• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    幾個熒光蛋白發(fā)色團雙光子吸收性質(zhì)的理論研究

    2016-11-18 07:29:09葉傳香馬會利梁萬珍
    物理化學(xué)學(xué)報 2016年1期
    關(guān)鍵詞:單光子光子合肥

    葉傳香馬會利梁萬珍

    (1中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,合肥 230026;2清華大學(xué)化學(xué)系,北京 100084;3廈門大學(xué)化學(xué)系,福建 廈門 361005)

    幾個熒光蛋白發(fā)色團雙光子吸收性質(zhì)的理論研究

    葉傳香1馬會利2梁萬珍3,*

    (1中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,合肥 230026;2清華大學(xué)化學(xué)系,北京 100084;3廈門大學(xué)化學(xué)系,福建 廈門 361005)

    實驗測得的熒光蛋白的單、雙光子吸收光譜在低頻和高頻區(qū)域都表現(xiàn)出明顯不同的特征。為了揭示這些不同點的起源和研究熒光蛋白的構(gòu)–效關(guān)系,我們詳細研究了三種熒光蛋白發(fā)色團(一種增強型藍綠色熒光蛋白的中性發(fā)色團和兩種紅色熒光蛋白的陰離子發(fā)色團)的單、雙光子吸收特性,分別計算了純的和振動分辨的電子譜。計算結(jié)果表明:光譜線形與計算采用的交換相關(guān)密度泛函及譜截面計算所采用的近似關(guān)系密切;如果在計算光譜截面時,我們利用長程修正的交換相關(guān)泛函CAM-B3LYP來計算幾何和電子結(jié)構(gòu)參數(shù),然后把Franck-Condon (FC)效應(yīng)和包含Herzberg-Teller (HT)效果的電-聲耦合效應(yīng)都考慮進去,理論計算的光譜與實驗測定的光譜可以很好地符合;對于兩種離子態(tài)的發(fā)色團,HT電-聲耦合效應(yīng)使得對應(yīng)于基態(tài)到第一激發(fā)態(tài)躍遷的雙光子吸收最強峰相對于單光子吸收的最強峰發(fā)生了藍移,但HT電-聲耦合效應(yīng)對高頻的雙光子吸收譜沒有太大的影響;分子內(nèi)電荷轉(zhuǎn)移是導(dǎo)致高頻區(qū)的雙光子吸收明顯強于單光子吸收的主要原因。

    雙光子吸收;熒光蛋白發(fā)色團;振動光譜;含時密度泛函理論

    1 Introduction

    In recent years, the two-photon absorption (TPA) phenomena of fluorescent proteins (FPs) have attracted a lot of interests1–5. The main reason is that the TPA spectra of FPs have fascinating applications in bioimaging and medical technology as biomarker, biosensor6,7, and now even in communication technology8. Especially, FPs are widely used in two-photon laser scanning microscopy, which can penetrate deeper tissue with less damage9. Therefore, the scientists have performed a large amount of experimental studies to investigate which proteins are the brightest and what are the best excitation wavelengths. However, due to competing optical processes such as stimulated emission and scattering that arise in high-intensity regime inherent in these experiments, it is difficult to experimentally measure the absolute TPA cross sections10. In biological systems, there are additional calibration difficulties leading to significant discrepancies in the reported measurements of absolute TPA cross sections2. It is thus essential to theoretically calculate the TPA cross sections to assist experimental studies for describing the microscopic excited-state dynamics, explaining the experimental results and designing new materials with desired non-linear optical properties as well11.

    Numerous computational studies of TPA phenomena have been reported in the past couple of decades within the framework of time-dependent density functional theory (TDDFT)12–20, a lower-level couple cluster method21or the equationof-motion coupled-cluster method11. However, most of theoretical works were focused on the calculations of pure electronic spectra. The vibrational motions and the vibronic coupling effect are not incorporated into the spectra. Compared with the pure electronic spectra, vibrationally-resolved electronic spectra show the detailed characteristic of molecular vibrational motions and reveal more reliable molecular structure–property relationship. In this work, we thus simulate the vibrationally-resolved OPA (VROPA) and TPA (VRTPA) spectra of a few FP chromophores to obtain the fundamental structure–property relationships, unveil the origin of the significant discrepancies between OPA and TPA spectra, and reach a close comparison with the experimental spectra.

    From the theoretical point of view, TPA is a non-linear optical process with a quadratic dependence of the absorption strength on the intensity of the incident light. Since two-photon transitions become allowed only in the second order of perturbation theory, TPA cross sections are usually much small. However, in TPA spectra of FP chromophores2, it is observed that the TPA spectra in high-frequency region are stronger than that in low-frequency region, while the OPA spectra are extremely weak2. It is thus urge to know the intrinsic physical mechanism which is called quantum mechanical effect known as resonant enhancement by some researchers22. We here conduct a theoretical calculation of both the TPA and OPA spectra for a few FP chromophores. The time-dependent approaches to model OPA and TPA cross sections with inclusion of Franck-Condon (FC) scattering and Herzberg-Teller (HT) vibronic coupling effects will be used23,24. Besides the efficient dynamic method, the accurate structure parameters are further needed to predict OPA and TPA cross sections. In the electronic structure calculations, the ground-state properties can be easily obtained, and the main difficulty is to provide a good description on the resonant excited-state potential energy surfaces. In principle, high-accuracy wavefunction-based correlated ab initio methods can provide an accurate description of excited electronic states. However, these techniques are currently computationally intractable when applied to molecules of practical interests. Alternatively, time-dependent density functional theory(TDDFT) approach has been proposed to calculate the excitedstate properties. The successful realization of the analytical excited-state Hessian within the framework of TDDFT25–29has made the large-scale numerical calculations feasible on the excited-state vibrational frequencies and other related physical quantities, such as the geometrical derivatives of the transition dipole moment for the medium-sized systems.

    Three model FP chromophores in gas phase and water solution are investigated, which include a neutral chromophore in photoactive enhanced cyan fluorescent protein (ECFP)30and two anionic FP chromophores in DsRed2 and TagRFP31. As a result, the environment-dependent characteristics of OPA and TPA spectra of those model chromophores are exhibited. As the representation of neutral chromophore, ECFP shows an apparent overlap between the OPA spectra and TPA spectra in the longest-wavelength absorption band, corresponding to the electronic transition from the ground state (S0) to the first singlet excited state (S1). However, as the representation of anionic chromophores, Dsred2 and TagRFP show a distinct blue-shift of the low-energy TPA maxima relative to the OPA maxima. However, in higher-frequency regions, the OPA and TPA spectra of two-types of FP chromophores exhibit similar characteristics. The TPA is very strong while the OPA is extremely weak. Those strong resonant enhancements32,33appeared in TPA spectra in the short wavelength definitely have crucial relationship with the characters of higher-lying excited states34. It is thus essential to present a profound insight to address the issue.

