嚴力 綜述 褚海波 審校
(中國人民解放軍第八十九醫(yī)院 普外中心,山東 濰坊 261021)
大隱靜脈曲張(great saphenous varicose vein,GSVV)是下肢常見疾病之一,以靜脈瓣功能不全、靜脈反流、靜脈擴張和迂曲、管腔內靜脈壓力增高為主要臨床特征,可并發(fā)靜脈血栓形成、淺表血栓性靜脈炎和靜脈性潰瘍[1-2]。大隱靜脈曲張發(fā)生率為20%~40%,老年人為高發(fā)人群[3]。多年來,盡管許多學者[4-5]致力于大隱靜脈曲張發(fā)病機制的研究,但一直尚無定論。研究[6-7]顯示,靜脈壁中細胞和細胞外基質成分的改變,包括內膜增生、平滑肌細胞功能失調、膠原和彈力纖維比例的變化、基質金屬蛋白酶(matrix metalloproteinases,MMPs)及其組織抑制劑(tissue inhibitor of metalloproteinase,TIMPs)的失衡,可能是導致靜脈壁松弛、薄弱,繼而靜脈膨張、靜脈瓣關閉不全和反流的主要因素。生物組織中含有多種具有特定表型的細胞群,在組織穩(wěn)態(tài)中依據(jù)各自的作用相互間調節(jié),通過細胞微環(huán)境中的信號維持這些細胞靜息與激活之間的平衡。近年來,在控制細胞命運和功能的微環(huán)境刺激中,機械力的重要性逐漸受到關注[8]?,F(xiàn)已明確,外部壓力(如流體靜力壓、拉伸張力或鞘壓)和細胞內細胞骨架張力能驅動轉錄調節(jié)改變[9]。此外,血管平滑肌細胞(vascular smooth muscle cells,VSMCs)的相對動態(tài)環(huán)境,還涉及多種細胞內外生物化學分子以及機械力的變化:包括生長因子、炎癥因子、血管活性因子、血流機械力以及活性氧等因素。鑒于靜脈高壓是靜脈曲張形成的一個重要因素,研究機械力在靜脈曲張病理形成中所起的作用已成為熱門課題。本文就大隱靜脈源性VSMCs表型轉化研究進行歸納敘述,旨在為尋找防治靜脈曲張相關的藥物作用靶點奠定理論基礎。
1989年,Baumbach等[10]提出“血管重塑”的概念,由此人們逐漸認識到靜脈疾病的病理生理過程不僅是管壁形態(tài)結構的改變,VSMCs表型轉化才是血管重塑的細胞學基礎和關鍵環(huán)節(jié)。與骨骼肌和心肌細胞不同,靜脈源性VSMCs表型具有分化可逆性和多樣性的特點。在胚胎發(fā)育過程中,VSMCs由未分化表型逐漸轉化為具有成熟特征的分化表型。當血管受損或VSMCs受到生長因子、機械作用、血管活性物質以及血流動力學等因素刺激時,VSMCs又從分化型轉化為去分化型,并獲得增殖能力,對這一演變過程稱之為表型轉化(phenotypic transformation)。VSMCs是一種高度特異性細胞,其主要功能為收縮和血管張力調節(jié),以控制血壓和血流[11]。根據(jù)細胞結構和功能的不同,VSMCs有兩種表型,即收縮型(分化型)和合成型(去分化型或未分化型)。收縮型VSMCs,分化程度高,呈紡錘狀,胞漿內肌絲豐富,高爾基復合體和線粒體較少,增殖和遷移能力差,其主要功能是維持血管壁的彈性和收縮血管。合成型VSMCs內含大量的高爾基復合體、粗面內質網(wǎng),肌絲含量少,合成和分泌功能旺盛,增殖和遷移能力強,并能產(chǎn)生大量的細胞外基質,其主要功能是合成分泌基質蛋白,并參與到血管壁重塑和損傷修復[12]。
當VSMCs受到外界刺激后,可通過激活多種信號通路來激發(fā)VSMCs表型轉化,以適應靜脈高壓和缺氧對血管壁的影響。檢測VSMCs表型轉化的標記物種類繁多,一般可分為收縮型標記物和合成型標記物,收縮性標記物主要有平滑肌α-肌動蛋白(α-SM-actin,α-SMA)、平滑肌22α(smooth muscle 22α,SM22α)、平滑肌肌球蛋白重鏈(smooth muscle-myosin heavy chain,SMMHC)、平滑肌蛋白(smoothelin)、以及H-鈣調素結合蛋白(caldesmon),合成型標記物主要有骨橋蛋白(osteopontin,OPN)、上皮調節(jié)蛋白(epiregulin)等[13-18]。
α-SMA是一種維持VSMCs形態(tài)和收縮的重要細胞骨架蛋白,在收縮型VSMCs中優(yōu)勢表達,是VSMC分化早期特異性標志物;SM22α屬細胞骨架的結構成分,但不是控制VSMCs收縮的必需蛋白;SM-MHC則是在胚胎形成時期VSMCs特異性表達的一種標志蛋白,且SM-MHC在非SMCs細胞中不表達[19]。因此,SM-MHC被認為是鑒別收縮型VSMCs的最常用標志物之一。Smoothelin表達下調則提示收縮型VSMCs向合成型VSMCs轉化,常用于協(xié)同SM-MHC區(qū)分收縮型VSMCs和合成型VSMCs[20]。
