• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Study on Strength and Fatigue of Sandwich Composite L-joint under Bending

    2018-01-04 08:25:02ZENGHaiyanYANRenjunLinGUISiyuan
    船舶力學(xué) 2017年12期
    關(guān)鍵詞:武漢理工大學(xué)思源對(duì)數(shù)

    ZENG Hai-yan,YAN Ren-jun,Xü Lin,GUI Si-yuan

    (a.Key Laboratory of High Performance Ship Technology,Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    Experimental Study on Strength and Fatigue of Sandwich Composite L-joint under Bending

    ZENG Hai-yana,b,YAN Ren-juna,b,Xü Linb,GUI Si-yuanb

    (a.Key Laboratory of High Performance Ship Technology,Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    Sandwich composite L-joints,comprising E-glass plain woven skins and PVC foam core,are designed and tested under both static and cyclic loading.Three specimens were tested statically to failure to obtain the maximum load-carrying capacity of the L-joint.Nine specimens were tested under cyclic load at three load levels.Load-life(S-N)curves are established by sigmoid and linear fitting,respectively.The study shows that the sigmoid function has higher accuracy and is recommended for life prediction.The maximum service load based on the sigmoid function is determined to be 9.30 kN.Failure mode analysis of the L-joint failed in fatigue test is made,including debonding between skins and foam core,delamination and fiber breakage.Propagation process of crack is divided into three stages:small crack initiates where ‘stress whitening’exists;crack propagates along the thickness direction of the arc bracket;crack covers the section of arc bracket indicating the failure of the joint.Degradation of the stiffness in fatigue is represented by a power function.The rate of stiffness degradation grows with the load level.

    sandwich composites;fatigue life;L-joints;stiffness degradation;S-N

    0 Introduction

    Sandwich composites have been extensively used in aerospace,automotive and marine engineering for their unique advantages.For the configuration of sandwich composites,the composite skins with higher modulus and thinner thickness,are designed to bear tensile and compression loads.While the role of the soft and thick core is to separate skins and transfer shear loads.A large number of studies have been published focusing on the static strength of sandwich structures[1-5].It can be noted that the theoretic analysis,numerical simulation and experimental investigation are all used to predict the load-carrying capacity and failure behavior of sandwich beams,panels and joints.For actual engineering structures,basic strength requirements are first concerns of designers and easy to be satisfied.It is noteworthy that structural safety must be ensured under both static and cyclic loads.Consequently,structural behavior under cyclic loading is of great significance to ensure safety during the service life.

    Studies[6-8]have shown that the fatigue behavior of composite laminates is quite different from that of metal materials,including failure modes and damage growth.Fiber fracture,matrix damage,delamination and fiber-matrix interface damage are the main failure modes for fiber reinforced fabrics.Besides,instead of the single crack for metal structure,microcracks spread all over the composites.Therefore,there is no clear law which can be used to explain the crack growth.Considering the fact that laminates only act as skins,extra complexity for fatigue analysis of sandwich composites is attributed to core material and the interaction between the two parts.

    Fatigue behaviors of sandwich beams under flexural loading have attracted much attention.It has been shown that core shear failure is the typical failure mode under such conditions[9-13].Researches for factors that affect fatigue performance have been carried out as well,including load amplitude[14],core density and loading frequencies[15]and stress ratio[16-17].Theories used to predict fatigue life are similar to those for laminates,namely S-N curve and cumulative damage method.S-N curves for sandwich beams under bending have been presented in Refs.[18-19]based on test results.And studies by Bahram et al[20]and Manujesh and Rao[21]have shown the expressions for stiffness degradation during loading process.

