-12],故臨床不推薦使用[2]。而近些年公布的幾項具有代表性的大型臨床對照試驗,如氯吡格雷應(yīng)用于伴有急性非致殘性腦血管事件高危人群的療效研究(CHANCE)、SAMMPRIS(Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis)、CARESS(Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic carotid Stenosis)、CLAIR(Clopidogrel plus aspirin versus aspirin alone for reducing embolisation in patients with acute symptomatic cerebral or carotid artery stenosis)、ARCH(Aortic Arch Related Cerebral Ha-zard)等均表明,在某些特定缺血性卒中病因及發(fā)病類型的腦卒中患病人群中,雙聯(lián)抗血小板與單一抗血小板治療相比,能相對降低卒中復(fù)發(fā)風(fēng)險24%~40%[13-17]。然而,仍有部分人群不能從雙聯(lián)抗血小板治療中獲益,原因可能與血小板反應(yīng)多樣性有關(guān)[18]。血小板反應(yīng)多樣性與分子生物學(xué)因素息息相關(guān),包括蛋白組學(xué)、代謝組學(xué)因素(糖代謝、吸煙、腎功能等影響肝酶或血小板受體表達(dá))和基因組學(xué)因素(細(xì)胞色素酶P450[CYP]、P2Y12等基因多態(tài)性)等[18]。
因此,缺血性腦卒中患者若想從抗血小板治療中獲益更多,則需要明確可獲益的特定病因及發(fā)病類型的患病人群,在該部分人群中,明確可額外獲益的蛋白及代謝組學(xué)因素水平,再進(jìn)一步明確可額外獲益的基因組學(xué)因素。在此基礎(chǔ)上,便實現(xiàn)了缺血性腦卒中抗血小板的精準(zhǔn)治療。下文將從上述3方面對精準(zhǔn)抗血小板治療進(jìn)行綜述。
高危非致殘性腦卒中包括輕型卒中(NIHSS≤4)和高危短暫性腦缺血發(fā)作(TIA)。研究表明,高危非致殘性腦卒中90 d內(nèi)卒中復(fù)發(fā)風(fēng)險為10%~20%,且接近半數(shù)發(fā)生在48 h內(nèi);而中重度卒中(NIHSS>4)的90 d卒中復(fù)發(fā)風(fēng)險較低,僅為3%~4%[19]。在我國,基于社區(qū)流行病學(xué)調(diào)查和醫(yī)院隊列研究發(fā)現(xiàn),非致殘性腦卒中患者在卒中患者總體中的比例超過50%,且卒中復(fù)發(fā)風(fēng)險是致殘性腦卒中的4倍[20-21]。因此,高危非致殘性腦卒中應(yīng)該作為我國腦血管病防控的最佳人群。FASTER(Fast Assessment of Stroke and Transient ischaemic attack to prevent Early Recurrence)研究表明,高危非致殘性腦卒中患者,發(fā)病24 h內(nèi)給予阿司匹林81 mg/d、氯吡格雷首次負(fù)荷劑量300 mg,維持劑量75 mg/d,與單用阿司匹林相比,90 d卒中復(fù)發(fā)風(fēng)險絕對降低3.8%[22]。CHANCE研究表明,發(fā)病24 h內(nèi)給予阿司匹林首次負(fù)荷劑量150~300 mg,維持劑量75 mg/d,聯(lián)合用氯吡格雷首次負(fù)荷劑量300 mg,維持劑量75 mg/d,21 d后改為單用氯吡格雷75 mg/d,與全程單用阿司匹林75 mg/d相比,患者90 d時的卒中風(fēng)險相對降低32%,并且未增加出血風(fēng)險[13]。上述研究結(jié)果表明,高危非致殘性腦卒中患者可作為急性期短程阿司匹林聯(lián)合氯吡格雷強(qiáng)化抗血小板治療的目標(biāo)獲益人群。而對于中度卒中(4
