陳斌 黃進宇
舒張功能障礙與日益增高的心血管病發(fā)病率和病死率獨立相關(guān)[1],其危險因子包括高血壓、糖尿病、年齡、女性和肥胖[2]。舒張功能障礙的病理生理常常包括左心室舒張受損和(或)左心室僵硬,這主要由心肌肥厚、心肌缺血、β腎上腺素能張力下降或者心肌結(jié)締組織形成增多等引起[3]。舒張功能障礙患者主要表現(xiàn)為休息或活動后呼吸困難,左心室舒張功能障礙引起肺瘀血是部分原因[4]。高血壓患者中有一半有舒張功能障礙。因此,基于高血壓的高流行性,尋找高血壓患者舒張功能障礙治療措施迫在眉睫。然而,針對這類人群的臨床證據(jù)非常有限。高血壓通過功能性及結(jié)構(gòu)性改變引起血管硬化。動脈硬化是左心室舒張功能障礙的獨立預(yù)測因子,動脈硬化的嚴重程度和左心室舒張功能障礙嚴重程度直接相關(guān)[5]。在本文中,我們將討論動脈硬化和左心室舒張功能障礙的關(guān)系及針對血管的治療給舒張功能障礙的作用。
射血分數(shù)保留型心力衰竭(心衰)是多因素作用的結(jié)果,其機制仍未完全知曉。除了已知的危險因素,動脈與心肌硬化及它們間相互作用相互影響被認為是射血分數(shù)保留型心衰重要發(fā)病機制[6]。隨著左心室僵硬度的增加,高血壓及射血分數(shù)保留型心衰患者大血管也隨之硬化,這有助于保證心臟的供血及最大效率[7]。除此之外,射血分數(shù)保留型心衰患者也表現(xiàn)為微血管功能障礙,這通過激光多普勒血流儀證實內(nèi)皮相關(guān)的微血管舒縮功能減弱[8]。Lee等[9]報道,與對照組相比,射血分數(shù)保留型心衰患者肱動脈血流介導的血管擴張及反應(yīng)性充血減弱,提示其大血管及微血管內(nèi)皮功能障礙。微血管功能障礙可引起應(yīng)激性心肌灌注受損,會導致心肌缺血、微血管梗死、血管稀疏及周圍纖維化,最終導致射血分數(shù)保留型心衰[10]。通過對尸解的心臟標本研究發(fā)現(xiàn),射血分數(shù)保留型心衰患者較對照組的微血管稀疏及纖維化更嚴重[11]。最近的證據(jù)表明,射血分數(shù)保留型心衰患者微血管缺血導致舒張功能儲備異常[12]。
高血壓是心血管病高危險因子并與多種心血管疾病相關(guān),如射血分數(shù)保留型心衰和缺血性心肌病。研究發(fā)現(xiàn)高血壓和動脈硬化密切相關(guān)。
高血壓使血管原先排列有序的彈力纖維逐漸變?yōu)榧毿∷榱?。彈力纖維的變性引起膠原纖維增加同時往往伴隨基底膜鈣沉著[13]。炎癥在高血壓引起動脈硬化中發(fā)揮著一定的作用[14]。通過測定頸動脈-股動脈脈搏波速度來評估動脈硬化,發(fā)現(xiàn)動脈硬化與高敏C反應(yīng)蛋白和IL-6高度相關(guān)[14]。高血壓通過刺激內(nèi)皮細胞黏附分子表達和炎癥細胞遷移到血管壁而誘發(fā)動脈硬化[15]。高血壓同時刺激血管內(nèi)平滑肌細胞的遷移及增殖,這將進一步加重動脈硬化[16]。
高血壓患者對化學物質(zhì)或剪切力刺激引起的內(nèi)皮依賴性冠狀動脈擴張能力受損,即使冠狀動脈沒有嚴重狹窄[17]。一氧化氮由內(nèi)皮釋放并擴散到血管壁,其在調(diào)節(jié)血管張力上起著重要作用,其主要通過引起平滑肌舒張和肌纖維松弛[18]。研究發(fā)現(xiàn)高血壓患者內(nèi)皮來源的一氧化氮合成能力及活性都減弱[19]。另外,高血壓可引起冠狀動脈內(nèi)膜增厚,這將增加一氧化氮擴散難度,同時高血壓可降低血管平滑肌對一氧化氮敏感性,這都將引起冠狀動脈張力升高[19]。高血壓促使冠狀動脈通過血管壁增厚來保持正常的血管張力,結(jié)果導致血管腔的減少[20]。而平滑肌細胞增殖和肥厚引起冠狀動脈壁增厚[21]。除了壓力及化學刺激,血管緊張素Ⅱ、轉(zhuǎn)化生長因子β、血小板源性生長因子及內(nèi)皮素同樣可引起冠狀動脈重構(gòu),這些物質(zhì)在高血壓中高度表達[22]。