    It can be seen that most researches are carried out for sandwich beams based on experimental studies,owing to the lack of thorough understanding for sandwich structures.Whereas during structure design process,great attention should be paid to the performance of joints,where usually high level stress exists.Under such circumstance,joints are vulnerable to fatigue failure when subjected to cyclic load.For ship structures,load transfer between side plate and deck is achieved by means of L-joint configuration.For this purpose,this paper investigates the static and fatigue performance of sandwich L-joints with PVC foam core and glass fiber composite skins.Static experiment is conducted to obtain the failure load which is used to decide fatigue load amplitude later in the fatigue experiment.Given the fact that sandwich joints perform differently from sandwich beams,the failure mode is expected to be discussed in details.The aim of this paper is to deal with fatigue life of the sandwich L-joint,as well as the stiffness degradation during loading process.

    1 Experimental study

    1.1 Specimens

    Two 1 000×500×33 mm plates were joined together at 105 angles with stiffeners on bottom skins,as can be seen in Fig.1.270 mm-long solid laminates were designed out of the consideration of constraint and load applying.And for sandwich plates,the thickness of composite skins and core was 4 mm and 25 mm respectively.The area with the length of 50 mm between solid laminate and sandwich plate acted as the transition zone.Two transversal stiffeners covered all the width of plates and longitudinal stiffeners were connected by the arc bracket and extended to the constrained area.Total thickness of stiffeners was 40 mm,with 34 mm-thick core sandwiched between two 3 mm-thick skins.The 5 mm-thick laminate was attached on the side of stiffeners and bracket.

    Fig.1 Illustration of L-joint

    1.2 Materials

    The studied sandwich structure consisted of PVC foam core and glass fiber reinforced plastic(GFRP)skins.The core used in this study was the cross-linked cellular foam Strucell P100,with the density of 100 kg/m3.The core was bonded to the laminates by EL-4300LV resin.The laminates were bidirectional woven E-glass fabrics with approximately equal amount of fibers in two main directions.

    1.3 Test procedure

    All specimens were loaded by a±250 kN servo hydraulic testing machine(MTS 322).As shown in Fig.2,load was exerted on the top plate of the steel fixture,to which samples were bolted.The whole structure was supported and fixed on the test platform by 4 bolts.Fig.3(a)-(c)shows the figure taken during test preparation from different views.

    Fig.2 Test setup schematic

    Fig.3 Figures from test

    Three specimens(S1-S3)were first tested statically to failure.And the ultimate static capacity of the sandwich L-joints,P0,was estimated by the mean value of the loads obtained for specimens S1-S3.The maximum loads used in the fatigue test for specimens F1-F9 were listed in Tab.1,which were the load levels that joints might encounter during serving life.The stress ratio was set to 0.1 and sinusoidal load was conducted at a rate of 1.5 Hz.For all the tested specimens,the load and displacement of the cross-head were recorded to determine initial and subsequent stiffness.

    2 Results and discussion

    A summary of experimental results for ultimate loads of specimens S1-S3 and load cycle numbers of specimens F1-F9 is listed in Tab.1.

    Tab.1 Summary of experimental results

    2.1 Static test(S1-S3)

    Load-deflection curves for static test specimens S1-S3 are shown in Fig.4.The average ultimate load was 15.25 kN,which was considered as upper loading level of fatigue tests.It was observed that for all specimens,load increased linearly with displacement until a sudden drop showed up.There was a sudden noise at the time of complete failure.All specimens experienced similar failure based on observation,as shown in Fig.5(a)-(c).Failure occurred within the arc bracket area and was characterized by a main crack running through the section.Localized‘stress whitening’ existed near the crack.