TOAST病因分型中,大動脈粥樣硬化性狹窄是缺血性腦卒中的主要病因[23],而由動脈粥樣硬化引起的動脈-動脈栓塞,是導(dǎo)致多發(fā)腦梗死的主要機(jī)制[24]。CHANCE影像學(xué)亞組研究指出,與無梗死相比較,伴有多發(fā)梗死和單發(fā)梗死的患者90 d卒中復(fù)發(fā)風(fēng)險更高。與單一抗血小板治療相比,雙聯(lián)抗血小板治療能夠顯著降低伴有多發(fā)梗死患者90 d的卒中復(fù)發(fā)風(fēng)險,而在無梗死患者及伴有單發(fā)梗死的患者中,雙聯(lián)抗血小板與單一抗血小板治療無顯著差異。該研究表明,由動脈-動脈栓塞引起的多發(fā)腦梗死患者可作為急性期短程阿司匹林聯(lián)合氯吡格雷強(qiáng)化抗血小板治療的目標(biāo)獲益人群。而影像學(xué)提示單發(fā)梗死或無梗死的患者,雙聯(lián)抗血小板與單一抗血小板治療的90 d獲益相當(dāng)。
ICAS在亞洲人群更為常見[25-26]。CICAS研究也證實,在所入組的缺血性腦卒中和TIA患者中,合并顱內(nèi)外動脈狹窄或者閉塞病變者比例高達(dá)46.6%,其中單純ICAS者為37.5%;而ICAS狹窄程度與卒中復(fù)發(fā)風(fēng)險呈正相關(guān)[27]。WASID(Warfarin versus Aspirin for Symptomatic Intracranial Disease)研究指出,ICAS率≥70%的癥狀性ICAS患者,腦卒中復(fù)發(fā)風(fēng)險高于狹窄率50%~70%的患者[28]。SAMMPRIS研究印證了WASID研究結(jié)果,認(rèn)為對于合并重度ICAS(70%~99%)的新發(fā)缺血性腦卒中或TIA患者,阿司匹林聯(lián)合氯吡格雷強(qiáng)化抗血小板治療與Wingspan支架植入相比,可以顯著降低病人1、2和3年卒中的復(fù)發(fā)風(fēng)險[29]。CHANCE研究亞組分析也提示,合并ICAS的高危非致殘性腦卒中患者,90 d的卒中復(fù)發(fā)風(fēng)險顯著高于非合并者[30];在發(fā)病急性期給予短程阿司匹林聯(lián)合氯吡格雷強(qiáng)化抗血小板治療,與單用阿司匹林相比,卒中復(fù)發(fā)風(fēng)險有降低趨勢。上述研究表明,合并ICAS的缺血性腦卒中患者應(yīng)作為抗血小板治療的目標(biāo)獲益人群,且阿司匹林聯(lián)合氯吡格雷強(qiáng)化抗血小板治療可能比單用阿司匹林獲益更多。
高糖血癥是腦卒中重要的獨立危險因素,與缺血性腦卒中的不良預(yù)后顯著相關(guān)。腦卒中伴有糖代謝異常(包括糖尿病、空腹血糖受損、應(yīng)激性高糖血癥、胰島素抵抗、β細(xì)胞功能受損等)的患者,卒中復(fù)發(fā)風(fēng)險顯著升高[31-35]。研究發(fā)現(xiàn),當(dāng)糖化白蛋白低于15.5%時,輕型卒中或TIA患者能更多地從阿司匹林聯(lián)合氯吡格雷抗血小板治療中獲益[36]。關(guān)于其機(jī)制,可能是由于糖代謝異常導(dǎo)致血小板表面的P2Y12受體表達(dá)增加,從而導(dǎo)致血小板活性增加,抑制了與該受體相結(jié)合的氯吡格雷的抗血小板作用,使得卒中復(fù)發(fā)風(fēng)險增加。至于糖代謝異常是否影響血小板表面其他受體的表達(dá),目前尚無研究報道。因此,根據(jù)目前的研究結(jié)果,糖代謝正常的缺血性腦卒中患者,包括糖化白蛋白<15.5%、空腹血糖正常、無糖尿病史、無應(yīng)激性血糖增高、無胰島素抵抗或β細(xì)胞功能受損者,應(yīng)該作為抗血小板治療,尤其是聯(lián)合氯吡格雷的強(qiáng)化抗血小板治療的目標(biāo)獲益人群。關(guān)于通過快速檢測患者血小板表面受體的表達(dá)水平來指導(dǎo)抗血小板治療目前尚未有研究報道,可作為未來抗血小板精準(zhǔn)治療的新方向。