    2 Computational details

    On the basis of the perturbation theory, the transition rate of one-photon (two-photon) transition from the initial stateto the final stateis proportional toHere,is the lineshape function within one-photon (two-photon) transition. Here wi, w1, and w2denote the incident photon frequencies, the onephoton and two-photon transitions are separately expressed as follows:

    where μ denotes the transition dipole moments between two electronic states. e1, e2represent the direction of the corresponding transition.is the intermediate states. In Born Oppenheimer (BO) approximationandcan be separated into electronic and vibrational states aswith the energyHere EL/I/Fdenotes the energy of the corresponding electronic state anddenotes the vibrational energy.

    At the microscopic level, the spectral differential cross section of OPA can be explicitly written as

    and the TPA cross section (σTPA) for the two identical linearly polarized photons with the energy different from the molecular electronic excitation can be written as35–38

    here, i1and i2represent the Cartesian coordinate directions x, y, z.is the fine structure constant. With the exploit of the approximation(ELIis the energy gap betweenis the vibrational energy of the corresponding vibrational states), and the closure relation of vibrational statesthe second-hyperpolarizability becomes39

    One can calculate the cross sections in Eqs.(3) and (4) by means of the sum-over-state method straightforwardly or by the time-dependent approach. The time-dependent expressions for the OPA an TPA cross sections with inclusion of Duschinsky rotation (mode-mixing), FC and HT vibronic coupling effects have been derived in our previous works23,24,40in detail. The mode-mixing effect accounts for the differences between ground- and excited-state normal-mode coordinates and vibrational frequencies. The HT vibronic coupling effect accounts for the dependency of transition dipole moments on the mode coordinates,Therefore, to predict the OPA and TPA spectra, one is required to accurately compute the structure parameters, such as the equilibrium geometries and vibrational frequencies of resonant states, the excitation energies, the transition dipole moments, and the twophoton transition tensors as well as their geometric derivatives, etc. Even though, the ground-state properties can be easily obtained, it is difficult to calculate the excited-state properties. To avoid the difficulty, in this paper, we adopt the vertical gradient (VG) approximation41,42which has been simply described in our previous paper23,24.

    In VG approximation, physically, the excited-state potential energy surface is just a mere shift relative to the ground-state potential surface without any scrambling of the normal coordinates or a change in the harmonic frequencies, i.e.,Here w denotes the vibrational frequencies and L corresponds to the transform matrix, which is obtained by the diagonalization of the mass weighted Hessian matrix H asThe displacements which are related to the structural change along the normal modeupon excitation of the molecule read

    From the bank of protein data, the crystal structures of ECFP30and two red fluorescent proteins31are obtained. And then, we get the initial structures of the chromophores by rational extraction and modification. All the concerned structure parameters except the two-photon transition tensors and their geometrical derivatives are calculated by DFT or TD-DFT methods within the Gaussian 09 software package43. The twophoton transition tensors and their geometric derivatives are evaluated within the Dalton programme44. The finite-difference methods are applied to calculate the geometric derivatives of transition dipole moments and two-photon transition tensors. The hybrid DFT exchange-correlation (XC) functional B3LYP and the long-range-corrected DFT XC functional CAM-B3LYP are adopted. The basis sets 6-31G* and 6-311+G** are applied. The effect from the surrounding protein environment on molecular geometries and on spectroscopic properties has been inspected by the integral equation formalism polarizable continuum media model (PCM)45,46.

    To understand the nature of electronic excitations, we analyse the excited states by constructing the natural transition orbitals (NTOs)47within the Gaussian program package. The NTOs are defined by transformations of the occupied and unoccupied molecular orbitals via the matrices U and V obtained by singular value decomposition of the transition density matrix T, i.e.,respectively. The matrices U and V are unitary and λ is diagonal.

    3 Results and discussion

    In order to unveil the structure–property relationship, and reveal the impacts of molecular external environments and DFT XC functional on the electronic structure and optical properties of FPs, we here investigate three model FP chromophores: the neutral ECFP chromophore, the anionic DsRed2 and TagRFP chromophores in different molecular environments. The structure parameters which enter the expressions of spectral cross sections are calculated by DFT or TD-DFT with XC functional B3LYP and CAM-B3LYP. From the bank of protein data, the crystal structures of concerned FPs are obtained, and then, we get the initial structures of the chromophores by rational extraction and modification.

    3.1 Neutral ECFP chromophore

    Fig.1(a) shows the geometry of ECFP chromophore. At the optimized geometry of S0, we calculate the vertical excitation energies and corresponding oscillator strengths of OPA and TPA as shown in Table 1. Then, both the pure electronic and vibronic spectra are simulated. Here we only show the low-frequency OPA spectra since the OPA transition is forbidden in the high-frequency region as Table 1 shows. The experimental TPA spectrum of ECFP, in Fig.1(b), shows three TPA bands centered at around 857, 640, and 550 nm with different spectral intensities. The theoretical spectra, in Fig.1(c–f), are calculated with respect to the geometric and electronic structure parameters produced by different DFT XC functionals at different molecular environments. It is found that the calculated OPA and TPA peaks by TD-B3LYP/PCM coincide rather well with the experimental spectra in the long wavelength region. Obviously, TD-CAM-B3LYP overestimates the excitation energies and subsequently blue-shifts the spectra compared with the experimental measurement. The solvent effect decreases the excitation energies. From the calculated pure electronic spectra ofTPA (the blue lines in Fig.1), we observe that the relative order of peak intensities of TPA spectra calculated with respect to structure parameters by TD-CAM-B3LYP/PCM is almost consistent with the experimental TPA spectrum if we redshift the pure electronic TPA spectrum about 100 nm. However, it is obvious that the spectral width cannot be well produced by the simply broadening by means of the line-shape function. We thus calculate the vibronic spectra at different approximations. It is obvious that the calculated vibronic spectra with inclusion of FC and HT effects provide us more abundant information about vibrations and vibronic coupling, which actually matches the experimental spectral lineshape quite well. For example, in the long wavelength region, the first absorption band corresponds to the electronic transition of S0→ S1and both OPA and TPA show a board band width of about 200 nm. Our simulation verifies that the boarding comes from the vibrational transitions between different electronic states. The second TPA band centered at 650 nm corresponds to the electronic transitions of S0→ S3and S4, and the third intensive band centered at around 550 nm comes from the absorption from S0→ S5or higher energy excited electronic states.

    Fig.1 Calculated and experimental spectra of ECFP chromophore in gas phase and water solution based on the structure parameters produced by B3LYP and CAM-B3LYP with the basis set 6-31G*

    In addition, for ECFP chromophore, we observe that no obvious blue-shift phenomenon appears at TPA maximum of the neutral ECFP chromophore and the spectra under FC andFCHT approximations are nearly same, which indicates that the HT vibronic coupling does not have large contribution to the vibronic spectra of low-frequency band. The calculated TPA spectra with VG approximation and without VG approximation show slight differences, especially the peak intensities (see Fig.1(c, d)), which indicates that to correctly predict the VRTPA spectra, it seems important to include the difference of the potential energy surfaces between the resonant states. Due to the expensive computational cost of the excited-state Hessian calculation, in the later calculations, we thus adopt VG approximation.