    Fig.4 Load-deflection curves for specimens S1-S3

    Fig.5 Specimens S1-S3 after failure

    2.2 Flexural fatigue test(F1-F9)

    2.2.1 Experimental phenomena and failure mode

    Fatigue tests were performed on the specimens F1-F9 at different load levels,as listed in Tab.1.For specimens F1-F3,steady loading process was soon achieved after first several cycles,which was different from observations for other specimens subjected to higher load level.For specimens F4-F9,slight sound existed in the initial stages of cyclic loading and the sound disappeared after several cycles.No visible cracks were observed on specimens for most of its fatigue life,although localized ‘stress whitening’appeared within the arc bracket area.Shortly before failure,cracks formed at the positon where exactly the ‘stress whitening’ existed before.And the small crack propagated along the thickness direction of the arc bracket.Then the crack expanded along the height direction and eventually grew into a larger dominant crack running through the section during the final stages.At this time,a rapid decrease in the load carrying capacity occurred,which was defined as fatigue failure.Corresponding number of cycles to failure was recorded as the fatigue life Nf.Propagation process of crack is presented in Fig.6(a)-(c).

    Fig.6 Propagation process of crack:(a)Small crack initiated;(b)Crack propagated along the thickness direction of the arc bracket;(c)Crack covered the section of arc bracket

    Fig.7(a)-(c)shows specimens after fatigue tests.For specimens F1-F3,there were no cracks after 1000 000 load cycles.In this case,it was considered that fatigue failure did not not occur under this load level during the whole service life.For specimens that failed under fatigue tests,the location of cracks was similar to that of specimens under static tests.

    Fig.7 Specimens after fatigue tests

    Internal damages can not be observed by external inspection,therefore small blocks with crack were cut from the joints to reveal the internal damage state.Debonding between skins and foam core,delamination and fiber breakage can be seen in Fig.8(a)-(c).Based on the observation on crack growth during fatigue test and internal situation of cutting blocks,failure mode analysis of the L-joint is made as follows:

    (1)Debonding failure between the skin and foam core occurred within the arc bracket area;

    (2)Delamination failure occurred in the skins which were completely separated from the foam core;

    (3)‘Stress whitening’appeared on the outside surface of the arc bracket.After a certain number of cycles,crack resulted from fiber breakage initiated and propagated to failure in the way presented in Fig.6(a)-(c).

    Fig.8 Failure modes:(a)Fiber breakage;(b)Debonding between skin and foam core;(c)Delamination

    2.2.2 S-N curve for sandwich L-joints

    One of the most straightforward ways to predict the fatigue life is the S-N diagram[22]and at present there is no standard form for composites,making it not easy to select the curve type.It is generally assumed that the ideal S-N curve is the one that most fits the experimental data.For fatigue tests done in this study,stress ratio and loading frequency were fixed.Therefore,models selected to fit the experimental data were expressed by maximum load and the number of cycles after which the L-joints failed.Results used for curve fitting were from specimens S1-S3 and F4-F9.The static experiment process was considered as 0.25 cycle of the loading.Specimens F1-F3 were used to validate the fitting curves as they did not fail after 1000 000 cycles.Fig.9(a)gives the results.

    The solid line in Fig.9(a)represents the load-life relation expressed reported by Hale Mathieson and Amir Fam[16-17]for sandwich panels:

    Fig.9 Fatigue data

    where Pmaxis the maximum load and Nfis the number of cycles.a1,a2,a3and a4are constants.

    The equation obtained from data points is:

    And the coefficient of determination(COD)R2is 0.905.Due to the scattered properties of composite materials,it can be assumed that fitting curve with determination coefficient R2≥0.85 is acceptable for fatigue life prediction.Based on Eq.(2),the load threshold for fatigue life exceeding 1 000 000 is 9.30 kN.The ultimate load with Nf=0.25 predicted by Eq.(2)is 15.21 kN,which is consistent with the average ultimate load 15.25 kN.

    The dashed line shows the liner relation in a semi-logarithmic plot,which can be written as

    where F is the maximum load and Nfis the number of cycles.C and D are constants.

    Based on the fitting results from experimental data,Eq.(3)can be written as:

    The coefficient of determination R2is 0.870.Based on Eq.(4),the load threshold for fatigue life exceeding 1 000 000 is 9.67 kN.The ultimate load with Nf=0.25predicted by Eq.(4)is 15.40 kN,which is slightly higher than the average ultimate load 15.25 kN.