左心室射血產(chǎn)生的脈搏波傳導速度隨著動脈硬化的增加而增快,因此,反射回來的脈搏波在心臟收縮期提前到達,這將增加中心動脈壓的波幅,從而增加心臟后負荷和中心脈搏壓[23]。增加的心臟后負荷可引起心臟肥厚,同時將影響左心室舒張[24],這兩個因素都與舒張功能障礙相關(guān)[25]。另外,因反射回來的壓力波落在了收縮期而不是舒張期,導致中心舒張壓降低和冠狀動脈血流量減少,引起冠狀動脈缺血,促使心肌與血管周圍纖維化[26],將進一步加重左心室舒張功能障礙。研究報道左心室舒張功能障礙與動脈硬化嚴重程度直接相關(guān)[5]。
盡管大量的人患有高血壓與左心室舒張功能障礙,但目前仍無有效治療措施。降低血壓可改善左心室肥厚及舒張期充盈指標,可使舒張功能障礙得到改善。ACEIs或ARBs被認為可改善舒張功能障礙,它們一方面可減少血管收縮及容量負荷,另一方面阻止心肌肥厚與纖維化,其主要機制是通過抑制RAAS。然而,舒張功能的改善是否可改善預(yù)后仍然未得到證實[27]。β受體阻滯劑通過減慢心率使左心室充盈時間延長而改善舒張功能,同時還可通過降壓使心肌耗氧減少及減少左心室心肌肥厚而改善舒張功能[28]。但舒張功能的改善能否減少病死率需要進一步的研究。鈣離子受體阻滯劑通過降壓、減慢心率和改善心肌肥厚給舒張功能障礙患者帶來一定的好處,而其長期效果仍待進一步證實[29]。雖然許多高血壓藥物可通過降壓而改善高血壓患者的舒張功能[30],但這些舒張功能的改善能否改善預(yù)后仍然需要進一步的研究。不像ACEIs、ARBs、β受體阻滯劑及鈣離子阻滯劑,他汀類藥物的治療可大大改善舒張功能障礙患者的生存率[31]。他汀類藥物的這個作用可歸功于其“多效性”,即降膽固醇外的其他作用[32]。首先,他汀類藥物有溫和的降壓作用,可減少心肌肥厚和改善舒張功能[33]。其次,他汀類藥物對心肌肥厚和纖維化的有利作用可改善舒張功能障礙[32,34]。最后,他汀類藥物可通過影響內(nèi)皮功能和抑制動脈粥樣硬化而改善動脈硬化[33,35]。
是什么作用引起他汀類藥物改善預(yù)后優(yōu)于ACEIs、ARBs、β受體阻滯劑及鈣離子阻滯劑?所有的這些藥物都可通過降壓與抑制左心室肥厚和纖維化而改善舒張功能[27]。然而,只有他汀類藥物可通過改善內(nèi)皮功能和抑制動脈粥樣硬化而減少動脈硬化[33,35]。ARBs可減少小動脈血管壁中膜與管腔的比值,但其不可改變動脈硬化。另外,阿替洛爾不但沒減少中膜與管腔的比值,反而增加小動脈硬化[36]。綜上所述,動脈硬化和舒張功能障礙相關(guān)。因此,減少動脈硬化可能是治療舒張功能障礙的潛在手段。
血管壁細胞外基質(zhì)中彈力蛋白和膠原蛋白變性可導致動脈硬化?;|(zhì)金屬蛋白酶在血管壁膠原分解中起著重要作用,其活性和動脈硬化相關(guān)[37]。因此,針對基質(zhì)金屬蛋白酶的藥物也許是未來治療舒張功能障礙選擇之一。
研究報道高血壓患者中炎癥因子與動脈硬化相關(guān)[14]。他汀治療的患者具有較好的臨床結(jié)果及更低的病死率,這可歸因于其抗炎作用及抑制動脈硬化[38]。因此,抗炎治療也許能改善高血壓患者舒張功能障礙的臨床預(yù)后。
健康的內(nèi)皮通過平衡血管舒張因子及收縮因子的產(chǎn)生、抗增殖及抗炎作用而調(diào)節(jié)血管張力[39]。功能障礙的內(nèi)皮增加動脈硬化及削弱心肌灌注,從而導致心室舒張功能障礙[40]。血管壁上膠原蛋白與彈力蛋白的比值影響動脈硬化,血管外膜滋養(yǎng)血管堵塞將增加膠原蛋白與彈力蛋白的比值及動脈硬化,這提示滋養(yǎng)血管也許在調(diào)節(jié)動脈硬化上起重要作用[41]。因此,針對滋養(yǎng)血管的藥物或祖細胞也許是治療舒張功能障礙潛在的手段。
降膽固醇治療可減少動脈硬化[33]。限制鈉鹽攝入及體育鍛煉等非藥物手段可給動脈硬化帶來有利的作用[42]。
總之,針對血管的聯(lián)合治療措施也許可以改善舒張功能障礙患者預(yù)后,未來研究將進一步深入。