    Moreover, to further understand the nature of the excited states, we make an analysis on the NTOs corresponding to electronic transitions from the ground state to the low-lying singlet excited states for ECFP chromophore in water solution. Comparing the hole/particle NTO pairs for the transitions corresponding to three low-lying excited states as shown in Fig.2, we observe the obviously photon-induced intramolecular chargetransfer CT character in the later two excitations, while the intramolecular CT character companying with the first excited state is not visible. The character of excited states indeed explains why OPA is allowed for the transition of S0→ S1, but it is forbidden for the transitions from S0to higher excited states, and it also explains why CAM-B3LYP can yield the correct order of excited states and better TPA spectral lineshapes compared with the experiments although it overestimates the excitation energies.

    Fig.2 Electronic densities of hole and particle NTO pairs with largest values of λ for the dipole-allowed singlet excited states of ECFP chromophore

    Table 2 Basic parameters of DsRed2

    3.2 Anionic DsRed2 chromophore

    Then we calculate the anionic DsRed2 chromophore48with the same procedure for the neutral ECFP chromophore. The calculated electronic structure parameters are listed in Table 2,and the calculated and experimental TPA spectra of DsRed2 chromophores are shown in Fig.3(b–f).

    By inspecting into Fig.3(a), it is easily found that the experimental TPA maxima are centered at 700 and 1050 nm, while the low-energy OPA maximum is centered at 1100 nm. Obviously, the first TPA maximum has a blue-shift of 50 nm relative to the OPA maximum. Comparing the theoretical spectra calculated at different levels as shown in Fig.3(b–f), TDB3LYP/PCM produces best consistent peak positions with the experimental profiles. The VRTPA spectrum based on the structure parameters produced by B3LYP/PCM gives two evident TPA bands whose main peaks are located at 712 and 1120 nm and VROPA spectrum shows one main band located at 1138 nm. Obviously, the blue-shift value between the first main TPA and OPA maxima are not exactly yielded by the vibronic spectra calculated with respect to the structure parameters from B3LYP/PCM. The calculated vibronic spectra with respect to the structure parameters from CAM-B3LYP/PCM show the exact value of experimentally-measured blue-shift. The HT vibronic coupling effect is extremely significant on TPA spectra of the DsRed2 anionic chromophore in the low-frequency region, which results in the blue-shift of the first TPA maximum relative to OPA maximum.

    Fig.3 Calculated and experimental spectra of anionic DsRed2 chromophore in gas phase and water solution

    To well analyze the TPA spectra, the pure electronic TPA spectra are simulated, too. The correct relative intensities of absorption bands are produced by the pure electronic spectra. In Fig.3(d), we also show the result (the green line) with a different molecular geometry which is obtained by optimizing theneutral chromophore and discarding a proton from the optimized geometry without further optimization. With this geometry, the calculated relative intensities and locations of TPA peaks agree better with the experimental measurement. It is obvious that the resonant forms of geometric structure determine the properties of anionic chromophore.

    Fig.4 Electronic densities of hole and particle NTO pairs with largest values of λ for the dipole-allowed singlet excited states of DsRed2 chromophore in solution (a) and the complex formed by 2H2O and DsRed2 chromophore (b)

    Combining vibronic spectrum and pure electronic spectrum, we assign the first band in the experimental spectrum coming from the electronic transition of S0→ S1. As for the second band, it may come from the contribution of two electronic transitions because the third and fourth excited states are nearly degenerate. From Fig.3(d), the transition of S0→ S3makes dominant contribution to the second band and the contribution from the transition of S0→ S4is small.

    Table 3 Basic parameters of TagRFP

    As we all know, the experimental TPA spectra of those chromophores are acquired under the protein environment, which includes water molecules, counter ions, nearby charges, or polar amino acids. Therefore it is necessary to take the perturbation of protein environment to the photoactive part into considerations. To simplify the calculations, in the above work we just focus on the solvent effect. The implicit solvent PCM has been applied for the single chromophores. Here we consider complexes which are formed by the anionic chromophores with twoexplicit solvent water molecules. Then the hydrogen-bond complexes are calculated at the theoretical level of B3LYP/PCM. Two water molecules are put around the phenyl ring of the chromophores to form double hydrogen bonds with the anionic oxygen atom28,49. Compared with the results of the anionic DsRed2 chromophore without explicit solvent molecules, the vertical excitation energy of the first excited state increases 0.1 eV and the energy spacing between the third excited state and the fourth excited state still keeps relatively small. With the smaller energy space, the coupling between the third and the fourth excited states may play an important role in the TPA spectrum. As we observe from Fig.3(b, d), the calculated TPA spectra show distinct difference on the higher energy region and the first absorption bands are not influenced much except the peak locations. Additionally, in Fig.4, we can not only observe the same intramolecular CT in the higher excited states with ECFP but also find visible intermolecular CT in the higher excited states when the two water molecules are taken into account. It reveals that the charge transfer phenomena occurring in the higher excited states make great contribution to the enhancement of the intensities of the TPA peaks at the high-frequency domain.

    Fig.5 Calculated and experimental spectra of anionic TagRFP chromophore in gas phase and water solution

    3.3 Anionic TagRFP chromophore

    Finally, we move to anionic TagRFP chromophore50. The cal-culated electronic structure parameters are listed in Table 3. The experimental spectra in Fig.5(a) show three low-energy TPA bands centered at around 600, 759, and 1100 nm and two OPA bands centered at around 700 and 1100 nm. The lowest-energy TPA and OPA bands centered at 1100 nm correspond to electronic transition of S0→ S1. Overall, the calculated vibronic spectral lineshapes based on the structure parameters produced by CAM-B3LYP/PCM coincide with the experimental data although the peak positions are overestimated. Like anionic DsRed2 chromophore, a distinct blue-shift can be found between the TPA maximum and OPA maximum within the first absorption band, which is ascribed to HT vibronic coupling effect. However, HT effect is not so evident in the high-energy region since there is no large discrepancy between the pure electronic spectrum with the spectral boarding and the vibronic spectrum, and the calculated spectral lineshapes are almost same with the experimental one. The second TPA band corresponds to the electronic transition of S0→ S3and the third TPA band at around 600 nm comes from the electronic transition from the ground state to higher excited electronic states. For B3LYP/PCM, the dominant contribution to the third band is from the electronic transition of S0→ S8while for CAMB3LYP/PCM, the dominant contribution is from the electronic transition of S0→ S5. Like DsRed2 chromophore, the same CT character can be found from Fig.6 for TagRFP and again strengthens the significance of it in the enhancement of the TPA peaks corresponding to the higher excited states. Additionally, comparing the structures of two anionic chromophores, it is easily found that the DsRed2 chromophore is cis conformation, while the TagRFP chromophore is trans conformation51–53. Even though they have same atom composition, their TPA spectra show different characters mainly ascribing to the difference of their geometric structures. Our calculations demonstrate that the conformation of a chromophore affects its TPA spectrum to some extent.