    Both load-life curves in Fig.9(a)are typical for structural material and show the characteristic that fatigue life decreases with increased load.These two curves are plotted in Lin-Log coordinate system.When curves are plotted in a Lin-Lin coordinate systemas shown in Fig.9(b),the fatigue life sharply increases with the decreased maximum load at first for both curves.And curves become flatter during 300 000 cycles to 1 000 000 cycles.When the number of cycles exceeds 1 000 000,curves remain constant approximatively.Combined with the actual service conditions of the L-joint,1 000 000 is set as the fatigue life requirement.For specimens F1-F3,the applied maximum load 7.15 kN is lower than the threshold load predicted by the curves,which are 9.30 kN and 9.67 kN for Eq.(2)and Eq.(4),respectively.Therefore,under this load level,there is no fatigue failure.

    Results given by the two fitting curves are close.The curve represented by Eq.(2)has higher determination coefficient than that represented by Eq.(4).And the load threshold for cycles of 1 000 000 and ultimate load predicted by Eq.(2)are both lower than values predicted by Eq.(4).For the ultimate load,Eq.(2)has higher accuracy when compared with the average value by static tests.And in order to ensure the safety during service,it is reasonable to take the more conservative load(9.30 kN)as the upper limit of load to meet the fatigue life requirement.Based on these considerations,Eq.(2)is recommended for L-joints in this study.

    2.2.3 Degradation of stiffness

    Stiffness loss existed during the loading cycles,which manifested as the increase of deflection as the cycling continues.During fatigue tests,the stiffness was periodically monitored.Specimens were loaded monotonically to the maximum load of the cyclic loading process every certain number of cycles so that degradation in stiffness could be established.The stiffness at a specified cycle Niwas recorded as Kiand the initial stiffness was K0.The plot of normalized stiffness(Ki/K0)vs.number of cycles(N)is shown in Fig.10.Only specimens with the number of cycles more than 10 000 were recorded.Similar to Ref.[11],the theoretical relation is modified to be expressed as:

    where A and C are constants.

    Fig.10 Stiffness degradation

    Tab.2 Fitting constants for specimens F1-F6

    For specimens F1-F3 under 7.15 kN and specimens F4-F6 under 10.0 kN,fitting parameters of the function are shown in Tab.2.As can be seen from Tab.2,fitting parameters A and c of specimens F4-F6 are greater than those of specimens F1-F3,which dedicates that the rate of stiffness degradation grows with the load level.

    3 Conclusions

    The static and fatigue performances of sandwich L-joints under bending have been studied by experimental investigation.And the following conclusion have been drawn from this study:

    (1)The load-life(S-N)curves were established for the sandwich L-joint by a sigmoid function and linear fitting.The sigmoid function is recommended for the case studied here.In order to achieve at least 1 000 000 cycles,which is the acceptable fatigue life for naval vessels,the maximum service load suggested by the sigmoid function should be limited to 9.30 kN.

    (2)Stiffness degradation during fatigue life follows a power function and the rate of stiffness degradation grows with the load level.

    (3)Cracks existed within the arc bracket area in both static and fatigue tests while the way crack propagated was totally different.Cracks occurred suddenly at the time of complete structural failure for specimens loaded statically.While in fatigue tests,after a certain number of cycles,crack initiated and then propagated to failure.Propagation process of crack is divided into three stages:small crack initiates where ‘stress whitening’ exists;crack propagates along the thickness direction of the arc bracket;crack covers the section of arc bracket and the whole L-joint fails.Based on observation on small blocks cut from the joints suffering fatigue failure,debonding between skins and foam core,delamination and fiber breakage are the main failure modes.

    [1]Mostafa A,Shankar K,Morozov E V.Experimental,theoretical and numerical investigation of the flexural behaviour of the composite sandwich panels with PVC foam core[J].Appl Compos Mater,2014,21(4):661-675.