合成型VSMCs的標志物包括OPN和Epiregulin。OPN是一種富含唾液酸磷酸化和糖基化修飾的基質糖蛋白。OPN是VSMCs表型轉化的起始促進因子,其表達與VSMCs的增殖密和遷移密切相關。Epiregulin是表皮生長因子家族的成員之一,可促進VSMCs的增殖。Takahashi等[21]研究顯示,Epiregulin是VSMCs去分化的主要自分泌和旁分泌因子,可通過趨化因子以及ERK和p38MAPK等信號通路來調控VSMCs的增殖和表型轉化,從而影響到“血管重塑”的病理生理過程。
VSMCs具有高度可塑性,并能在不同的表型狀態(tài)下生存[22]。VSMCs由收縮型調節(jié)至合成型依賴于環(huán)境改變,即增殖和遷移活性增加,收縮性喪失,細胞外基質異常[23-24]。此外,VSMCs不同表型標志物的表達受多種因素的調節(jié)如轉化生長因子β(transforming grow th factor β,TGF-β)、血小板衍生生長因子(platelet derived growth factor,PDGF)、miRNA等。Ha等[25]觀察大鼠胸主動脈VSMCs表型轉化,發(fā)現(xiàn)收縮型VSMCs α-SMA和SM22α呈陽性表達。Hao等[26]研究發(fā)現(xiàn),SM-MHC表達受TGF-β1信號通路的促進,維持平滑肌收縮表型,Gareri等[27]則通過PDGF刺激VSMCs表型轉化,使得SM-MHC表達大量下降。Feng等[28]研究顯示,在體外血管收縮素(angiotensin II,Ang-II)可誘導VSMCs骨源性表型轉化和鈣化,同時發(fā)現(xiàn)α-SMA和SM22α標記物下調,OPN標記物上調。由此可見,在生理和病理狀態(tài)下,SMCs參與血管重塑,不同的標記物反映不同的VSMCs表型,且表型變異和可逆性轉化是一個復雜和動態(tài)的過程[29-31]。
VSMCs表型轉化是血管重塑的細胞學基礎。成熟的VSMCs為收縮和分化表型,細胞的增生和合成能力低下,可表達多種收縮蛋白、離子通路、細胞收縮功能分子信號[32-33]。在病理狀態(tài)下,VSMCs由收縮表型轉化為合成和去分化表型,其特征是收縮能力喪失,細胞增生、遷移和基質分泌異常[34]。動物實驗[35-36]表明,移植大隱靜脈管腔狹窄的主要原因是中膜和外膜的SMCs遷移至內膜,導致新生內膜增生。機械力和炎癥的協(xié)調可導致VSMCs增殖和遷移,其中炎性介子可通過白介素1β(interleukin 1β,IL-1β)和白介素18(interleukin 18,IL-18)信號通路誘導增殖和遷移[37]。Zhang等[38-39]研究發(fā)現(xiàn),腫瘤壞死因子α(tumor necrosis factor α,TNF-α)可抑制絲裂素活化蛋白激酶磷酸酶(mitogen-activated protein kinase phosphatase,MAKP)炎性通路,降低炎性反應。在刺激過程中,VSMCs表型由靜止收縮型轉化為促炎反應型,SMCs向內膜遷移,提示VSMCs增殖和遷移與炎癥相關。動物實驗顯示,血管細胞黏附分子1(vascular cell adhesion molecule-1,VCAM-1)或VCAM-1 siRNA表達能阻止單核/巨噬細胞募集反應,抑制VSMCs增殖、遷移和新生內膜形成[40-41]。在血管重塑過程中,VSMCs收縮表型和合成表型存在本質性差異(即標記物表達、細胞形態(tài)和活性)。合成型VSMCs源于中膜去分化收縮型VSMCs和外膜分化成纖維細胞及未分化間質干細胞。合成型VSMCs收縮器(肌絲,致密體和斑)少,合成器(粗面內質網(wǎng),高爾基體)增多[42]。諸多因素(物理、機械、缺氧、激素、氧化應激、基因、鈣離子等)影響VSMCs表型,而VSMCs的增殖和遷移改變取決于VSMCs表型。李源等[43]發(fā)現(xiàn),源于曲張靜脈的VSMCs增殖和遷移能力比正常靜脈增加,提示VSMCs表型轉化影響細胞功能。有學者[44-45]認為,VSMCs在分化和去分化之間表型轉化是一種可逆性變化,并伴隨著細胞與細胞、細胞基質黏附網(wǎng)絡形態(tài)和功能的改變。因此,如何在分子水平調節(jié)VSMCs的增殖與遷移,控制細胞表型的轉化,可視為分子通路靶標研究的發(fā)展趨勢[46-51]。
MMPs是一種依賴于鋅離子的內肽酶,具有降解細胞外基質(extracellular matrix,ECM)蛋白作用。MMPs可與細胞膜上的生物活性分子相互作用,并能調節(jié)偶聯(lián)G蛋白受體和細胞信號。MMPs參與多種生理過程,并影響細胞增殖、遷移、變異。MMPs還涉及細胞凋亡、免疫反應、組織修復、血管生成[52]。MMPs家族依據(jù)消化底物的不同分為膠原酶類,明膠酶類,基質溶解素類、膜型金屬蛋白酶類和未分類[53]。MMPs有助于VSMCs增殖和遷移,遷移可促進血管新生內膜增生(即內皮細胞和SMCs通過MAPK信號激活,刺激生長因子、細胞因子和MMPs的分泌)[54]。VSMCs表型變化決定MMPs代謝異常。合成表型收縮型喪失,ECM產(chǎn)生異常,VSMCs遷移增加;收縮表型低蛋白含量和增殖率,具有獨特的收縮蛋白和信號分子[55]。