多項研究表明,吸煙是腦卒中的獨立的危險因素[37]。但多項研究亦顯示,吸煙可能會促進(jìn)氯吡格雷的代謝,從而改善缺血性腦卒中患者的臨床預(yù)后,此現(xiàn)象被稱之為“吸煙悖論”[38-40]?;贑HANCE研究的分析似乎印證了該悖論,該研究發(fā)現(xiàn),在吸煙者中,氯吡格雷聯(lián)合阿司匹林強(qiáng)化抗血小板治療與單用阿司匹林相比,能顯著降低腦血管事件復(fù)發(fā)風(fēng)險;在非吸煙者中,上述差異仍存在但程度減低[41]。其機(jī)制有多種假說,有研究認(rèn)為,吸煙可以誘導(dǎo)肝酶CYP1A2,從而加快氯吡格雷轉(zhuǎn)化為活性形式的速度[42]。也有研究認(rèn)為,吸煙可以提高人體內(nèi)P2Y12受體表達(dá)水平及其與氯吡格雷的結(jié)合能力,從而可以增強(qiáng)氯吡格雷的生物學(xué)作用和臨床療效[43]。因此,缺血性腦卒中患者中,吸煙者可能是抗血小板治療,尤其聯(lián)合使用氯吡格雷的抗血小板治療的目標(biāo)獲益人群。但吸煙的數(shù)量及持續(xù)時間是否會對氯吡格雷抗血小板作用產(chǎn)生影響,有待進(jìn)一步研究。
慢性腎臟疾病與較高的卒中患病率相關(guān)[44],且估算的腎小球濾過率(eGFR)減低可能是急性缺血性腦卒中卒中復(fù)發(fā)風(fēng)險、合并癥及死亡率增高的預(yù)測因子[45-46]?;贑HANCE研究的分析也印證了上述研究結(jié)果,該研究提示腎功能正常(eGFR≥90 mL/min/1.73 m2)以及輕度慢性腎功能損害者(eGFR 60~89 mL/min/1.73m2),阿司匹林聯(lián)合氯吡格雷與單用阿司匹林相比,可顯著降低卒中的復(fù)發(fā)風(fēng)險,該結(jié)果并未在重度腎功能損害(eGFR<60 mL/min /1.73 m2)的患者中發(fā)現(xiàn)[47]。因此,可以把eGFR ≥60 mL/min/1.73 m2的缺血性腦卒中患者作為阿司匹林聯(lián)合氯吡格雷抗血小板治療的目標(biāo)獲益人群。
也有一些研究提示,某些血清標(biāo)記物也可以作為定位可額外獲益的代謝組學(xué)因素。有研究指出,動脈斑塊易損的標(biāo)記物L(fēng)p-PLA2-A、sCD40L增高,卒中復(fù)發(fā)風(fēng)險相應(yīng)增高,從阿司匹林聯(lián)合氯吡格雷雙抗治療中獲益也更多[48-49]。另有研究指出,ICAS患者中hsCRP低者可從阿司匹林聯(lián)合氯吡格雷雙抗治療中顯著獲益。上述研究提示我們,某些血清標(biāo)記物如Lp-PLA2-A、sCD40L和hsCRP等增高的缺血性腦卒中患者可作為抗血小板治療的目標(biāo)獲益人群。
CYP2C19是肝臟合成的細(xì)胞色素P450系統(tǒng)的多種藥物代謝酶之一,在氯吡格雷代謝過程中扮演最重要的角色。多項研究表明,CYP2C19基因多態(tài)位點中,CYP2C19*2、CYP2C19*3及CYP2C19*17與氯吡格雷的血小板反應(yīng)變異性密切相關(guān)[50-51]。國際上把CYP2C19*2、CYP2C19*3稱為失功能等位基因,把CYP2C19*17稱為功能獲得等位基因。根據(jù)其對氯吡格雷代謝作用強(qiáng)弱對CYP2C19基因進(jìn)行代謝分型,將僅攜帶野生型等位基因*1的基因表型(*1/*1)稱為正常代謝型,攜帶一個失功能等位基因的基因表型(*1/*2,*1/*3)稱為中間代謝型,同時攜帶兩個失功能等位基因的基因表型(*2/*2、*2/*3,*3/*3)稱為慢代謝型;攜帶*17基因表型稱為強(qiáng)代謝型(*1/*17,*17/*17);而*2/*17、*3/*17組合的基因表型,因其功能尚未能明確,故稱之為未知型[52]。