    [2]Di Bella G,Calabrese L,Borsellino C.Mechanical characterisation of a glass/polyester sandwich structure for marine applications[J].Mater Design,2012,42:486-494.

    [3]Iva?ez I,Santiuste C,Sanchez-Saez S.FEM analysis of dynamic flexural behaviour of composite sandwich beams with foam core[J].Compos Struct,2010,92(9):2285-2291.

    [4]Toftegaard H,Lystrup A.Design and test of lightweight sandwich T-joint for naval ships[J].Composites Part A:Applied Science&Manufacturing,2005,36(8):1055-1065.

    [5]Khalili S M R,Ghaznavi A.Numerical analysis of adhesively bonded T-joints with structural sandwiches and study of design parameters[J].Int J Adhes,2011,31(5):347-356.

    [6]Han K S,Hwang W.Fatigue life prediction and failure mechanisms of composite materials[J].Adv Compos Mater,1992,2(1):29-50.

    [7]Lin Y.On fatigue damage accumulation and material degradation in composite materials[J].Composites Science&Technology,1989,36(4):339-350.

    [8]Kilic H,Haj-Ali R.Progressive damage and nonlinear analysis of pultruded composite structures[J].Composites Part B Engineering,2003,34(3):235-250.

    [9]Kulkarni N,Mahfuz H,Jeelani S,Carlsson L A.Fatigue crack growth and life prediction of foam core sandwich composites under flexural loading[J].Compos Struct,2003,59(4):499-505.

    [10]Gonabadi H I,Oila A,Bull S.Fatigue of sandwich composites in air and seawater[J].Journal of Bio-and Tribo-Corrosion,2016,2(2):1-7.

    [11]Bey K,Tadjine K,Khelif R,Chemami A,Benamira M,Azari Z.Mechanical behavior of sandwich composites under three-point bending fatigue[J].Mech Compos Mater,2015,50(6):747-756.

    [12]Shafiq B,Quispitupa A.Fatigue characteristics of foam core sandwich composites[J].Int.J Fatigue,2006,28(2):96-102.

    [13]Abbadi A,Tixier C,Gilgert J,Azari Z.Experimental study on the fatigue behaviour of honeycomb sandwich panels with artificial defects[J].Compos Struct,2015,120:394-405.

    [14]Dan Z,Burman M.Failure mode shifts during constant amplitude fatigue loading of GFRP/foam core sandwich beams[J].Int.J Fatigue,2011,33(2):217-222.

    [15]Kanny K,Mahfuz H.Flexural fatigue characteristics of sandwich structures at different loading frequencies[J].Compos Struct,2005,67(4):403-410.

    [16]Mathieson H,Fam A.Static and fatigue behavior of sandwich panels with GFRP skins and governed by soft-core shear failure[J].J Compos Struct,2014,18(2):785-793.

    [17]Mathieson H,Fam A.High cycle fatigue under reversed bending of sandwich panels with GFRP skins and polyurethane foam core[J].Compos Struct,2014,113(16):31-39.

    [18]Kulkarni N,Mahfuz H,Jeelani S,Carlsson L A.Fatigue failure mechanism and crack growth in foam core sandwich composites under flexural loading[J].Journal of Reinforced Plastics&Composites,2004,23(1):83-94.

    [19]Dimitrov N,Berggreen C.Probabilistic fatigue life of balsa cored sandwich composites subjected to transverse shear[J].J Sandw Struct Mater,2015,17(5):562-577.

    [20]Bahram A,Majid A,Hossien H S,Abbas J A.Experimental analysis of behavior and damage of sandwich composite materials in three-point bending.Part 2.Fatigue test results and damage mechanisms[J].Strength Mater+,2009,41(3):257-267.

    [21]Manujesh B J,Rao V.Fatigue behavior and failure mechanism of PU foam core E-glass reinforced vinyl ester sandwich composites[J].International Journal of Materials Engineering,2013,3(4):66-81.

