蔡晉,資文杰,劉新峰
世界衛(wèi)生組織統(tǒng)計,2002年全球范圍內約有550萬人因罹患卒中而死亡,卒中目前已成為人類死亡的第二大原因,且發(fā)病率及死亡率仍呈不斷增長的趨勢。2011年,中國國家卒中登記數據庫的流行病學分析結果顯示,我國卒中的年齡標化發(fā)病率位列全球第一,超過336/10萬。每年因卒中死亡的人數達到170萬,高居全國國民死亡原因的首位,且幸存患者中約1/6在5年內再發(fā)卒中[1]。卒中正以其高發(fā)病率、高致殘率、高死亡率以及高復發(fā)率成為影響國計民生的重大公共衛(wèi)生問題,給社會、家庭、患者帶來了巨大的負擔和痛苦[2]。
卒中俗稱“中風”,按病理性質分為缺血性卒中與出血性卒中,是由各種因素引起顱內動脈狹窄、閉塞或破裂,造成腦血液循環(huán)障礙,腦神經細胞損傷或死亡,導致一過性或永久性的運動、感覺或認知功能等障礙。缺血性卒中又稱為腦梗死,通常是指由于供應腦部血液的動脈出現粥樣硬化和血栓形成,使管腔狹窄甚至閉塞,導致急性腦供血不足而發(fā)病。也有因固體、液體或氣體沿血液循環(huán)進入腦動脈或供應腦血液循環(huán)的頸部動脈,造成血流阻斷或血流量驟減而產生相應支配區(qū)域的腦組織軟化、壞死[3]。根據經典低分子肝素治療急性卒中試驗(Trial of Org 10 172 in Acute Stroke Treatment,TOAST)分型,缺血性卒中可分為大動脈粥樣硬化型、心源性栓塞型、小動脈閉塞型或腔隙性腦梗死,其他原因所致的缺血性卒中和不明原因的缺血性卒中。目前,缺血性卒中的發(fā)生、發(fā)展機制并不十分明確,臨床診治仍面臨諸多難題。最新的研究發(fā)現細胞外囊泡(extracellular vesicle,EV)介導細胞間通訊在動脈粥樣硬化形成中發(fā)揮了重要作用,也逐步成為缺血性卒中發(fā)生、發(fā)展以及治療應用等研究的熱點。
EV是一種大多數細胞在生理和病理狀態(tài)下都會分泌的直徑為30~1000 nm的微小囊泡的總稱,包括外泌體和脫落囊泡等[4]。外泌體通過多泡體(multivesicular bodies,MVBs)以胞吐的形式釋放到細胞外,直徑為50~100 nm,密度為1.10~1.21 g/ml,其生成受神經酰胺和ALIX(ALG-2 interacting protein X)蛋白的調節(jié)。脫落囊泡以“出芽”的方式產生,直徑為100 nm~1 μm,其生成與細胞內鈣離子及細胞膜表面磷脂酰絲氨酸表達密切相關[5]。EV屬于母體細胞來源的亞細胞結構,其生成、大小、內含物和生物學功能等在不同細胞間均存在異質性[6]。EV包含多種蛋白質、RNA和DNA等,表面還攜帶母體細胞來源的跨膜蛋白、脂質等,這些均有利于其在循環(huán)中與受體細胞黏附、融合,交換內含物參與細胞間通訊并調節(jié)受體細胞的生物學功能[7-11]。此外,EV還參與細胞凋亡、免疫炎癥反應、血管新生、血栓形成等病理生理過程[12]。在疾病狀態(tài)下,EV的細胞起源、釋放數量、內含物等均與疾病的發(fā)生發(fā)展相關[13-14]。研究發(fā)現,在動脈粥樣硬化的形成過程中,EV介導的細胞間通訊扮演了愈發(fā)重要的角色[15-16]。越來越多的研究表明神經元與神經膠質細胞來源的EV,如從腦脊液分離的EV,這些EV轉運相關蛋白參與神經再生、腦血管再生以及少突膠質細胞再生,與卒中后腦功能重塑密切相關,并逐步成為缺血性卒中發(fā)生、發(fā)展以及治療應用等研究的熱點[17]。本文就神經系統(tǒng)EV內含物的分子組成與生物學功能在缺血性卒中發(fā)生、發(fā)展中的作用綜述如下。
腦血管內皮細胞EV內含轉鐵蛋白受體、胰島素受體等生物大分子,參與構成血腦屏障[18]。同時,在脂多糖和細胞因子刺激下,腦血管內皮細胞EV轉運微小RNA(microRNA,miRNA)至腦血管周細胞,并增加受體周細胞血管內皮生長因子B(vascular endothelial growth factor B,VEGF-B)信使RNA(messenger RNA,mRNA)和蛋白質的表達,從而促進新生血管形成[19-20]。另外,EV介導的腦血管內皮細胞與周細胞之間的水平轉移還通過Notch信號通路維持血腦屏障的完整性,并促進血管再生。表達于腦血管內皮細胞的Notch配體,Deltalike 4蛋白,能夠通過EV轉移至周細胞,進而與周細胞上的Notch3受體結合,激活Notch信號通路,保持腦血管結構的穩(wěn)態(tài)[21-22]。VEGF信號通路與Notch信號通路通過EV共同參與了腦血管內皮細胞與周細胞之間的細胞間通訊,維持血腦屏障完整并促進血管再生。此外,內皮祖細胞來源的EV轉移miRNA-126、miRNA-296至內皮細胞,激活受體細胞磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidyl inositol 3-kinase/protein kinase B,PI3K/Akt)信號通路,促進血管再生[23-24]。膠質母細胞瘤EV轉運促血管生成的蛋白質、mRNA以及miRNA至腦血管內皮細胞,進而參與腦血管再生[25]。