臨床上,腦卒中患者CYP2C19基因變異型和氯吡格雷療效之間的相關(guān)性仍缺乏大樣本的隨機(jī)對照研究證據(jù)。有小樣本研究表明,CYP2C19失功能等位基因與接受氯吡格雷抗血小板治療的腦卒中患者的不良臨床預(yù)后相關(guān)[53]。也有研究表明,接受氯吡格雷抗血小板治療的缺血性腦卒中患者中,攜帶CYP2C19失功能等位基因者,復(fù)合血管事件的發(fā)生風(fēng)險顯著增加[54-55]。基于CHANCE的基因亞組研究發(fā)現(xiàn),不攜帶CYP2C19失功能等位基因者,阿司匹林聯(lián)合氯吡格雷抗血小板治療與單用阿司匹林相比,卒中復(fù)發(fā)風(fēng)險顯著降低,相似的結(jié)果未在攜帶CYP2C19失功能等位基因者中發(fā)現(xiàn)。該研究真正開啟了缺血性腦卒中精準(zhǔn)抗血小板治療的新時代,當(dāng)年被評為腦血管病領(lǐng)域五項進(jìn)展之一。該研究提示我們,僅有CYP2C19的基因表型為正常代謝型者,才能從阿司匹林聯(lián)合氯吡格雷抗血小板治療中獲益,該部分人群應(yīng)作為阿司匹林聯(lián)合氯吡格雷抗血小板治療的目標(biāo)獲益人群。有研究表明,對于中間代謝型基因表型者,氯吡格雷適當(dāng)加量也可有效降低腦卒中復(fù)發(fā)風(fēng)險,但需要權(quán)衡出血風(fēng)險與獲益。而對于慢代謝型基因表型者,氯吡格雷即使增加4倍常規(guī)劑量也不能增加獲益[56]。對于強(qiáng)代謝型基因表型者,因目前研究較少,獲益并不明確。
氯吡格雷通過肝臟酶的兩步氧化代謝,生成活性產(chǎn)物,爾后與血小板表面的P2Y12受體不可逆結(jié)合,發(fā)揮其抗血小板聚集的作用。故P2Y12受體的基因多態(tài)性也可能影響氯吡格雷的抗血小板作用。有研究發(fā)現(xiàn),外周動脈疾病患者攜帶至少一個34T等位基因者,應(yīng)用氯吡格雷抗血小板治療21個月后,神經(jīng)系統(tǒng)事件的發(fā)生率是只攜帶34C等位基因患者的4.02倍[57]。關(guān)于P2Y12受體其他等位基因如C34T、G52T和T744C等,其基因多態(tài)性與氯吡格雷抗血小板作用之間的關(guān)系目前尚未明確[58-59]。故尚不能根據(jù)P2Y12受體的基因表型差異來指導(dǎo)缺血性腦卒中的抗血小板精準(zhǔn)治療。
綜上,現(xiàn)階段對于缺血性腦卒中,我們已實現(xiàn)將個體病變與分子生物學(xué)差異相結(jié)合的精準(zhǔn)抗血小板治療。隨著基因組測序技術(shù)的快速進(jìn)步以及生物信息與大數(shù)據(jù)科學(xué)的交叉應(yīng)用,相信在不久的將來,缺血性腦卒中的抗血小板治療會實現(xiàn)進(jìn)一步精準(zhǔn)化,屆時將有更多的缺血性腦卒中患者從抗血小板治療中獲益。
[1] HONG K S, EGIAIAN S, LEE M, et al. Declining stroke and vascular event recurrence rates in secondary prevention trials over the past 50 years and consequences for current trial design [J]. Circulation, 2011,123(19):2111-2119.