[1]Bella JN,Palmieri V,Roman MJ,et al.Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults:the Strong Heart Study[J].Circulation,2002,105(16)∶1928-1933.doi:10.1161/01.CIR.0000015076.37047.D9.
[2]Owan TE,Hodge DO,Herges RM,et al.Trends in prevalence and outcome of heart failure with preserved ejection fraction[J].N Engl J Med,2006,355(3)∶251-259.doi:10.1056/NEJMoa052256.
[3]Ruzumna P,Gheorghiade M,and Bonow RO.Mechanisms and management of heart failure due to diastolic dysfunction[J].Curr Opin Cardiol,1996,11(3)∶269-275.
[4]Vasan RS,Benjamin EJ,and Levy D.Congestive heart failure with normal left ventricular systolic function.Clinical approaches to the diagnosis and treatment of diastolic heart failure[J].Arch Intern Med,1996,156(2)∶146-157.doi:10.1001/archinte.1996.004400 20046007.
[5]Hu Y,Li L,Shen L,et al.The relationship between arterial wall stiffness and left ventricular dysfunction[J].Netherlands Heart Journal,2012,21(5)∶222-227.doi:10.1007/s12471-012-0353-z.
[6]Shapiro BP,Lam CS,Patel JB,et al.Acute and chronic ventriculararterial coupling in systole and diastole:insights from an elderly hypertensive model[J].Hypertension,2007,50(3)∶503-511.doi:10.1161/HYPERTENSIONAHA.107.090092.
[7]Melenovsky V,Borlaug BA,Rosen B,et al.Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community:the role of atrial remodeling/dysfunction[J].J Am Coll Cardiol,2007,49(2)∶198-207.doi:10.1016/j.jacc.2006.08.050.
[8]Marechaux S,Samson R,van Belle E,et al.Vascular and Microvascular Endothelial Function in Heart Failure With Preserved Ejection Fraction[J].J Card Fail,2016,22(1)∶3-11.doi:10.1016/j.cardfail.2015.09.003.
[9]Lee JF,Barrett-O'Keefe Z,Garten RS,et al.Evidence of microvascular dysfunction in heart failure with preserved ejection fraction[J].Heart,2016,102(4)∶278-284.doi:10.1136/heartjnl-2015-308403.