    Table 4 Calculated transition dipole moments between the different states at the different theoretical levels

    Fig.6 Electronic densities of hole and particle NTO pairs with largest values of λ for the dipole-allowed singlet excited states of TagRFP chromophore (a) and 2H2O + TagRFP chromophore (b)

    It is noted that the transition dipole moments from S0to S1(μ01) and from S1to Sn(n > 1) can also do us a favor to understand the nature of resonant enhancement of TPA corresponding to the electronic transition from S0to the high-lying excited states. The transition dipole moments of three FP chromophores have calculated and shown in Table 4, which have been calculated by B3LYP/PCM since B3LYP can reproduce more consistent experimental peak locations. From our calculations we know the transitions from S0to Sn(n > 1) are weak and some transitions from S1to Sn(n > 1) are strong. The transition dipole moments from S1and Sn(n > 1) actually play a key role in deciding the intensities of TPA peaks in high-frequency domain since in the three-level approximation, the TPA cross section can be written asFor ECFP chromophore, the ratio ofcan directly predict the relative intensities of TPA peaks in low-frequency domain. For DsRed2 and TagRFP, the ratio of μ01: μ13can also give the right relative intensities in TPA.

    4 Conclusions

    In this work, we have investigated the OPA and TPA proper-ties of three FP chromophores in gas phase and water solution

    . Both the pure electronic and vibrationally-resolved electronic spectra have been calculated. We focus not only on the lowestenergy excited state but also on the transition from the ground state to the high-lying excited states. Comparing the calculated and measured spectra, all the absorption peaks are analyzed and characterized. The transitions occurring at different wavelengths make different contribution to the TPA peaks which are illuminated qualitatively. The corresponding electronic excitations have been characterized by the hole/particle pairs of natural transition orbitals. The DFT XC functional effect on the OPA and TPA spectra has been checked. In the calculations, the structure parameters which enter the spectral cross sections are obtained by DFT or TDDFT. Two functionals, B3LYP and CAM-B3LYP, have been applied.

    The following conclusions have been achieved by this investigation. (1) The calculated electronic structures are functionaldependent. TD-B3LYP usually produces the excitation energies closer to the experiment while TD-CAM-B3LYP overestimates the excitation energies. However, the vibronic spectral lineshapes based on the structure parameters produced by CAM-B3LYP/PCM are more consistent with the experimental measurement even though one has to redshift the vibronic spectra 100 nm. (2) The experimental spectral lineshapes can be exactly produced by the calculated vibronic spectra with inclusion of FC and HT effects. The blue-shift phenomenon of TPA maximum in lowest-energy band for anionic chromophores is ascribed to significant HT vibronic coupling effect. However, the HT effect on the TPA spectra of high-frequency region is insignificant. (3) The high-lying excited states possess intramolecular CT character which indeed explains why TPA spectra in higher-frequency region are much stronger than the OPA spectra.

    In this work, we just utilize the implicit or implicit + explicit solvent model to model the protein environmental effect which is not enough. In future work, we expect to use QM/MM method28to deal with the micro environment of the chromophore and more perturbations like counter ions, nearby charges, or polar amino acids and so on will be taken into account in order to better reproduce the experimental result and investigate the relationship between the intrinsic electronic structures and the TPA spectra. We expect that the data and information received from this theoretical work can provide a comprehensive guide for the researchers to choose the right FP and excitation wavelength for two-photon application of FPs.

    (1)Zimmer, M. Chem. Rev. 2002, 102, 759. doi: 10.1021/cr010142r

    (2)Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.;Rebane, A. Nat. Methods 2011, 8, 393. doi: 10.1038/nmeth.1596

    (3)Drobizhev, M.; Tillo, S.; Makarov, N.; Hughes, T.; Rebane, A. J. Phys. Chem. B 2009, 113, 855. doi: 10.1021/jp8087379

    (4)Spiess, E.; Bestvater, F.; Heckel-pompey, A.; Toth, K.; Hacker, M.; Stobrawa, G.; Feurer, T.; Wotzlaw, C.; Berchner-Pfannschmidt, U.; Porwol, T.; Acker, H. J. Microsc. 2005, 217, 200. doi: 10.1111/jmi.2005.217.issue-3

    (5)Katan, C.; Terenziani, F.; Mongin, O.; Werts, M. H.; Porres, L.;Pons, T.; Mertz, J.; Tretiak, S.; Blanchard-Desce, M. J. Phys. Chem. A 2005, 109, 3024. doi: 10.1021/jp044193e

    (6)Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 10763. doi: 10.1073/pnas.93.20.10763

    (7)Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509. doi: 10.1146/annurev.biochem.67.1.509

    (8)Hunter, S.; Kiamilev, F.; Esener, S.; Parthenopoulos, D. A.;Rentzepis, P. M. Appl. Optics 1990, 29, 2058. doi: 10.1364/AO.29.002058

    (9)Chudakov, D. M.; Matz, M. V.; Lukyanov, S.; Lukyanov, K. A. Physiol. Rev. 2010, 90, 1103. doi: 10.1152/physrev.00038.2009

    (10)Oulianov, D.; Tomov, I.; Dvornikov, A.; Rentzepis, P. Opt. Commun. 2001, 191, 235. doi: 10.1016/S0030-401801121-X

    (11)Nanda, K. D.; Krylov, A. I. J. Chem. Phys. 2015, 142, 064118. doi: 10.1063/1.4907715

    (12)Yuan, L.; Lin, W. Y.; Chen, H.; Zhu, S.; He, L. W. Angew. Chem. Int. Edit. 2013, 52, 10018. doi: 10.1002/anie.201303179

    (13)Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M. Adv. Mater. 2008, 20, 4641. doi: 10.1002/adma.v20:24

    (14)Beerepoot, M. T.; Friese, D. H.; Ruud, K. Phys. Chem. Chem. Phys. 2014, 16, 5958. doi: 10.1039/c3cp55205e

    (15)Nifosí, R.; Luo, Y. J. Phys. Chem. B 2007, 111, 14043. doi: 10.1021/jp075545v

    (16)Vivas, M.; Silva, D.; Misoguti, L.; Zalesny, R.; Bartkowiak, W.;Mendonca, C. R. J. Phys. Chem. A 2010, 114, 3466. doi: 10.1021/jp910010g

    (17)Tretiak, S.; Chernyak, V. J. Chem. Phys. 2003, 119, 8809. doi: 10.1063/1.1614240

    (18)Kamarchik, E.; Krylov, A. I. J. Chem. Phys. Lett. 2011, 2, 488. doi: 10.1021/jz101616g

    (19)Steindal, A. H.; Olsen, J. M. H.; Ruud, K.; Frediani, L.;Kongsted, J. Phys. Chem. Chem. Phys. 2012, 14, 5440. doi: 10.1039/c2cp23537d

    (20)Nayyar, I. H.; Masunov, A. E.; Tretiak, S. J. Phys. Chem. C 2013, 117, 18170. doi: 10.1021/jp403981d

    (21)Christiansen, O.; Koch, H.; J?rgensen, P. Chem. Phys. Lett. 1995,243, 409. doi: 10.1016/0009-261400841-Q

    (22)Drobizhev, M.; Makarov, N.; Hughes, T.; Rebane, A. J. Phys. Chem. B 2007, 111, 14051. doi: 10.1021/jp075879k

    (23)Ma, H. L.; Zhao, Y.; Liang, W. Z. J. Chem. Phys. 2014, 140, 094107. doi: 10.1063/1.4867273