動物實驗表明,MMP-2和MMP-9在不同靜脈層表達有所差異。MMP-2表達主要位于外膜,MMP-9表達則位于內皮細胞、中膜SMCs、外膜微血管。與此同時,炎癥可促進MMP-2和MMP-9表達[56-57]。人體外細胞培養(yǎng)顯示,異常VSMCs其MMP-2和MMP-9呈高表達[55,58]。研究[59]發(fā)現(xiàn),抵抗素可誘導MMP-2和MMP-9表達(mRNA和蛋白水平),抗MMP-2和MMP-9 IgG可抑制抵抗素誘導VSMCs遷移。TIMP-1優(yōu)先結合MMP-9,TIMP-2優(yōu)先結合MMP-2,抵抗素抑制TIMPs表達;WNT1誘導信號通道蛋白1(WNT1 inducible signaling pathway protein 1,WISPI)可促進SMCs內MMPs和TIMPs高表達[60];氫可降低p38MAPK活性導致移植靜脈MMP-2和MMP-9低表達,抑制VSMCs遷移[61];在增生的血管內膜中,MMP-3 mRNA和蛋白呈高表達[62];OPN和MMPs具有密切的關聯(lián)性,這與動脈壓對移植靜脈刺激的適應性有關[63]。VSMCs釋放MMPs降解ECM,并產(chǎn)生TIMPs,因此,MMPs和TIMPs的平衡決定ECM的動態(tài)平衡[64-65]。動物實驗顯示,小鼠移植靜脈TIMP-1呈高表達。這一結果提示,TIMP-1可抑制MMPs,阻止斑塊發(fā)展,并增加其穩(wěn)定性[66]。結締組織生長因子是一種異常的纖維化介質,它能通過結締組織生長因子信號通道調節(jié)ECM的合成,從而改變靜脈管壁纖維化的進程[67]??梢?,MMPs與SMCs表型轉化關系密切,在VSMCs發(fā)生重構過程中,MMPs和TIMPs通過分子信號通道調節(jié)發(fā)揮重要的生理和病理生理功能。
細胞凋亡是細胞內有規(guī)律的自我消亡過程,細胞死亡的一種生理形式,受誘導基因(p53、bclxs、bax)、抑制基因(Bcl-2、bcl-xl、mcl-1)及參與基因(c-myc、c-fos)的調控[68]。細胞凋亡的作用是維持組織內環(huán)境的穩(wěn)定性,以減少細胞的更新。細胞凋亡包括內源性和外源性兩條通道。內源性通道又稱線粒體通道,調節(jié)細胞凋亡啟動蛋白(bax或Bcl-2)及特異胱門蛋白酶(caspase)刺激線粒體釋放細胞色素C進入胞漿與凋亡蛋白酶活化因子1(APAF-1)結合引發(fā)細胞凋亡。外源性通道又稱跨膜通道,在細胞凋亡信號的刺激下,F(xiàn)asL和TNF-α作用相應的受體導致細胞凋亡[69]。Whiteley等[70]獲取人曲張大隱靜脈標本,采用免疫組化和免疫熒光法標記p53,發(fā)現(xiàn)曲張靜脈SMCs凋亡上調,并與炎性標記物呈正相關。研究發(fā)現(xiàn),膜聯(lián)蛋白A2過表達和IncRNA低表達可促進SMCs增殖與遷移,并減少SMCs凋亡[50]。誘導VSMCs缺氧模型顯示,VSMCs增殖與遷移增加,但與細胞凋亡無相關性[71]。在缺氧狀態(tài)下,金屬硫蛋白可阻止VSMCs凋亡,這一結果有可能為靜脈曲張的靶標治療提供理論依據(jù)[72]。許多學者[1,73]認為,VSMCs凋亡與年齡和性別密切相關。>50歲和女性細胞凋亡明顯增加,故研究VSMCs凋亡與表型轉化應考慮年齡和性別因素。文獻[74]報道,炎性因子可增加VSMCs增殖與遷移,并經(jīng)p38MAPK-HSPS27分子通道誘導細胞凋亡。同源異型盒蛋白過表達可促進VSMCs增殖與遷移及抗凋亡能力,上調OPN可有利于VSMCs表型轉化[30]。細胞自體吞噬作用可抑制肌餓誘導VSMCs凋亡,而異常自體吞噬作用可調節(jié)VSMCs的功能[75]。小窩蛋白3能調節(jié)VSMCs收縮和合成型的轉型,抑制細胞凋亡[76]。由此可見,VSMCs凋亡的變化是建立在表型變化的基礎上,表型的異常必定影響細胞的凋亡。
VSMCs的表型轉化受多種因素影響,其中,表觀遺傳學調控機制在VSMCs表型轉化中所起到的重要作用日益受到人們重視。表觀遺傳通常被定義為不涉及DNA核苷酸序列改變的基因表達和調控的可遺傳修飾,通常是由于環(huán)境因素而引發(fā)改變,主要包括DNA甲基化、組蛋白修飾、非編碼RNA以及染色質重塑等。研究表明,表觀遺傳對VSMCs表型轉化的調控主要是通過對其表型標志基因(例如:α-SMA、SM22α、SM-MHC、OPN等)表達的調控來實現(xiàn)[34,77-78]。Hiltunen等[79]的早期研究通過高效液相色譜法檢測體內VSMCs染色體5-甲基胞嘧啶含量發(fā)現(xiàn),動脈粥樣硬化模型VSMCs表型轉化過程中呈現(xiàn)全基因組的低甲基化狀態(tài);同樣在體外實驗,細胞增殖過程中collagen type VX α1基因的低甲基化誘導相應基因高表達進而調控VSMCs的表型轉化并影響動脈粥樣硬化的發(fā)展[80]。