[10]Lam CS,Lund LH.Microvascular endothelial dysfunction in heart failure with preserved ejection fraction[J].Heart,2016,102(4)∶257-259.doi:10.1136/heartjnl-2015-308852.
[11]Mohammed SF,Hussain S,Mirzoyev SA,et al.Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction[J].Circulation,2015,131(6)∶550-559.doi:10.1161/CIRCULATIONAHA.114.009625.
[12]van Empel VP,Mariani J,Borlaug BA,et al.Impaired myocardial oxygen availability contributes to abnormal exercise hemodynamics in heart failure with preserved ejection fraction[J].J Am Heart Assoc,2014,3(6)∶e001293.doi:10.1161/JAHA.114.001293.
[13]Najjar SS,Scuteri A,Lakatta EG.Arterial aging:is it an immutable cardiovascular risk factor?[J].Hypertension,2005,46 (3)∶454-462.doi:10.1161/01.HYP.0000177474.06749.98.
[14]Mahmud A,Feely J.Arterial stiffness is related to systemic inflammation in essential hypertension[J].Hypertension,2005,46(5):1118-1122.doi:10.1161/01.HYP.0000185463.27209.b0.
[15]Sakamoto H,Aikawa M,Hill CC,et al.Biomechanical strain induces class a scavenger receptor expression in human monocyte/macrophages and THP-1 cells:a potential mechanism of increased atherosclerosisinhypertension[J].Circulation,2001,104(1)∶ 109-114.doi:10.1161/hc2701.091070.
[16]Lee RT,Yamamoto C,Feng Y,et al.Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells[J].J Biol Chem,2001,276(17)∶13847-13851.doi:10.1074/jbc.M010556200.
[17]Quyyumi AA,Mulcahy D,Andrews NP,et al.Coronary vascular nitric oxide activity in hypertension and hypercholesterolemia.Comparison of acetylcholine and substance P[J].Circulation,1997,95(1)∶104-110.doi:10.1161/01.CIR.95.1.104.
[18]Rubanyi GM,Romero JC,Vanhoutte PM.Flow-induced release of endothelium-derived relaxing factor[J].Am J Physiol,1986,250(6 Pt 2)∶H1145-1149.doi:10.1152/ajpheart.1986.250.6.H1145.
[19]Kelm M,Preik M,Hafner DJ,et al.Evidence for a multifactorial process involved in the impaired flow response to nitric oxide in hypertensive patients with endothelial dysfunction[J].Hypertension,1996,27(3 Pt 1)∶346-353.doi:10.1161/01.HYP.27.3.346.
[20]Folkow B,Grimby G,and Thulesius O.Adaptive structural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance[J].Acta Physiol Scand,1958,44(3-4)∶ 255-272.doi:10.1111/j.1748-1716.1958.tb01626.x.
[21]Schiffrin EL,Hayoz D.How to assess vascular remodelling in small and medium-sized muscular arteries in humans[J].J Hypertens,1997,15(6)∶571-584.doi:10.1097/00004872-199715060-00002.
[22]Ratajska A,Campbell SE,Cleutjens JP,et al.Angiotensin II and structural remodeling of coronary vessels in rats[J].J Lab Clin Med,1994,124(3)∶408-415.
[23]O'Rourke MF.Diastolic heart failure,diastolic left ventricular dysfunction and exercise intolerance[J].J Am Coll Cardiol,2001,38(3)∶803-805.doi:10.1016/S0735-1097(01)01452-8.
[24]Leite-Moreira AF,Correia-Pinto J,Gillebert TC.Afterload induced changes in myocardial relaxation:a mechanism for diastolic dysfunction[J].Cardiovasc Res,1999,43(2)∶344-353.
[25]Qu P,Ding Y,Xia D,et al.Variations in cardiac diastolic function in hypertensive patients with different left ventricular geometric patterns[J].Hypertens Res,2001,24(5)∶601-604.doi:10.1291/hypres.24.601.