    [22]Vassilopoulos A P,Georgopoulos E F,Keller T.Comparison of genetic programming with conventional methods for fatigue life modeling of FRP composite materials[J].Int.J Fatigue,2008,30(9):1634-1645.

    彎曲載荷下復(fù)合材料夾芯“L”型接頭強(qiáng)度和疲勞試驗(yàn)研究

    曾海艷a,b, 嚴(yán)仁軍a,b, 徐 琳b, 桂思源b

    (武漢理工大學(xué) a.高性能船舶技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室;b.交通學(xué)院,武漢 430063)

    文章研究了復(fù)合材料夾芯“L”型接頭在彎曲載荷下的靜強(qiáng)度和疲勞問題。通過靜加載試驗(yàn),得到該接頭的極限承載能力和破壞模式。在此基礎(chǔ)上,對(duì)不同載荷水平下的試件進(jìn)行疲勞試驗(yàn)?;谠囼?yàn)數(shù)據(jù)建立S-N曲線,比較了半對(duì)數(shù)線性擬合和“S”型函數(shù)擬合結(jié)果。結(jié)果表明,“S”型曲線的預(yù)測(cè)結(jié)果好于半對(duì)數(shù)線性擬合。同時(shí),分析了疲勞載荷下的接頭破壞模式,包括夾芯和面板之間脫粘、面板分層和纖維斷裂。根據(jù)試驗(yàn)現(xiàn)象劃分了表明裂紋擴(kuò)展的3個(gè)階段。建立了剛度退化模型表現(xiàn)不同載荷水平下剛度退化規(guī)律。

    復(fù)合材料夾芯結(jié)構(gòu);疲勞壽命;“L”型節(jié)點(diǎn);剛度退化;S-N

    O342

    A

    曾海艷(1990-),女,武漢理工大學(xué)交通學(xué)院博士研究生;

    嚴(yán)仁軍(1962-),男,武漢理工大學(xué)交通學(xué)院教授,博士生導(dǎo)師;

    徐 琳(1979-),女,武漢理工大學(xué)交通學(xué)院講師;

    桂思源(1993-),男,武漢理工大學(xué)交通學(xué)院碩士研究生。

    O342 Document code:A

    10.3969/j.issn.1007-7294.2017.12.009

    date:2017-07-23

    Supported by the National Natural Science Foundation of China(Grant No.51609185);the State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University(No.1613)

    Biography:ZENG Hai-yan(1990-),female,Ph.D.student of Wuhan University of Technology,E-mail:zenghaiyan916@163.com;YAN Ren-jun(1962-),male,professor/tutor.