[2] FURIE K L, KASNER S E, ADAMS R J, et al. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2011,42(2):227-276.
[3] ESO WRITING COMMITTEE. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008[J]. Cerebrovasc Dis, 2008,25(5):457-507.
[4] The International Stroke Trial (IST): A randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group[J]. Lancet, 1997,349(9065):1569-1581.
[5] CAST Collaborative Group. CAST: Randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke.CAST (Chinese Acute Stroke Trial) collaborative group[J]. Lancet, 1997,349(9066):1641-1649.
[6] BAIGENT C, KAPPELLE L J, ALGRA A, et al. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients[J]. BMJ, 2002,324(7329):71-86.
[7] ALGRA A, VAN GIJN J. Aspirin at any dose above 30 mg offers only modest protection after cerebral ischaemia[J]. J Neurol Neurosurg Psychiatry, 1996,60(2):197-199.
[8] HOVENS M M, SNOEP J D, EIKENBOOM J C, et al. Pre-valence of persistent platelet reactivity despite use of aspirin: A systematic review[J]. Am Heart J, 2007,153(2):175-181.
[9] CAPRIE STEERING COMMITTEE. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE steering committee[J]. Lancet, 1996,348(9038):1329-1339.
[10] DIENER H C, BOGOUSSLAVSKY J, BRASS L M, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): Randomised, double-blind, placebo-controlled trial[J]. Lancet, 2004,364(9431):331-337.
[11] DIENER H C, SACCO R L, YUSUF S, et al. Effects of aspirin plus extended-release dipyridamole versus clopidogrel and telmisartan on disability and cognitive function after recurrent stroke in patients with ischaemic stroke in the prevention regimen for effectively avoiding second strokes (PRoFESS) trial: A double-blind, active and placebo-controlled study[J]. Lancet Neurol, 2008,7(10):875-884.
[12] BENAVENTE O R, WHITE C L, PEARCE L, et al. The se-condary prevention of small subcortical strokes (SPS3) study[J]. Int J Stroke, 2011,6(2):164-175.
[13] WANG Y, WANG Y, ZHAO X, et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack[J]. New Engl J Med, 2013,369(1):11-19.
[14] DERDEYN C P, CHIMOWITZ M I, LYNN M J, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): The final results of a randomised trial[J]. Lancet, 2014,383(9914):333-341.
[15] MARKUS H S, DROSTE D W, KAPS M, et al. Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using doppler embolic signal detection: the clopidogrel and aspirin for reduction of emboli in symptomatic carotid stenosis (CARESS) trial[J]. Circulation, 2005,111(17):2233-2240.
[16] WONG K S, CHEN C, FU J, et al. Clopidogrel plus aspirin versus aspirin alone for reducing embolisation in patients with acute symptomatic cerebral or carotid artery stenosis (CLAIR study): A randomised, open-label, blinded-endpoint trial[J]. Lancet Neurol, 2010,9(5):489-497.
[17] AMARENCO P, DAVIS S, JONES E F, et al. Clopidogrel plus aspirin versus warfarin in patients with stroke and aortic arch plaques [J]. Stroke, 2014,45(5):1248-1257.
[18] ANGIOLILLO D J, FERNANDEZ-ORTIZ A, BERNARDO E, et al. Variability in individual responsiveness to clopidogrel: Clinical implications, management, and future perspectives[J]. J Am Coll Cardiol, 2007,49(14):1505-1516.
[19] COULL A J, LOVETT J K, ROTHWELL P M. Population based study of early risk of stroke after transient ischaemic attack or minor stroke: implications for public education and organisation of services[J]. BMJ, 2004, 328(7435),326-328
[20] WANG Y, ZHAO X, JIANG Y, et al. Prevalence, know-ledge, and treatment of transient ischemic attacks in China[J]. Neurology, 2015,84(23),2354-2361.
[21] WANG Y, LI Z, XIAN Y, et al. Rationale and design of a cluster-randomized multifaceted intervention trial to improve stroke care quality in china: The golden bridge-acute ischemic stroke[J]. Am Heart J, 2015,169(6):767-774.