    (24)Liang, W. Z.; Ma, H. L.; Zang, H.; Ye, C. X. Int. J. Quantum Chem. 2015, 115, 550. doi: 10.1002/qua.24824

    (25)Liu, J.; Liang, W. Z. J. Chem. Phys. 2011, 135, 184111. doi: 10.1063/1.3659312

    (26)Liu, J.; Liang, W. Z. J. Chem. Phys. 2011, 135, 014113. doi:10.1063/1.3605504

    (27)Liu, J.; Liang, W. Z. J. Chem. Phys. 2013, 138, 024101. doi: 10.1063/1.4773397

    (28)Zeng, Q.; Liu, J.; Liang, W. Z. J. Chem. Phys. 2014, 140, 18A506. doi: 10.1063/1.4863563

    (29)Zeng, Q.; Liang, W. Z. J. Chem. Phys. 2015, 143, 134104. doi: 10.1063/1.4931734

    (30)Lelimousin, M.; Noirclerc-Savoye, M.; Lazareno-Saez, C.;Paetzold, B.; Le Vot, S.; Chazal, R.; Macheboeuf, P.; Field, M. J.; Bourgeois, D.; Royant, A. Biochemistry 2009, 48, 10038. doi: 10.1021/bi901093w

    (31)Pletnev, S.; Subach, F. V.; Dauter, Z.; Wlodawer, A.; Verkhusha, V. V. J. Mol. Biol. 2012, 417, 144. doi: 10.1016/j.jmb.2012.01.044

    (32)Hales, J. M.; Hagan, D. J.; Van Stryland, E. W.; Schafer, K.;Morales, A.; Belfield, K. D.; Pacher, P.; Kwon, O.; Zojer, E.;Brédas, J. L. J. Chem. Phys. 2004, 121, 3152. doi: 10.1063/1.1770726

    (33)Drobizhev, M.; Karotki, A.; Kruk, M.; Rebane, A. Chem. Phys. Lett. 2002, 355, 175. doi: 10.1016/S0009-261400206-3

    (34)Wanko, M.; García-Risue?o, P.; Rubio, A. Phys. Status Solidi-b 2012, 249, 392. doi: 10.1002/pssb.201100536

    (35)McClain, W. J. Chem. Phys. 1971, 55, 2789. doi: 10.1063/1.1676494

    (36)Dick, B.; Hochstrasser, R.; Trommsdorff, H. Nonlinear Optical Properties of Organic Molecules and Crystals; Chemla, D. S., Zyss, J. Eds; Academic Press: Orlando, 1987; pp 159–212.

    (37)Shen, Y. R. The Principles of Nonlinear Optics, 1st ed.; Wiley-Interscience: New York, 1984; pp 216–795.

    (38)Bishop, D. M.; Luis, J. M.; Kirtman, B. J. Chem. Phys. 2002,116, 9729.

    (39)Silverstein, D. W.; Jensen, L. J. Chem. Phys. 2012, 136, 064111. doi: 10.1063/1.3684236

    (40)Ma, H. L.Theoretical Study on the Optical Properties of Molecules and Noble Metal Nanoparticles. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2014. [馬會利. 分子與惰性金屬納米粒子光學(xué)性質(zhì)的理論研究[D]. 合肥: 中國科學(xué)技術(shù)大學(xué), 2014.]

    (41)Santoro, F.; Cappelli, C.; Barone, V. J. Chem. Theory Comput. 2011, 7, 1824. doi: 10.1021/ct200054w

    (42)Ferrer, F. A.; Barone, V.; Cappelli, C.; Santoro, F. J. Chem. Theory Comput. 2013, 9, 3597. doi: 10.1021/ct400197y

    (43)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2009.

    (44)Dalton, a Molecular Electronic Structure Program; Release Dalton 2011, 2011. see http://daltonprogram.org.

    (45)Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009

    (46)Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2010, 132, 114110. doi: 10.1063/1.3359469

    (47)Luzanov, A.; Sukhorukov, A.; Umanskii, V. Theor. Exp. Chem. 1976, 10, 354. doi: 10.1007/BF00526670

    (48)Nielsen, S. B.; Lapierre, A.; Andersen, J. U.; Pedersen, U.;Tomita, S.; Andersen, L. Phys. Rev. Lett. 2001, 87, 228102. doi: 10.1103/PhysRevLett.87.228102

    (49)Sun, C.; Liu, J.; Liang, W. Z.; Zhao, Y. Chin. J. Chem. Phys. 2013, 26, 617. doi: 10.1063/1674-0068/26/06/617-626

    (50)Marques, M. A.; López, X.; Varsano, D.; Castro, A.; Rubio, A. Phys. Rev. Lett. 2003, 90, 258101. doi: 10.1103/PhysRevLett.90.258101

    (51)Nienhaus, K.; Nar, H.; Heilker, R.; Wiedenmann, J.; Nienhaus, G. U. J. Am. Chem. Soc. 2008, 130, 12578. doi: 10.1021/ja8046443

    (52)Stavrov, S. S.; Solntsev, K. M.; Tolbert, L. M.; Huppert, D. J. Am. Chem. Soc. 2006, 128, 1540. doi: 10.1021/ja0555421

    (53)Subach, F. V.; Verkhusha, V. V. Chem. Rev. 2012, 112, 4308. doi: 10.1021/cr2001965

    Two-Photon Absorption Properties of Chromophores of a Few Fluorescent Proteins: a Theoretical Investigation

    YE Chuan-Xiang1MA Hui-Li2LIANG Wan-Zhen3,*
    (1Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China;2Department of Chemistry, Tsing University, Beijing 100084, P. R. China;3Department of Chemistry, Xiamen University, Xiamen 361005, Fujian Province, P. R. China)

    The experimentally-measured two-photon absorption (TPA) spectra of fluorescent proteins(FPs) show quite different characteristics with one-photon absorption (OPA) spectra in both the low- and high-frequency regions. To reνeal the mechanism that results in the discrepancies between OPA and TPA spectra, and to obtain the fundamental structure–property relationships of FPs, here we conduct a theoretical study of OPA and TPA properties of three FP chromophores, including a neutral chromophore in enhanced cyan fluorescent protein (ECFP) and two anionic FP chromophores in DsRed2 and TagRFP. Both the pure electronic and νibrationally-resolνed TPA spectra haνe been calculated. The calculated spectra were found to be highly dependent on the density functional theory exchange-correlation functional used. The experimental spectral lineshapes of νibronic spectra can be well produced when the Franck-Condon (FC) scattering and Herzberg-Teller (HT) νibronic coupling effects were taken into account and the structure parameters produced by CAM-B3LYP were applied in the theoretical calculations. The HT effects affect the low-frequency absorption bands corresponding to the electronic transition from S0to S1for two anionic chromophores, leading to a blue-shift of the TPA maximum relatiνe to OPA maximum, while the HT effect is insignificant in the higher-frequency region of the TPA spectra. The intramolecular charge-transfercharacter of higher-lying excited states explains why the TPA spectra in the higher-frequency region are much stronger than those in the low-frequency region.

    Two-photon absorption; Fluorescent protein chromophore; Vibronic spectrum; Time-dependent density functional theory

    O641

    10.3866/PKU.WHXB201512112

    Received: October 15, 2015; Revised: December 10, 2015; Published on Web: December 11, 2015.