近年來,更多的實驗研究發(fā)現(xiàn),DNA的異常甲基化可通過特定的基因修飾來調控VSMCs的表型轉化并影響到相關血管疾病進程。Jiang等[34]研究發(fā)現(xiàn)靜脈曲張VSMCs中OPN基因啟動子的低甲基化可能是誘導OPN高表達的重要因素,提示異常的表觀遺傳修飾參與了VSMCs的表型轉化并導致新生血管內膜增厚進而影響靜脈曲張的發(fā)生與發(fā)展。Ali等[81]證實腫瘤壞死因子α(tumor necrosis factor-α,TNT-α)可誘導SMCs收縮型基因(α-SMA、SM-MHC)啟動子甲基化并通過Krupper樣因子4(Krupper like factor-4,KLF-4)調節(jié)通路來誘導大鼠腦SMCs表型變化。組蛋白修飾多發(fā)生于細胞生長發(fā)育期,通過調控血清反應因子(serum response factor,SRF)及其輔助因子與染色質模板的結合來改變外環(huán)境,從而影響VSMCs分化過程[82-83]。由于組蛋白修飾的VSMCs限制性位點位于VSMCs基因染色質的CArG box序列,SRF及其輔助因子與VSMCs染色質啟動子CArG box DNA序列相互反應是引起VSMCs在生長發(fā)育和表型轉化過程中的信號通路關鍵環(huán)節(jié)。此外,有研究[84]表明,高脂飲食可誘導DNA甲基轉移酶1(DNA methyltransferase 1,DNMT-1)負性調控因子miR-152下調,進而導致主動脈VSMCs雌激素受體α基因(Estrogen receptor α gene,ER-α)高甲基化,而染色質重塑亦被發(fā)現(xiàn)在VSMCs分化過程中起到關鍵作用[77]。與此同時,一些新的調控靶點如TET-2(ten-eleven translocation 2)以及YAP(yesassociated protein)相關研究的出現(xiàn)進一步完善了VSMCs表型轉化與血管性疾病發(fā)生發(fā)展的機制探索[85-86]。由此可見,VSMCs的可塑性與細胞外部環(huán)境和表觀遺傳調控機制密切相關,然而,不同于DNA序列的改變,許多表觀遺傳的改變是可逆的,因此,如何從表觀遺傳調控水平去調節(jié)并控制VSMCs表型轉化,可作為相應血管類疾病靶向治療的研究思考方向。
綜上所述,大隱靜脈源性VSMCs表型轉化是血管重塑的細胞學基礎。VSMCs表型轉化除了與其基因表達譜改變有關外,還受細胞骨架結構與功能的影響。設想建立人正常靜脈VSMCs和曲張靜脈VSMCs細胞單層培養(yǎng)系統(tǒng),從VSMCs增殖、遷移、黏附、衰老、骨架、MMPs和TIMPs分泌和細胞凋亡方面研究曲張大隱靜脈來源VSMCs的生物學變化特征,有助于初步證實曲張大隱靜脈、淺表血栓性靜脈炎及缺氧誘導正常靜脈VSMCs從收縮型向合成型轉化并獲得增生、遷移和分泌大量細胞外基質的能力。
[1] Bastos AN, Alves MM, Monte-Alto-Costa A, et al. α-smooth muscle actin, fibrillin-1, apoptosis and proliferation detection in primary varicose lower limb veins of women[J]. Int Angiol, 2011,30(3):262–271.
[2] Serralheiro P, Cairr?o E, Maia CJ, et al. Effect of TGF-beta1 on MMP/TIMP and TGF-beta1 receptors in great saphenous veins and its signifi cance on chronic venous insuffi ciency[J]. Phlebology, 2017,32(5):334–341. doi: 10.1177/0268355516655067.
[3] Martinez R, Fierro CA, Shireman PK, et al. Mechanical buckling of veins under internal pressure[J]. Ann Biomed Eng, 2010, 38(4):1345–1353. doi: 10.1007/s10439–010–9929–1.
[4] Anwar MA, Adesina-Georgiadis KN, Spagou K, et al. A comprehensive characterisation of the metabolic profi le of varicose veins; implications in elaborating plausible cellular pathways for disease pathogenesis[J]. Sci Rep, 2017, 7(1):2989. doi: 10.1038/s41598–017–02529-y.