[22] KENNEDY J, HILL M D, RYCKBORST K J, et al. Fast assessment of stroke and transient ischaemic attack to prevent early recurrence (FASTER): A randomised controlled pilot trial[J]. Lancet Neurol, 2007,6(11):961-969.
[23] HART R G, DIENER H C, COUTTS S B, et al. Embolic strokes of undetermined source: The case for a new clinical construct[J]. Lancet Neurol, 2014,13(4):429-438.
[24] LEE D K, KIM J S, KWON S U, et al. Lesion patterns and stroke mechanism in atherosclerotic middle cerebral artery di-sease: Early diffusion-weighted imaging study[J]. Stroke, 2005,6(12):2583-2588.
[25] KIM J S, KIM Y J, AHN S H, et al. Location of cerebral athe-rosclerosis: Why is there a difference between east and west[J]? Int J Stroke, 2018,13(1):35-46.
[26] LI H, WONG K S. Racial distribution of intracranial and extracranial atherosclerosis[J]. J Clin Neurosci, 2003,10(1):30-34.
[27] WANG Y, ZHAO X, LIU L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: The Chinese Intracranial Atherosclerosis Study (CICAS)[J]. Stroke, 2014,45(43):663-669.
[28] KASNER S E, CHIMOWITZ M I, LYNN M J, et al. Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial stenosis[J]. Circulation, 2006,113(4):555-563.
[29] DERDEYN C P, CHIMOWITZ M I, LYNN M J, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): The final results of a randomised trial[J]. Lancet, 2014,383(9914):333-341.
[30] LIU L, WONG K S, LENG X, et al. Dual antiplatelet therapy in stroke and ICAS: Subgroup analysis of CHANCE[J]. Neurology, 2015,85(13):1154-1162.
[31] PAN Y, JING J, LI H, et al. Abnormal glucose regulation increases stroke risk in minor ischemic stroke or TIA[J]. Neurology, 2016,87(15):1551-1556.
[32] PAN Y, CAI X, JING J, et al. Stress hyperglycemia and prognosis of minor ischemic stroke and transient ischemic attack: The CHANCE study (clopidogrel in high-risk patients with acute nondisabling cerebrovascular events)[J]. Stroke, 2017,48(11):3006-3011.
[33] JING J, PAN Y, ZHAO X, et al. Insulin resistance and prognosis of nondiabetic patients with ischemic stroke: The Across-China study (abnormal glucose regulation in patients with acute stroke across China)[J]. Stroke, 2017,48(4):887-893.
[34] PAN Y, JING J, CHEN W, et al. Post-glucose load measures of insulin resistance and prognosis of nondiabetic patients with ischemic stroke[J]. J Am Heart Assoc, 2017,6(1):e004990.
[35] PAN Y, CHEN W, JING J, et al. Pancreatic beta-cell function and prognosis of nondiabetic patients with ischemic stroke [J]. Stroke, 2017,48(11):2999-3005.
[36] HU L, CHANG L, ZHANG Y, et al. Platelets express activated P2Y12 receptor in patients with diabetes mellitus[J]. Circulation, 2017,136(9):817-833.
[37] WOODWARD M, LAM T H, BARZI F, et al. Smoking, quitting, and the risk of cardiovascular disease among women and men in the Asia-Pacific region[J]. Int J Epinemiol, 2005,34(5):1036-1045.
[38] BERGER J S, BHATT D L, STEINHUBL S R, et al. Smo-king, clopidogrel, and mortality in patients with established cardiovascular disease[J]. Circulation, 2009,120(23):2337-2344.
[39] ZHAO Z G, CHEN M, PENG Y, et al. The impact of smo-king on clinical efficacy and pharmacodynamic effects of clopidogrel: A systematic review and meta-analysis [J]. Heart, 2014,100(3):192-199.
[40] GAGNE J J, BYKOV K, CHOUDHRY N K, et al. Effect of smoking on comparative efficacy of antiplatelet agents: Systematic review, meta-analysis, and indirect comparison[J]. BMJ, 2013,347:f5307.
[41] OVBIAGELE B, WANG J, JOHNSTON S C, et al. Effect of clopidogrel by smoking status on secondary stroke prevention[J]. Circulation, 2017,135(3):315-316.