    *Corresponding author. Email: liangwz@xmu.edu.cn.

    The project was supported by the National Natural Science Foundation of China (21373163, 21290193, 21573177).

    國家自然科學(xué)基金(21373163, 21290193, 21573177)資助項目?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    單光子光子合肥
    《光子學(xué)報》征稿簡則
    合肥的春節(jié)
    基于單光子探測技術(shù)的拉曼光譜測量
    電子測試(2018年18期)2018-11-14 02:30:36
    合肥:打造『中國IC之都』
    我國單光子源國際綜合性能最優(yōu)
    中科大實現(xiàn)綜合性能國際最優(yōu)的單光子源
    核醫(yī)學(xué)設(shè)備單光子發(fā)射計算機成像系統(tǒng)性能現(xiàn)狀調(diào)查
    在光子帶隙中原子的自發(fā)衰減
    生態(tài)合肥
    光子晶體在兼容隱身中的應(yīng)用概述
    欧美黑人精品巨大| 美女大奶头视频| 国产高清视频在线观看网站| 毛片女人毛片| 午夜久久久久精精品| 在线十欧美十亚洲十日本专区| 999久久久国产精品视频| 18禁国产床啪视频网站| 亚洲一码二码三码区别大吗| 亚洲免费av在线视频| 国产精品电影一区二区三区| 女同久久另类99精品国产91| 久久99热这里只有精品18| 国产亚洲精品久久久久5区| 精品欧美国产一区二区三| 丰满人妻熟妇乱又伦精品不卡| 好看av亚洲va欧美ⅴa在| 老汉色∧v一级毛片| 丰满的人妻完整版| 午夜福利在线观看吧| 99久久综合精品五月天人人| www日本在线高清视频| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久久久99蜜臀| 亚洲精华国产精华精| 久久久久国产一级毛片高清牌| 亚洲av中文字字幕乱码综合| 91字幕亚洲| 五月玫瑰六月丁香| 99在线视频只有这里精品首页| 精品久久久久久久久久久久久| 欧美精品啪啪一区二区三区| 男女下面进入的视频免费午夜| 舔av片在线| 日韩有码中文字幕| 久久久久久久久中文| 成人av一区二区三区在线看| 亚洲中文av在线| tocl精华| 日日摸夜夜添夜夜添小说| 亚洲电影在线观看av| 两个人免费观看高清视频| 狠狠狠狠99中文字幕| 亚洲免费av在线视频| 中文字幕av在线有码专区| 女同久久另类99精品国产91| 亚洲精品美女久久久久99蜜臀| 亚洲成av人片免费观看| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三| 午夜福利欧美成人| 国产精品久久久久久人妻精品电影| www国产在线视频色| 亚洲国产日韩欧美精品在线观看 | 欧美丝袜亚洲另类 | 精品少妇一区二区三区视频日本电影| 18禁国产床啪视频网站| 麻豆国产av国片精品| 天堂影院成人在线观看| 欧美成人午夜精品| 亚洲精品美女久久久久99蜜臀| 欧美成人一区二区免费高清观看 | 香蕉国产在线看| 欧美大码av| 少妇熟女aⅴ在线视频| 亚洲成人精品中文字幕电影| 亚洲九九香蕉| 熟女少妇亚洲综合色aaa.| 又黄又粗又硬又大视频| 国产一区在线观看成人免费| 日本 欧美在线| 午夜福利成人在线免费观看| 亚洲最大成人中文| 国产精品香港三级国产av潘金莲| 亚洲精华国产精华精| 精品久久久久久成人av| 亚洲专区国产一区二区| 亚洲,欧美精品.| 俺也久久电影网| 中文在线观看免费www的网站 | 一进一出抽搐动态| 女人爽到高潮嗷嗷叫在线视频| 神马国产精品三级电影在线观看 | 国产黄片美女视频| 久久久久久久久久黄片| 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品999在线| 国产亚洲精品久久久久5区| 久久久久久亚洲精品国产蜜桃av| 国产伦一二天堂av在线观看| 午夜影院日韩av| 香蕉丝袜av| 欧美黄色淫秽网站| 亚洲av五月六月丁香网| 99热只有精品国产| 麻豆成人午夜福利视频| 国产av麻豆久久久久久久| 999久久久国产精品视频| 露出奶头的视频| 免费在线观看成人毛片| 日韩国内少妇激情av| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 国内视频| 国产精品永久免费网站| 黄色 视频免费看| 19禁男女啪啪无遮挡网站| 在线观看免费午夜福利视频| 成人永久免费在线观看视频| 婷婷六月久久综合丁香| 国产亚洲av嫩草精品影院| 成人18禁高潮啪啪吃奶动态图| 夜夜看夜夜爽夜夜摸| 免费电影在线观看免费观看| 亚洲成人久久爱视频| 久久久久久久久中文| 亚洲乱码一区二区免费版| 听说在线观看完整版免费高清| 久久精品国产99精品国产亚洲性色| 欧美 亚洲 国产 日韩一| 国产一区二区在线观看日韩 | 男女午夜视频在线观看| 18禁美女被吸乳视频| 国产成人啪精品午夜网站| 手机成人av网站| 少妇人妻一区二区三区视频| 亚洲黑人精品在线| 级片在线观看| 午夜视频精品福利| 51午夜福利影视在线观看| 老司机午夜福利在线观看视频| 国产激情偷乱视频一区二区| 成人三级黄色视频| 色精品久久人妻99蜜桃| 成人欧美大片| 美女免费视频网站| av超薄肉色丝袜交足视频| 少妇的丰满在线观看| 激情在线观看视频在线高清| 国产精品久久久久久精品电影| 久久性视频一级片| 99国产精品99久久久久| 97人妻精品一区二区三区麻豆| 少妇裸体淫交视频免费看高清 | 变态另类成人亚洲欧美熟女| 国产精品香港三级国产av潘金莲| 亚洲色图 男人天堂 中文字幕| 欧美一级毛片孕妇| 一二三四在线观看免费中文在| 亚洲男人天堂网一区| 亚洲人成电影免费在线| 免费在线观看视频国产中文字幕亚洲| 免费电影在线观看免费观看| 国产97色在线日韩免费| 亚洲熟女毛片儿| 日韩三级视频一区二区三区| 特大巨黑吊av在线直播| 999久久久精品免费观看国产| 国产一区二区激情短视频| 成年免费大片在线观看| 精品不卡国产一区二区三区| 一个人免费在线观看的高清视频| 日本三级黄在线观看| 久久精品91蜜桃| 国产午夜精品久久久久久| 18禁黄网站禁片午夜丰满| 在线观看舔阴道视频| 