成年哺乳動物神經干細胞主要分布于腦室?guī)А⒛X室下帶和海馬的干細胞龕,它們與鄰近血管、細胞及腦脊液相互聯(lián)系,交換信息[26]。腦脊液中EV通過細胞間通訊調節(jié)神經干細胞的增殖、分化、免疫等功能[27-28]。來源于人和大鼠腦脊液的EV內的miRNA和蛋白質高度同源,且與胰島素樣生長因子信號通路密切相關[27]。胚胎神經干細胞與腦脊液EV共培養(yǎng)后,可以激活神經干細胞胰島素樣生長因子/哺乳動物西羅莫司靶蛋白信號通路,并刺激其增殖[27]。在促炎因子的作用下,來源于成年小鼠神經干細胞龕的神經干細胞分泌的EV所富集的mRNA,編碼γ-干擾素信號通路蛋白。EV相關的γ干擾素與靶細胞的γ干擾素受體1結合,進一步激活信號轉導與轉錄激活子1信號通路,參與卒中后的免疫反應[28]。
神經元與膠質細胞相互協(xié)調使軸突生長與髓鞘發(fā)育同步,最新的研究表明神經元與膠質細胞分泌的EV參與了此過程[29-30]。神經元分泌的EV內含α-氨基-3-羥基-5-甲基-4-異惡唑丙酸(α-amino-3-hydroxy-5-methyl-4-isoxazole propionate,AMPA)受體,而去極化神經元軸突分泌的EV內含微管相關蛋白(microtubule associated protein,MAP)1B,以及靶基因參與軸突重塑的miRNA[31-32]。AMPA受體和MAP1B是突觸與樹突重塑以及軸突出芽的核心調節(jié)因子,激活AMPA受體促進卒中后運動功能恢復[31-33]。視黃酸受體β2拮抗劑刺激后,神經元分泌的EV對神經元與星形膠質細胞產生雙重效應,刺激軸突的生長。視黃酸受體β2拮抗劑使神經元通過釋放富集第10號染色體同源丟失性磷酸酶-張力蛋白基因(phosphatase and tensin homolog deleted on chromosome ten,PTEN)蛋白的EV使PTEN信號通路失活,同時,這些富集PTEN的EV轉運PTEN蛋白至星形膠質細胞,并抑制其增殖[34]。抑制神經元PTEN信號通路,以及減少星形膠質細胞瘢痕形成促進成年脊髓損傷或卒中后中樞神經系統(tǒng)軸突出芽[35]。上述研究表明,神經元EV在神經元之間以及神經元與星形膠質細胞之間通過突觸傳遞介導突觸與軸突重塑,參與腦損傷后突觸與軸突重構。
卒中加速認知障礙和老年性癡呆的進展,以腦β淀粉樣蛋白沉積為主要特征。β淀粉樣蛋白生成后分泌至細胞外,其生成與降解失衡導致β淀粉樣蛋白在腦沉積[36]。研究報道,體外培養(yǎng)的神經母細胞瘤細胞分泌的EV內含β淀粉樣蛋白,小膠質細胞內化神經元EV后,增強了其攝取和清除β淀粉樣蛋白的能力[37]。此外,他汀類藥物(如辛伐他?。┐碳ば∧z質細胞分泌的EV富集了胰島素降解酶,該酶降解β淀粉樣蛋白,促進清除細胞外β淀粉樣蛋白[38]。這些研究表明,小膠質細胞既能內吞其他細胞來源的EV,在他汀作用下又主動分泌自身EV,共同參與清除腦β淀粉樣蛋白。卒中和創(chuàng)傷性腦損傷后,辛伐他汀參與軸突出芽、自發(fā)物體識別與時序記憶等過程,促進缺血性腦組織修復[39-40]。雖然如此,腦損傷后,他汀治療是否改變小膠質細胞EV降解β淀粉樣蛋白的能力仍需進一步的研究證實。
綜上所述,缺血性卒中后神經干細胞、神經元、神經膠質細胞、腦血管內皮細胞以及周細胞等腦實質細胞分泌的EV內含物,包括蛋白質、RNA等生物大分子的種類和含量,較非缺血狀態(tài)均有明顯變化。這些生物大分子可以通過EV水平轉移至靶細胞,并影響受體細胞的生物學功能,在缺血性卒中的發(fā)生、發(fā)展以及腦組織重塑中均扮演了重要角色。當然,EV與缺血性卒中的研究仍然面臨諸多難題和挑戰(zhàn),一是腦實質細胞缺血后分泌EV的多少及其內含關鍵分子水平的內在調節(jié)機制不明;二是針對某特定細胞來源的EV,其潛在的靶向細胞辨識不清;三是EV轉移內含關鍵分子至靶向受體細胞后,內源基因和蛋白質表達的調控機制仍需進一步厘清。雖然如此,已有天然提取或人工干預獲得的EV用于卒中后治療的研究嘗試[41-43],上述難題的解決必將使治療更加精準,療效愈發(fā)顯著。
參考文獻
[1]LIU L,WANG D,WONG K S,et al. Stroke and stroke care in China:huge burden,significant workload,and a national priority[J]. Stroke,2011,42(12):3651-3654.
[2]MOZAFFARIAN D,BENJAMIN E J,GO A S,et al. Heart disease and stroke statistics--2015 update:a report from the American Heart Association[J/OL].Circulation,2015,131(4):e29-e322. https://doi.org/10.1161/CIR.0000000000000152