[5] Birdina J, Pilmane M, Ligers A. The Morphofunctional Changes in the Wall of Varicose Veins[J]. Ann Vasc Surg, 2017, 42:274–284. doi:10.1016/j.avsg.2016.10.064.
[6] Jacobs BN, Andraska EA, Obi AT, et al. Pathophysiology of varicose veins[J]. J Vasc Surg Venous Lymphat Disord, 2017, 5(3):460–467.doi: 10.1016/j.jvsv.2016.12.014.
[7] Serra R, Gallelli L, Butrico L, et al. From varices to venous ulceration: the story of chronic venous disease described by metalloproteinases[J]. Int Wound J, 2017, 14(1):233–240. doi:10.1111/iwj.12594.
[8] MacQueen L, Sun Y, Simmons CA. Mesenchymal stem cell mechanobiology and emerging experimental platforms[J]. J R Soc Interface, 2013, 10(84):20130179. doi: 10.1098/rsif.2013.0179.
[9] Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation[J]. J Cell Sci, 2012,125(Pt 13):3061–3073. doi: 10.1242/jcs.093005.
[10] Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension[J]. Hypertension, 1989, 13(6 Pt 2):968–972.
[11] Chen S, Liu B, Kong D, et al. Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via downregulation the Akt signaling pathway[J]. PLoS One, 2015,10(4):e0122577. doi: 10.1371/journal.pone.0122577.
[12] Liu K, Fang C, Shen Y, et al. Hypoxia-inducible factor 1a induces phenotype switch of human aortic vascular smooth muscle cell through PI3K/AKT/AEG-1 signaling[J]. Oncotarget, 2017,8(20):33343–33352. doi: 10.18632/oncotarget.16448.
[13] Liu N, Shan D, Li Y, et al. Panax notoginseng saponins attenuate phenotype switching of vascular smooth muscle cells induced by notch3 silencing[J]. Evid Based Complement Alternat Med, 2015,2015:162145. doi: 10.1155/2015/162145.
[14] Peng C, Zhang S, Liu H, et al. A newly synthesized Ligustrazine stilbene derivative inhibits PDGF-BB induced vascular smooth muscle cell phenotypic switch and proliferation via delaying cell cycle progression[J]. Eur J Pharmacol, 2017, 814:106–113. doi:10.1016/j.ejphar.2017.08.008.
[15] Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease[J].Arterioscler Thromb Vasc Biol, 2007, 27(11):2302–2309. doi:10.1161/ATVBAHA.107.144824.
[16] Chen Z, Liu S, Cai Y, et al. Suppressive effect of formononetin on platelet-derived growth factor-BB-stimulated proliferation and migration of vascular smooth muscle cells[J]. Exp Ther Med,2016,12(3):1901–1907. doi: 10.3892/etm.2016.3514.
[17] Pan S, Lin H, Luo H, et al. Folic acid inhibits dedifferentiation of PDGF-BB-induced vascular smooth muscle cells by suppressing mTOR/P70S6K signaling[J]. Am J Transl Res, 2017, 9(3):1307–1316.
[18] Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscles cell phenotypic diversity[J]. Heth Heart J, 2007, 15(3):100–108.
[19] Miano JM, Cserjesi P, Ligon KL, et al. Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis[J]. Circ Res, 1994, 75(5):803–812.
[20] Christen T, Bochaton-Piallat ML, Neuville P, et al. Cultured porcine coronary artery smooth muscle cells. A new model with advanced differentiation[J]. Circ Res, 1999, 85(1):99–107.
[21] Takahashi M1, Hayashi K, Yoshida K, et al. Epiregulin as a major autocrine/paracrine factor released from ERK- and p38MAPK-activated vascular smooth muscle cells[J]. Circulation, 2003,108(20):2524–2529. doi: 10.1161/01.CIR.0000096482.02567.8C.
[22] Rattik S, Hultman K, Rauch U, et al. IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice[J]. Atherosclerosis, 2015, 242(2):506–514. doi: 10.1016/j.atherosclerosis.2015.08.006.
[23] Song SH, Kim K, Jo EK, et al. Fibroblast growth factor 12 Is a novel regulator of vascular smooth muscle cell plasticity and fate[J].Arterioscler Thromb Vasc Biol, 2016, 36(9):1928–1936. doi: 10.1161/ATVBAHA.116.308017.
[24] Osman I, Poulose N, Ganapathy V, et al. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells[J]. Eur J Pharmaco, 2016, 791(15):703–710. doi: 10.1016/j.ejphar.2016.10.007.
[25] Ha JM, Yun SJ, Jin SY, et al. Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors[J].Korean J Physiol Pharmacol, 2017, 21(1):37–44. doi: 10.4196/kjpp.2017.21.1.37.
[26] Hao H, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development[J]. Arterioscler Thromb Vasc Biol, 2003, 23(9):1510–1520. doi: 10.1161/01.ATV.0000090130.85752.ED.
[27] Gareri C, Iaconetti C, Sorrentino S, et al. miR-125a-5p Modulates Phenotypic Switch of Vascular Smooth Muscle Cells by Targeting ETS-1[J]. J Mol Biol, 2017,429(12):1817–1828. doi: 10.1016/j.jmb.2017.05.008.
[28] Feng W, Zhang K, Liu Y, et al. Apocynin attenuates angiotensin II-induced vascular smooth muscle cells osteogenic switching via suppressing extracellular signal-regulated kinase 1/2[J]. Oncotarget,2016, 7(50):83588–83600. doi: 10.18632/oncotarget.13193.