在线观看一区二区三区| 香蕉国产在线看| 搡老熟女国产l中国老女人| 亚洲成人中文字幕在线播放| 国产熟女午夜一区二区三区| 91九色精品人成在线观看| 亚洲自拍偷在线| 国产伦人伦偷精品视频| 国产精品亚洲av一区麻豆| 欧美日韩瑟瑟在线播放| 99热只有精品国产| 精品欧美一区二区三区在线| 国产精品久久久久久久电影 | 欧美黄色片欧美黄色片| 久久久久久亚洲精品国产蜜桃av| 久久婷婷成人综合色麻豆| 最近视频中文字幕2019在线8| 人妻久久中文字幕网| 亚洲中文字幕日韩| 搡老妇女老女人老熟妇| 国产99久久九九免费精品| 久久人人精品亚洲av| 日韩高清综合在线| 亚洲国产欧美网| 五月伊人婷婷丁香| 一本一本综合久久| 亚洲最大成人中文| 十八禁网站免费在线| 亚洲免费av在线视频| 亚洲专区国产一区二区| 搡老妇女老女人老熟妇| 亚洲精品av麻豆狂野| 成人三级黄色视频| 欧美成人性av电影在线观看| 怎么达到女性高潮| 日本 av在线| 男插女下体视频免费在线播放| 黄色毛片三级朝国网站| 国产高清激情床上av| 99精品久久久久人妻精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲18禁久久av| 亚洲成a人片在线一区二区| 黑人巨大精品欧美一区二区mp4| 床上黄色一级片| 91麻豆av在线| 国产三级中文精品| 禁无遮挡网站| 在线十欧美十亚洲十日本专区| 一二三四社区在线视频社区8| 中出人妻视频一区二区| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av| 亚洲国产欧美网| 91麻豆精品激情在线观看国产| 欧美日韩福利视频一区二区| 精品不卡国产一区二区三区| 岛国在线免费视频观看| 日韩大尺度精品在线看网址| 男女做爰动态图高潮gif福利片| 免费在线观看黄色视频的| 国产精品一区二区三区四区免费观看 | 欧美国产日韩亚洲一区| 国产亚洲精品第一综合不卡| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 男女之事视频高清在线观看| 91老司机精品| 男女做爰动态图高潮gif福利片| 国产成人一区二区三区免费视频网站| 久久精品91蜜桃| 狠狠狠狠99中文字幕| 成人欧美大片| 中文字幕人妻丝袜一区二区| 正在播放国产对白刺激| 一区福利在线观看| e午夜精品久久久久久久| 国产亚洲精品久久久久久毛片| 听说在线观看完整版免费高清| 两个人看的免费小视频| 国产主播在线观看一区二区| 国产精品亚洲av一区麻豆| 两个人的视频大全免费| 亚洲精品久久国产高清桃花| 国产亚洲精品av在线| 国产私拍福利视频在线观看| 亚洲av电影不卡..在线观看| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 成年版毛片免费区| 免费观看人在逋| 久久久精品大字幕| 黄色女人牲交| 色综合欧美亚洲国产小说| 一区二区三区高清视频在线| 男女视频在线观看网站免费 | 一个人观看的视频www高清免费观看 | 国产久久久一区二区三区| 日韩精品青青久久久久久| 又大又爽又粗| 精品福利观看| 18禁美女被吸乳视频| 久久 成人 亚洲| 他把我摸到了高潮在线观看| 成人亚洲精品av一区二区| 大型黄色视频在线免费观看| 一本一本综合久久| 精品国产亚洲在线| 高清毛片免费观看视频网站| 午夜激情av网站| 成在线人永久免费视频| 精品一区二区三区av网在线观看| 国产不卡一卡二| 国产成人av教育| 中文亚洲av片在线观看爽| 日本a在线网址| 黄色毛片三级朝国网站| 在线免费观看的www视频| 婷婷丁香在线五月| 巨乳人妻的诱惑在线观看| bbb黄色大片| 日韩中文字幕欧美一区二区| 精品久久久久久久末码| 757午夜福利合集在线观看| or卡值多少钱| 麻豆一二三区av精品| 18禁国产床啪视频网站| 熟女少妇亚洲综合色aaa.| 午夜福利18| bbb黄色大片| 不卡一级毛片| 男插女下体视频免费在线播放| 欧美不卡视频在线免费观看 | 黄色成人免费大全| 亚洲一码二码三码区别大吗| 757午夜福利合集在线观看| 黄色视频,在线免费观看| 国产精品电影一区二区三区| 亚洲精品美女久久av网站| 国产高清videossex| 在线视频色国产色| 免费看日本二区| www.自偷自拍.com| 日韩有码中文字幕| 亚洲全国av大片| 91国产中文字幕| 国产精品99久久99久久久不卡| 香蕉丝袜av| 亚洲av成人一区二区三| 欧美日韩中文字幕国产精品一区二区三区| 黄色a级毛片大全视频| 久久天堂一区二区三区四区| 日本在线视频免费播放| av欧美777| 欧美黄色淫秽网站| 少妇人妻一区二区三区视频| 免费看日本二区| 免费看a级黄色片| 操出白浆在线播放| 国产三级中文精品| 国产日本99.免费观看| 一区二区三区高清视频在线| 精品熟女少妇八av免费久了| 日本免费一区二区三区高清不卡| 国产熟女午夜一区二区三区| 国产爱豆传媒在线观看 | 精品久久久久久,| x7x7x7水蜜桃| 国产野战对白在线观看| 国产成人欧美在线观看| 久久人人精品亚洲av| aaaaa片日本免费| 亚洲av成人不卡在线观看播放网| 亚洲人与动物交配视频| 亚洲全国av大片| 欧美日韩一级在线毛片| ponron亚洲| 一级作爱视频免费观看| 悠悠久久av| tocl精华| 精品电影一区二区在线| 亚洲人成电影免费在线| 嫩草影视91久久| 99精品久久久久人妻精品| 黄色 视频免费看| 后天国语完整版免费观看| 日本成人三级电影网站| 亚洲人成77777在线视频| 精品久久久久久成人av| 18禁观看日本| 舔av片在线| 狂野欧美激情性xxxx| 精品不卡国产一区二区三区| 久久精品综合一区二区三区| www.