[3]ADAMS H P J R,BENDIXEN B H,KAPPELLE L J,et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment[J]. Stroke,1993,24(1):35-41.
[4]COCUCCI E,RACCHETTI G,MELDOLESI J.Shedding microvesicles:artefacts no more[J]. Trends Cell Biol,2009,19(2):43-51.
[5]CAI J,WU G,JOSE P A,et al. Functional transferred DNA within extracellular vesicles[J]. Exp Cell Res,2016,349(1):179-183.
[6]NIEUWLAND R,STURK A. Why do cells release vesicles?[J]. Thromb Res,2010,125(Suppl 1):S49-51.
[7]CAI J,HAN Y,REN H,et al. Extracellular vesiclemediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells[J]. J Mol Cell Biol,2013,5(4):227-238.
[8]CAI J,WU G,TAN X,et al. Transferred BCR/ABL DNA from K562 extracellular vesicles causes chronic myeloid leukemia in immunodeficient mice[J/OL]. PLoS One,2014,9(8):e105200. https://doi.org/10.1371/journal.pone.0105200
[9]CAI J,GUAN W,TAN X,et al. SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells[J]. Clin Sci(Lond),2015,129(3):259-269.
[10]WALDENSTR?M A,GENNEB?CK N,HELLMAN U,et al. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells[J/OL]. PLoS One,2012,7(4):e34653.https://doi. org/10. 1371/journal. pone. 0034653
[11]ZEN K,ZHANG C Y. Circulating microRNAs:a novel class of biomarkers to diagnose and monitor human cancers[J]. Med Res Rev,2012,32(2):326-348.
[12]MINEO M,GARFIELD S H,TAVERNA S,et al.Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA[J].Blood,2007,110(7):2440-2448.fashion[J]. Angiogenesis,2012,15(1):33-45.
[13]WANG H,YAN H M,TANG M X,et al. Increased serum levels of microvesicles in nonvalvular atrial fibrillation determinated by ELISA using a specific monoclonal antibody AD-1[J]. Clin Chim Acta,2010,411(21-22):1700-1704.
[14]MINCHEVA-NILSSON L,BARANOV V. The role of placental exosomes in reproduction[J]. Am J Reprod Immunol,2010,63(6):520-533.
[15]HERGENREIDER E,HEYDT S,TRéGUER K,et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nat Cell Biol,2012,14(3):249-256.
[16]ZHANG Y,LIU D,CHEN X,et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration[J]. Mol Cell,2010,39(1):133-144.