[29] Wang Y, Qiao L, Qiu J, et al. Establishing primary cultures of vascular smooth muscle cells from the spiral modiolar artery[J]. Int J Pediatr Otorhinolaryngol, 2012,76(8):1082–1086. doi: 10.1016/j.ijporl.2012.02.021.
[30] An Z, Liu Y, Song ZG, et al. Mechanisms of aortic dissection smooth muscle cell phenotype switch [J]. Thorac Cardiovasc Surg, 2017,154(5):1511–1521. doi: 10.1016/j.jtcvs.2017.05.066.
[31] Régent A, Ly KH, Lofek S, et al. Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes[J]. Proteomics, 2016, 16(20):2637–2649. doi: 10.1002/pmic.201500006.
[32] Sur S, Sugimoto JT, Agrawal DK. Coronary artery bypass graft: why is the saphenous vein prone to intimal hyperplasia?[J]. Can J Physiol Pharmacol, 2014, 92(7):531–545. doi: 10.1139/cjpp-2013–0445.
[33] Mottola G, Chatterjee A, Wu B, et al. Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine[J]. PLoS One, 2017, 12(3):e0174936. doi:10.1371/journal.pone.0174936.
[34] Jiang H, Lun Y, Wu X, et al. Association between the hypomethylation of osteopontin and integrin β3 promoters and vascular smooth muscle cell phenotype switching in great saphenous varicose veins[J]. Int J Mol Sci, 2014, 15(10):18747–18761. doi: 10.3390/ijms151018747.
[35] Tomas JJ, Stark VE, Kim JL, et al. Beta-galactosidase-tagged adventitial myofi broblasts tracked to the neointima in healing rat vein grafts[J]. J Vasc Res, 2003, 40(3):266–275. doi: 10.1159/000071890.
[36] Chen Y, Wong MM, Campagnolo P, et al. Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation[J]. Arterioscler Thromb Vasc Biol, 2013,33(8):1844–1851. doi: 10.1161/ATVBAHA.113.300902.
[37] Li P, Li YL, Li ZY, et al. Cross talk between vascular smooth muscle cells and monocytes through interleukin-1β/interleukin-18 signaling promotes vein graft thickening[J]. Arterioscler Thromb Vasc Biol,2014, 34(9):2001–2011. doi: 10.1161/ATVBAHA.113.303145.
[38] Zhang C, Zhang B, Wang H, et al. Tumor necrosis factor alphastimulated gene-6 (TSG-6) inhibits the inflammatory response by inhibiting the activation of P38 and JNK signaling pathway and decreases the restenosis of vein grafts in rats[J]. Heart Vessels, 2017,32(12):1536–1545. doi: 10.1007/s00380–017–1059–3.
[39] Zhang JY, Lei L, Shang J, et al. Local application of paeonol prevents early restenosis: a study with a rabbit vein graft model[J]. J Surg Res,2017, 212:278–287. doi: 10.1016/j.jss.2016.11.020.
[40] Qu Y, Shi X, Zhang H, et al. VCAM-1 siRNA reduces neointimal formation after surgical mechanical injury of the rat carotid artery[J].J Vasc Surg, 2009, 50(6):1452–1458. doi: 10.1016/j.jvs.2009.08.050.
[41] Suzuki J, Izawa A, Isobe M. Anti-vascular cell adhesion molecule-1 and anti-very late antigen-4 monoclonal antibodies inhibit neointimal hyperplasia in the murine model of arterial injury[J]. Acta Cardiol,2004, 59(2):147–152. doi: 10.2143/AC.59.2.2005169.
[42] Ping S, Liu S, Zhou Y, et al. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis[J]. Cell Death Dis, 2017,8(5):e2818. doi: 10.1038/cddis.2017.213.
[43] 李源, 貝媛媛, 于丹, 等. 曲張大隱靜脈源性血管平滑肌細胞表型與功能的變化[J]. 中國普通外科雜志, 2017, 26(6):742–751.doi:10.3978/j.issn.1005–6947.2017.06.012.Li Y, Bei YY, Yu D, et al.Alterations in phenotype and function of vascular smooth muscle cells from varicose great saphenous vein[J]. Chinese Journal of General Surgery, 2017, 26(6):742–751.doi:10.3978/j.issn.1005–6947.2017.06.012.
[44] Frismantiene A, Kyriakakis E, Dasen B, et al. Actin cytoskeleton regulates functional anchorage-migration switch during T-cadherin-induced phenotype modulation of vascular smooth muscle cells[J]. Cell Adh Migr, 2018, 12(1):69–85. doi:10.1080/19336918.2017.1319545.
[45] Tan J, Yang L, Liu C, et al. MicroRNA-26a targets MAPK6 to inhibit smooth muscle cell proliferation and vein graft neointimal hyperplasia[J]. Sci Rep, 2017, 7:46602. doi: 10.1038/srep46602.
[46] Ji Y, Adeola O, Strawn TL, et al. Recombinant soluble apyrase APT102 inhibits thrombosis and intimal hyperplasia in vein grafts without adversely affecting hemostasis or re-endothelialization[J]. J Thromb Haemost, 2017, 15(4):814–825. doi: 10.1111/jth.13621.