熟女人妻精品国产| 色在线成人网| 别揉我奶头~嗯~啊~动态视频| 777久久人妻少妇嫩草av网站| АⅤ资源中文在线天堂| 午夜成年电影在线免费观看| 最好的美女福利视频网| 一本一本综合久久| 免费在线观看视频国产中文字幕亚洲| 久久天堂一区二区三区四区| 久久这里只有精品19| 欧美日韩瑟瑟在线播放| 天天添夜夜摸| 黄色a级毛片大全视频| 男人舔女人下体高潮全视频| 日本 欧美在线| 午夜日韩欧美国产| 美女大奶头视频| 午夜精品在线福利| 一级黄色大片毛片| 日本免费a在线| 99精品在免费线老司机午夜| 一a级毛片在线观看| 精品无人区乱码1区二区| 两个人的视频大全免费| 亚洲一码二码三码区别大吗| 中文字幕av在线有码专区| 丰满的人妻完整版| 久久久久国内视频| 男男h啪啪无遮挡| 亚洲国产精品999在线| 后天国语完整版免费观看| 又黄又爽又免费观看的视频| 夜夜爽天天搞| 一区二区三区激情视频| 精品熟女少妇八av免费久了| 午夜免费成人在线视频| 国产单亲对白刺激| 亚洲美女视频黄频| 男女那种视频在线观看| 亚洲中文av在线| 99久久99久久久精品蜜桃| 叶爱在线成人免费视频播放| 成人国产综合亚洲| 18美女黄网站色大片免费观看| 熟女电影av网| 1024手机看黄色片| 久久精品人妻少妇| 夜夜夜夜夜久久久久| 97人妻精品一区二区三区麻豆| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| 成人18禁在线播放| 国产91精品成人一区二区三区| 淫妇啪啪啪对白视频| 国产欧美日韩精品亚洲av| 看片在线看免费视频| 午夜福利免费观看在线| 一本大道久久a久久精品| а√天堂www在线а√下载| 成人高潮视频无遮挡免费网站| 大型av网站在线播放| av福利片在线观看| 亚洲欧美日韩高清专用| 精品人妻1区二区| 国产成人欧美在线观看| 国产av一区二区精品久久| 级片在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧美网| 国产伦人伦偷精品视频| 又紧又爽又黄一区二区| tocl精华| 亚洲精品一区av在线观看| 性欧美人与动物交配| 五月伊人婷婷丁香| 观看免费一级毛片| 视频区欧美日本亚洲| 国产精品亚洲美女久久久| 搡老妇女老女人老熟妇| 黑人巨大精品欧美一区二区mp4| 一本一本综合久久| 国产男靠女视频免费网站| 久久精品国产99精品国产亚洲性色| 国内揄拍国产精品人妻在线| 欧美一级a爱片免费观看看 | 熟妇人妻久久中文字幕3abv| 夜夜爽天天搞| 人妻夜夜爽99麻豆av| 三级毛片av免费| 搡老岳熟女国产| 国产高清videossex| 亚洲熟妇中文字幕五十中出| 国产熟女xx| 狠狠狠狠99中文字幕| 精品少妇一区二区三区视频日本电影| 好男人在线观看高清免费视频| 亚洲精品一卡2卡三卡4卡5卡| 免费搜索国产男女视频| 小说图片视频综合网站| 亚洲成人久久爱视频| 亚洲欧美日韩无卡精品| 中文在线观看免费www的网站 | 亚洲最大成人中文| 亚洲五月婷婷丁香| 国产精品影院久久| 国产成人啪精品午夜网站| 99精品欧美一区二区三区四区| 丁香六月欧美| 两个人视频免费观看高清| 黄色成人免费大全| 亚洲成人久久爱视频| 成人三级黄色视频| 九色国产91popny在线| 国产黄a三级三级三级人| 国产亚洲精品av在线| 亚洲黑人精品在线| 每晚都被弄得嗷嗷叫到高潮| 国产区一区二久久| 久久天堂一区二区三区四区| 免费一级毛片在线播放高清视频| 日本免费a在线| 在线观看免费视频日本深夜| 在线观看免费午夜福利视频| 五月伊人婷婷丁香| 50天的宝宝边吃奶边哭怎么回事| 精品国产乱码久久久久久男人| 欧美日韩精品网址| 好男人在线观看高清免费视频| 人人妻人人澡欧美一区二区| 伦理电影免费视频| 久久久久久国产a免费观看| 天天一区二区日本电影三级| 毛片女人毛片| 好男人电影高清在线观看| 99精品久久久久人妻精品| 少妇粗大呻吟视频| 在线观看免费日韩欧美大片| 曰老女人黄片| 日本a在线网址| 日韩精品中文字幕看吧| 亚洲七黄色美女视频| 一级毛片精品| 色综合站精品国产| 精品久久久久久久人妻蜜臀av| 亚洲人成77777在线视频| 国产熟女xx| 国内毛片毛片毛片毛片毛片| 亚洲成av人片在线播放无| 嫩草影院精品99| 啦啦啦观看免费观看视频高清| 欧美在线黄色| 两人在一起打扑克的视频| 国产野战对白在线观看| 最近最新中文字幕大全电影3| 黄色视频不卡| 日本熟妇午夜| 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| 国产在线精品亚洲第一网站| 少妇裸体淫交视频免费看高清 | 男女之事视频高清在线观看| 日本黄大片高清| 久久精品国产99精品国产亚洲性色| 美女黄网站色视频| 亚洲专区字幕在线| 18禁裸乳无遮挡免费网站照片| 91字幕亚洲| 午夜成年电影在线免费观看| 亚洲无线在线观看| 国产黄片美女视频| 非洲黑人性xxxx精品又粗又长| 草草在线视频免费看| 亚洲精品av麻豆狂野| 人成视频在线观看免费观看| 每晚都被弄得嗷嗷叫到高潮| 一卡2卡三卡四卡精品乱码亚洲| 深夜精品福利| 国产成+人综合+亚洲专区| 99riav亚洲国产免费| 免费看a级黄色片| 最新美女视频免费是黄的| 久久中文字幕一级| 亚洲精品在线美女| 亚洲欧美精品综合久久99| 亚洲av美国av| 国产精品乱码一区二三区的特点| 两性夫妻黄色片| 久久国产乱子伦精品免费另类| 老司机福利观看| 亚洲精品国产精品久久久不卡| 国产精品野战在线观看| 最近最新免费中文字幕在线| 伊人久久大香线蕉亚洲五| 亚洲第一电影网av| 亚洲av电影在线进入| 亚洲国产精品合色在线| 免费在线观看黄色视频的| 草草在线视频免费看| 日韩欧美在线乱码| 久久久久九九精品影院| 午夜影院日韩av| 欧美一级a爱片免费观看看 | 免费在线观看影片大全网站| 亚洲avbb在线观看| 一个人免费在线观看的高清视频| 熟女电影av网| 老司机午夜福利在线观看视频| 久久精品影院6| 亚洲色图av天堂| 国内精品久久久久久久电影| 国产精品久久久久久精品电影| 搡老熟女国产l中国老女人| 欧美乱妇无乱码| 一级a爱片免费观看的视频| 成人欧美大片| 免费看十八禁软件| 久久久国产欧美日韩av| 看免费av毛片| 中亚洲国语对白在线视频| 亚洲av成人不卡在线观看播放网| 成人18禁高潮啪啪吃奶动态图| 搡老妇女老女人老熟妇| ponron亚洲| 级片在线观看| 一夜夜www| 亚洲成人久久性| 成人18禁在线播放| 我要搜黄色片| 欧美一区二区精品小视频在线| 国产成人啪精品午夜网站| 最近视频中文字幕2019在线8| 久久久久久免费高清国产稀缺| 欧美极品一区二区三区四区| av有码第一页| 中文亚洲av片在线观看爽| 精品久久蜜臀av无| 久久久久久久午夜电影| 国产亚洲精品久久久久久毛片| 中出人妻视频一区二区| 国产精品日韩av在线免费观看| 在线观看66精品国产| 夜夜夜夜夜久久久久| 亚洲,欧美精品.| 激情在线观看视频在线高清| 亚洲欧美激情综合另类| 亚洲av美国av| 成年版毛片免费区| 亚洲免费av在线视频| 九色成人免费人妻av| 国产精品99久久99久久久不卡| 国产区一区二久久| 国产黄a三级三级三级人| 黑人巨大精品欧美一区二区mp4|