[26]Strauer BE.Development of cardiac failure by coronary small vessel disease in hypertensive heart disease?[J].J Hypertens Suppl,1991,9(2)∶S11-20.doi:10.1097/00004872-199112002-00003.
[27]Ma TK,Kam KK,Yan BP,et al.Renin-angiotensin-aldosterone system blockade for cardiovascular diseases:current status[J].Br J Pharmacol,2010,160(6)∶1273-1292.doi:10.1111/j.1476-5381.2010.00750.x.
[28]Bonow RO,Udelson JE.Left ventricular diastolic dysfunction as a cause of congestive heart failure.Mechanisms and management[J].Ann Intern Med,1992,117(6)∶502-510.doi:10.7326/0003-4819-117-6-502.
[29]Ventura H,Loyalka P,Smart FW.Treatment of the hypertensive patient with microvascular angina[J].Curr Opin Cardiol,1999,14(5)∶370-374.doi:10.1097/00001573-199909000-00003.
[30]Galderisi M.Diagnosis and management of left ventricular diastolic dysfunction in the hypertensive patient[J].Am J Hypertens,2011,24(5)∶507-517.doi:10.1038/ajh.2010.235.
[31]Fukuta H,Sane DC,Brucks S,et al.Statin therapy may be associated with lower mortality in patients with diastolic heart failure:a preliminary report[J].Circulation,2005,112(3)∶ 357-363.doi:10.1161/CIRCULATIONAHA.104.519876.
[32]Indolfi C,Di Lorenzo E,Perrino C,et al.Hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation[J].Circulation,2002,106(16)∶2118-2124.doi:10.1161/01.cir.0000034047.70205.97.
[33]Ferrier KE,Muhlmann MH,Baguet JP,et al.Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension[J].J Am Coll Cardiol,2002,39(6)∶1020-1025.doi:10.1016/S0735-1097(02)01717-5.
[34]Nishikawa H,Miura S,Zhang B,et al.Statins induce the regression of left ventricular mass in patients with angina[J].Circ J,2004,68(2)∶121-125.doi:10.1253/circj.68.121.
[35]Davignon J.Beneficial cardiovascular pleiotropic effects of statins[J].Circulation,2004,109 (23 Suppl 1)∶III39-43.doi:10.1161/01.CIR.0000131517.20177.5a.
[36]Savoia C,Touyz RM,Endemann DH,et al.Angiotensin receptor blocker added to previous antihypertensive agents on arteries of diabetic hypertensive patients[J].Hypertension,2006,48(2):271-277.doi:10.1161/01.HYP.0000230234.84356.36.
[37]Yasmin,McEniery CM,Wallace S,et al.Matrix metalloproteinase-9(MMP-9),MMP-2,and serum elastase activity are associated with systolic hypertension and arterial stiffness[J].Arterioscler Thromb Vasc Biol,2005,25 (2)∶372.doi:10.1161/01.ATV.0000151373.33830.41.
[38]Ridker PM,Cannon CP,Morrow D,et al.C-reactive protein levels and outcomes after statin therapy[J].N Engl J Med,2005,352(1)∶20-28.doi:10.1056/NEJMoa042378.
[39]Libby P,Aikawa M,Jain MK.Vascular endothelium and atherosclerosis[J].Handb Exp Pharmacol,2006(176 Pt 2)∶ 285-306.
[40]Bauersachs J,Widder JD.Endothelial dysfunction in heart failure[J].Pharmacol Rep,2008,60(1)∶119-126.
[41]Zieman SJ,Melenovsky V,Kass DA.Mechanisms,pathophysiology,and therapy of arterial stiffness[J].Arterioscler Thromb Vasc Biol,2005,25(5)∶932-943.doi:10.1161/01.ATV.0000160548.78317.29.
[42]Seals DR,Tanaka H,Clevenger CM,et al.Blood pressure reductions with exercise and sodium restriction in postmenopausal women with elevated systolic pressure:role of arterial stiffness[J].J Am Coll Cardiol,2001,38(2)∶506-513.doi:10.1016/s0735-1097(01)01348-1.