[42] KROON L A. Drug interactions with smoking[J]. Am J Health Syst Pharm, 2007,64(18):1917-1921.
[43] CHO J R, DESAI B, HAAS M J, et al. Impact of cigarette smoking on P2Y12 receptor binding activity before and after clopidogrel therapy in patients with coronary artery disease[J]. J Am Coll Cardiol, 2014,7(1):47-52.
[44] LEE M, SAVER J L, CHANG K H, et al. Low glomerular filtration rate and risk of stroke: Meta-analysis[J]. BMJ, 2010,341:c4249.
[45] YAHALOM G, SCHWARTZ R, SCHWAMMENTHAL Y, et al. Chronic kidney disease and clinical outcome in patients with acute stroke[J]. Stroke, 2009,40(4):1296-1303.
[46] AMARENCO P, CALLAHAN A, CAMPESE V M, et al. Effect of high-dose atorvastatin on renal function in subjects with stroke or transient ischemic attack in the SPARCL trial[J]. Stroke, 2014,45(10):2974-2982.
[47] ZHOU Y, PAN Y, WU Y, et al. Effect of estimated glomerular filtration rate decline on the efficacy and safety of clopidogrel with aspirin in minor stroke or transient ischemic attack: CHANCE substudy (clopidogrel in high-risk patients with acute nondisabling cerebrovascular events)[J]. Stroke, 2016,47(11):2791-2796.
[48] LIN J, ZHENG H, CUCCHIARA B L, et al. Association of Lp-PLA2-A and early recurrence of vascular events after tia and minor stroke[J]. Neurology, 2015,85(18):1585-1591.
[49] LI J, WANG Y, LIN J, et al. Soluble CD40L is a useful marker to predict future strokes in patients with minor stroke and transient ischemic attack[J]. Stroke, 2015,46(7):1990-1992.
[50] HULOT J S, BURA A, VILLARD E, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects[J]. Blood, 2006,108(7):2244-2247.
[51] MEGA J L, CLOSE S L, WIVIOTT S D, et al. Cytochrome P-450 polymorphisms and response to clopidogrel[J]. J Vasc Surg, 2009,360(4):354-362.
[52] SCOTT S A, SANGKUHL K, GARDNER E E, et al. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy[J]. Clin Pharmacol Ther, 2011,90(2):328-332.
[53] JIA D M, CHEN Z B, ZHANG M J, et al. CYP2C19 polymorphisms and antiplatelet effects of clopidogrel in acute ischemic stroke in China[J]. Stroke, 2013,44(6):1717-1719
[54] MCDONOUGH C W, MCCLURE L A, MITCHELL B D, et al. CYP2C19 metabolizer status and clopidogrel efficacy in the secondary prevention of small subcortical strokes (SPS3) stu-dy[J]. J Am Heart Assoc, 2015,4(6):e001652.
[55] SUN W, LI Y, LI J, et al. Variant recurrent risk among stroke patients with different CYP2C19 phenotypes and treated with clopidogrel[J]. Platelets, 2015,26(6):558-562.
[56] MEGA J L, HOCHHOLZER W, FRELINGER A L, et al.Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stablecardiovascular di-sease[J]. JAMA, 2011,306(20):2221-2228.
[57] ZIEGLER S, SCHILLINGER M, FUNK M, et al. Association of a functional polymorphism in the clopidogrel target receptor gene, P2Y12, and the risk for ischemic cerebrovascular events in patients with peripheral artery disease[J]. Stroke, 2005,36(9):1394-1399.
[58] ZOHEIR N, ABD ELHAMID S, ABULATA N, et al. P2Y12 receptor gene polymorphism and antiplatelet effect of clopidogrel in patients with coronary artery disease after coronary stenting[J]. Blood Coagul Fibrin, 2013,24(5):525-531.
[59] CUISSET T, FRERE C, QUILICI J, et al. Role of the T744C polymorphism of the P2Y12 gene on platelet response to a 600-mg loading dose of clopidogrel in 597 patients with non-ST-segment elevation acute coronary syndrome[J]. Thromb Res, 2007,120(6):893-899.