[47] Ji Y, Weng Z, Fish P, et al. Pharmacological targeting of plasminogen activator inhibitor-1 decreases vascular smooth muscle cell migration and neointima formation[J]. Arterioscler Thromb Vasc Biol, 2016,36(11):2167–2175. doi:10.1161/ATVBAHA.116.308344.
[48] Kikuchi S, Chen L, Xiong K, et al. Smooth muscle cells of human veins show an increased response to injury at valve sites[J]. J Vasc Surg, 2018, 67(5):1556–1570. doi: 10.1016/j.jvs.2017.03.447.
[49] Huang X, Jin Y, Zhou D, et al. IQGAP1 modulates the proliferation and migration of vascular smooth muscle cells in response to estrogen[J]. Int J Mol Med, 2015, 35(5):1460–1466. doi: 10.3892/ijmm.2015.2134.
[50] Li L, Li X, The E, et al. Low expression of lncRNA-GAS5 is implicated in human primary varicose great saphenous veins[J]. PLoS One, 2015, 10(3):e0120550. doi: 10.1371/journal.pone.0120550.
[51] McKean JS, Murray F, Gibson G, et al. The cAMP-producing agonist beraprost inhibits human vascular smooth muscle cell migration via exchange protein directly activated by cAMP[J]. Cardiovasc Res,2015, 107(4):546–555. doi: 10.1093/cvr/cvv176.
[52] Chen Y, Peng W, Raffetto JD, et al. Matrix metalloproteinases in remodeling of lower extremity veins and chronic venous disease[J].Prog Mol Biol Transl Sci, 2017, 147:267–299. doi: 10.1016/bs.pmbts.2017.02.003.
[53] Kucukguven A, Khalil RA. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins[J]. Curr Drug Targets, 2013, 14(3):287–324.
[54] Sun Y, Kang L, Li J, et al. Advanced glycation end products impair the functions of saphenous vein but not thoracic artery smooth muscle cells through RAGE/MAPK signalling pathway in diabetes[J]. J Cell Mol Med, 2016,20(10):1945–1955. doi: 10.1111/jcmm.12886.
[55] Rodríguez AI, Csányi G, Ranayhossaini DJ, et al. MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol,2015, 35(2):430–438. doi: 10.1161/ATVBAHA.114.304936.
[56] Tracz MJ, Juncos JP, Grande JP, et al. Induction of heme oxygenase-1 is a beneficial response in a murine model of venous thrombosis[J]. Am J Pathol, 2008, 173(6):1882–1890. doi: 10.2353/ajpath.2008.080556.
[57] Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases[J]. Prog Mol Biol Transl Sci, 2017, 147:1–73. doi: 10.1016/bs.pmbts.2017.02.005.
[58] Xiao Y, Huang Z, Yin H, et al. In vitro differences between smooth muscle cells derived from varicose veins and normal veins[J]. J Vasc Surg, 2009, 50(5):1149–1154. doi: 10.1016/j.jvs.2009.06.048.
[59] Ding Q, Chai H, Mahmood N, et al. Matrix metalloproteinases modulated by protein kinase Cε mediate resistin-induced migration of human coronary artery smooth muscle cells[J]. J Vasc Surg, 2011,53(4):1044–1051. doi: 10.1016/j.jvs.2010.10.117.
[60] Reddy VS, Valente AJ, Delafontaine P, et al. Interleukin-18/WNT1-inducible signaling pathway protein-1 signaling mediates human saphenous vein smooth muscle cell proliferation[J]. J Cell Physiol,2011, 226(12):3303–3315. doi: 10.1002/jcp.22676.
[61] Sun Q, Kawamura T, Masutani K, et al. Oral intake of hydrogen-rich water inhibits intimal hyperplasia in arterialized vein grafts in rats[J].Cardiovasc Res, 2012, 94(1):144–153. doi: 10.1093/cvr/cvs024.
[62] Maqbool A, Keswani A, Galloway S, et al. MMP-3 (5A/6A)polymorphism does not influence human smooth muscle cell invasion[J]. J Surg Res, 2012, 175(2):343–349. doi: 10.1016/j.jss.2011.03.043.
[63] Kang N, Ng CS, Hu J, et al. Role of osteopontin in the development of neointimal hyperplasia in vein grafts[J]. Eur J Cardiothorac Surg,2012, 41(6):1384–1389. doi: 10.1093/ejcts/ezr200.
[64] Perek B, Malinska A, Gasowski J, et al. Potentially positive ageingrelated variations of medial smooth muscle cells in the saphenous veins used as aortocoronary bypass grafts[J]. Folia Histochem Cytobiol, 2016, 54(2):91–98. doi: 10.5603/FHC.a2016.0011.
[65] Shadrina AS, Smetanina MA, Sevost'yanova KS, et al. Polymorphism of matrix metalloproteinases genes mmp1, mmp2, mmp3, and mmp7 and the risk of varicose veins of lower extremities[J]. Bull Exp Biol Med, 2017, 163(5):650–654. doi: 10.1007/s10517–017–3871–2.
[66] de Vries MR, Niessen HW, L?wik CW, et al. Plaque rupture complications in murine atherosclerotic vein grafts can be prevented by TIMP-1 overexpression[J]. PLoS One, 2012, 7(10):e47134. doi:10.1371/journal.pone.0047134.