[17]LAI C P,BREAKEFIELD X O. Role of exosomes/microvesicles in the nervous system and use in emerging therapies[J/OL]. Front Physiol,2012,3:228. https://doi.org/10.3389/fphys.2012.00228
[18]HAQQANI A S,DELANEY C E,TREMBLAY T L,et al. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells[J]. Fluids Barriers CNS,2013,10(1):4.
[19]YAMAMOTO S,NIIDA S,AZUMA E,et al.Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes[J/OL]. Sci Rep,2015,5:8505. https://www.nature.com/articles/srep08505.DOI:10.1038/srep08505
[20]TAKAHASHI H,SHIBUYA M. The vascular endothelial growth factor(VEGF)/VEGF receptor system and its role under physiological and pathological conditions[J]. Clin Sci(Lond),2005,109(3):227-241.
[21]WINKLER E A,BELL R D,ZLOKOVIC B V.Central nervous system pericytes in health and disease[J]. Nat Neurosci,2011,14(11):1398-1405.
[22]SCHULZ G B,WIELAND E,WüSTEHUBELAUSCH J,et al. Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling between the endothelium and pericytes[J]. Stroke,2015,46(5):1337-1343.
[23]CANTALUPPI V,BIANCONE L,FIGLIOLINI F,et al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets[J]. Cell Transplant,2012,21(6):1305-1320.
[24]DEREGIBUS M C,CANTALUPPI V,CALOGERO R,et al. Endothelial progenitor cell derived
[25]SKOG J,WüRDINGER T,VAN RIJN S,et al.Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nat Cell Biol,2008,10(12):1470-1476.
[26]IHRIE R A,ALVAREZ-BUYLLA A. Lake-front property:a unique germinal niche by the lateral ventricles of the adult brain[J]. Neuron,2011,70(4):674-686.
[27]DOEPPNER T R,HERZ J,G?RGENS A,et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression[J]. Stem Cells Transl Med,2015,4(10):1131-1143.
[28]COSSETTI C,IRACI N,MERCER T R,et al.Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells[J]. Mol Cell,2014,56(2):193-204.
[29]HIGA G S,DE SOUSA E,WALTER L T,et al.MicroRNAs in neuronal communication[J]. Mol Neurobiol,2014,49(3):1309-1326.
[30]KAWIKOVA I,ASKENASE P W. Diagnostic and therapeutic potentials of exosomes in CNS diseases[J/OL]. Brain Res,2015,1617:63-71. https://doi.org/10.1016/j.brainres.2014.09.070
[31]LACHENAL G,PERNET-GALLAY K,CHIVET M,et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity[J]. Mol Cell Neurosci,2011,46(2):409-418.
[32]GOLDIE B J,DUN M D,LIN M,et al. Activityassociated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons[J].Nucleic Acids Res,2014,42(14):9195-9208.
[33]CLARKSON A N,OVERMAN J J,ZHONG S,et al. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke[J]. J Neurosci,2011,31(10):3766-3775.
[34]GONCALVES M B,MALMQVIST T,CLARKE E,et al. Neuronal RARβ signaling modulates PTEN activity directly in neurons and via exosome transfer in astrocytes to prevent glial scar formation and induce spinal cord regeneration[J]. J Neurosci,2015,35(47):15731-15745.
[35]SHEN L H,LI Y,GAO Q,et al. Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain[J]. Glia,2008,56(16):1747-1754.
[36]QUERFURTH H W,LAFERLA F M. Alzheimer's disease[J]. N Engl J Med,2010,362(4):329-344.
[37]YUYAMA K,SUN H,MITSUTAKE S,et al.Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia[J]. J Biol Chem,2012,287(14):10977-10989.
[38]TAMBOLI I Y,BARTH E,CHRISTIAN L,et al. Statins promote the degradation of extracellular amyloid {beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme(IDE)secretion[J]. J Biol Chem,2010,285(48):37405-37414.
[39]DARWISH H,MAHMOOD A,SCHALLERT T,et al. Simvastatin and environmental enrichment effect on recognition and temporal order memory after mild-to-moderate traumatic brain injury[J]. Brain Inj,2014,28(2):211-226.
[40]CHEN J,ZHANG Z G,LI Y,et al. Statins induce angiogenesis,neurogenesis,and synaptogenesis after stroke[J]. Ann Neurol,2003,53(6):743-751.
[41]XIN H,LI Y,CHOPP M. Exosomes/miRNAs as mediating cell-based therapy of stroke[J/OL]. Front Cell Neurosci,2014,8:377. https://doi.org/10.3389/fncel.2014.00377.
[42]XIN H,LI Y,LIU Z,et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles[J]. Stem Cells,2013,31(12):2737-2746.
[43]XIN H,KATAKOWSKI M,WANG F,et al.MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats[J]. Stroke,2017,48(3):747-753.