[67] Hwang AR, Nam JO, Kang YJ. Fluvastatin inhibits advanced glycation end products-induced proliferation, migration, and extracellular matrix accumulation in vascular smooth muscle cells by targeting connective tissue growth factor[J]. Korean J Physiol Pharmacol, 2018, 22(2):193–201. doi: 10.4196/kjpp.2018.22.2.193.
[68] Heising S, Giebel J, Ostrowitzki AL, et al. Evaluation of apoptotic cells and immunohistochemical detection of FAS, FAS-L, Bcl-2,Bax, p53 and c-Myc in the skin of patients with chronic venous leg ulcers[J]. Int J Mol Med, 2008, 22(4):497–505.
[69] Kun L, Ying L, Lei W, et al. Dysregulated apoptosis of the venous wall in chronic venous disease and portal hypertension[J].Phlebology, 2016, 31(10):729–736. doi: 10.1177/0268355515610237.
[70] Whiteley MS, Dos Santos SJ, Fernandez-Hart TJ, et al. Media damage following detergent sclerotherapy appears to be secondary to the induction of inflammation and apoptosis: an immunohistochemical study elucidating previous histological observations[J]. Eur J Vasc Endovasc Surg, 2016, 51(3):421–428. doi:10.1016/j.ejvs.2015.11.011.
[71] Li J, Wang HM. Effects of cobalt chloride on phenotypes of normal human saphenous vein smooth muscle cells[J]. Int J Clin Exp Med,2014, 7(12):4933–4941.
[72] Lee JD, Lai CH, Yang WK, et al. Increased expression of hypoxiainducible factor-1α and metallothionein in varicocele and varicose veins[J]. Phlebology, 2012, 27(8):409–415. doi: 10.1258/phleb.2011.011051.
[73] Simovart HE, Arend A, Lieberg J, et al. Associations of NF-kappaB and bax with apoptosis in varicose veins of women of different age groups[J]. Int J Vasc Med, 2011, 2011:639720. doi:10.1155/2011/639720.
[74] Zhang L, Zhou J, Jing Z, et al. Glucocorticoids regulate the vascular remodeling of aortic dissection via the p38 mapk-hsp27 pathway mediated by soluble TNF-RII[J]. EbioMedicine, 2018,27:247–257.doi: 10.1016/j.ebiom.2017.12.002.
[75] Wang Y, Zhao ZM, Zhang GX, et al. Dynamic autophagic activity affected the development of thoracic aortic dissection by regulating functional properties of smooth muscle cells[J]. Biochem Biophys Res Commun, 2016, 479(2):358–364. doi: 10.1016/j.bbrc.2016.09.080.
[76] Gutierrez-Pajares JL, Iturrieta J, Dulam V, et al. Caveolin-3 promotes a vascular smooth muscle contractile phenotype[J]. Front Cardiovasc Med, 2015, 2:27. doi: 10.3389/fcvm.2015.00027.
[77] Qiu P, Ritchie RP, Gong XQ, et al. Dynamic changes in chromatin acetylation and the expression of histone acetyltransferases and histone deacetylases regulate the SM22α transcription in response to Smad3-mediated TGFβ1 signaling[J]. Biochem Biophys Res Commun, 2006, 348(2):351–358. doi:10.1016/j.bbrc.2006.07.009.
[78] Spin JM, Quertermous T, Tsao PS. Chromatin remodeling pathways in smooth muscle cell differentiation, and evidence for an integral role for p300[J]. PLoS One, 2010, 5(12): e14301. doi: 10.1371/journal.pone.0014301.
[79] Hiltunen MO, Turunen MP, H?kkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions[J]. Vascular Medicine, 2002, 7(1):5–11. doi:10.1191/1358863x02vm418oa.
[80] Connelly JJ, Cherepanova OA, Doss JF, et al. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis[J]. Hum Mol Genet, 2013, 22(25):5107–5120. doi:10.1093/hmg/ddt365.
[81] Ali MS, Starke RM, Jabbour PM, et al. TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology[J]. J Cereb Blood Flow Metab, 2013,33(10):1564–1573. doi: 10.1038/jcbfm.2013.109.
[82] Cao D, Wang Z, Zhang CL, et a1. Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin[J]. Mol Cell Biol, 2005, 25(1):364–376.doi: 10.1128/MCB.25.1.364–376.2005.
[83] Usui T, Morita T, Okada M, et al. Histone deacetylase 4 controls neointimal hyperplasia via stimulating proliferation and migration of vascular smooth muscle cells[J]. Hypertension, 2014, 63(2):397–403.doi: 10.1161/HYPERTENSIONAHA.113.01843.
[84] Wang YS, Chou WW, Chen KC, er al. MicroRNA-152 mediates DNMT1- regulated DNA methylation in the estrogen receptor alpha gene[J]. PLoS One, 2012,7:e30635. doi: 10.1371/journal.pone.0030635.
[85] Liu R, Jin Y, Tang WH, et al. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity[J]. Circulation, 2013,128(18):2047–2057. doi: 10.1161/CIRCULATIONAHA.113.002887.
[86] Wang Y, Hu G, Liu F, et al. Deletion of yes-associated protein(YAP) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for YAP in mouse cardiovascular development[J]. Circ Res, 2014, 114(6): 957–965. doi: 10.1161/CIRCRESAHA.114.303411.