    1007-7294(2017)12-1540-11

    猜你喜歡
    武漢理工大學(xué)思源對(duì)數(shù)
    含有對(duì)數(shù)非線性項(xiàng)Kirchhoff方程多解的存在性
    指數(shù)與對(duì)數(shù)
    指數(shù)與對(duì)數(shù)
    My Dreams
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡(jiǎn)則
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡(jiǎn)則
    對(duì)數(shù)簡(jiǎn)史
    定積分及其應(yīng)用
    Hippie
    Lanterne-volant
    亚洲性夜色夜夜综合| 丝袜美腿诱惑在线| 9191精品国产免费久久| 在线十欧美十亚洲十日本专区| 桃花免费在线播放| 在线av久久热| 人妻久久中文字幕网| 亚洲精品国产色婷婷电影| 99国产精品99久久久久| 一区二区三区乱码不卡18| 精品少妇内射三级| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久成人av| 夜夜骑夜夜射夜夜干| 欧美国产精品va在线观看不卡| www日本在线高清视频| 少妇的丰满在线观看| 一级毛片电影观看| 美女扒开内裤让男人捅视频| 99久久国产精品久久久| 最新的欧美精品一区二区| 久久久久久久久久久久大奶| 久久久久久久久久久久大奶| 亚洲五月婷婷丁香| 99久久精品国产亚洲精品| 成人三级做爰电影| 搡老乐熟女国产| 9色porny在线观看| 美女福利国产在线| 一本综合久久免费| 一级a爱视频在线免费观看| 国产亚洲一区二区精品| 999久久久国产精品视频| 搡老岳熟女国产| 一二三四社区在线视频社区8| 亚洲成人国产一区在线观看| 欧美精品高潮呻吟av久久| 国产一区有黄有色的免费视频| 久热这里只有精品99| 国产真人三级小视频在线观看| 精品视频人人做人人爽| 亚洲,欧美精品.| 亚洲成av片中文字幕在线观看| 日韩三级视频一区二区三区| 国产一区二区激情短视频 | 80岁老熟妇乱子伦牲交| 女人高潮潮喷娇喘18禁视频| 无遮挡黄片免费观看| 午夜影院在线不卡| 99精品欧美一区二区三区四区| 国产一区二区三区在线臀色熟女 | 亚洲人成77777在线视频| 亚洲久久久国产精品| 狠狠婷婷综合久久久久久88av| 日韩人妻精品一区2区三区| 国产精品秋霞免费鲁丝片| 男女高潮啪啪啪动态图| 丝袜美足系列| 欧美日韩精品网址| 亚洲欧美激情在线| 自线自在国产av| 欧美老熟妇乱子伦牲交| 美女高潮喷水抽搐中文字幕| 久久久国产精品麻豆| 国产成人精品久久二区二区91| 人成视频在线观看免费观看| 狠狠婷婷综合久久久久久88av| 大香蕉久久网| 亚洲av日韩在线播放| 午夜福利在线观看吧| 十八禁人妻一区二区| 一区二区三区精品91| 99香蕉大伊视频| 一进一出抽搐动态| 国产精品秋霞免费鲁丝片| 国产麻豆69| 国产成人免费观看mmmm| 99热国产这里只有精品6| 久久性视频一级片| 免费高清在线观看视频在线观看| 国产一区二区在线观看av| 亚洲国产中文字幕在线视频| 日本猛色少妇xxxxx猛交久久| 18禁黄网站禁片午夜丰满| 日本一区二区免费在线视频| 老熟女久久久| 国产视频一区二区在线看| 久久久久久久久免费视频了| 自拍欧美九色日韩亚洲蝌蚪91| 久久女婷五月综合色啪小说| 永久免费av网站大全| 亚洲人成电影观看| 亚洲五月婷婷丁香| 波多野结衣av一区二区av| 手机成人av网站| 亚洲欧美激情在线| 18禁观看日本| 每晚都被弄得嗷嗷叫到高潮| av欧美777| 国产成人精品久久二区二区91| 老司机福利观看| 国产成+人综合+亚洲专区| 99国产极品粉嫩在线观看| 国产精品二区激情视频| 超色免费av| 老司机午夜福利在线观看视频 | 啪啪无遮挡十八禁网站| 精品国产乱码久久久久久小说| 国产人伦9x9x在线观看| 亚洲精品成人av观看孕妇| 亚洲精品久久成人aⅴ小说| 十八禁网站网址无遮挡| 天堂中文最新版在线下载| 美女脱内裤让男人舔精品视频| 国产黄色免费在线视频| 国产在线视频一区二区| 国内毛片毛片毛片毛片毛片| 欧美精品一区二区大全| 日本一区二区免费在线视频| 大片电影免费在线观看免费| 亚洲 欧美一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 99久久人妻综合| 巨乳人妻的诱惑在线观看| videosex国产| 国产精品成人在线| 国产成人欧美在线观看 | 美女视频免费永久观看网站| 男女午夜视频在线观看| 一本一本久久a久久精品综合妖精| 亚洲九九香蕉| 欧美日韩一级在线毛片| 可以免费在线观看a视频的电影网站| 久久午夜综合久久蜜桃| 精品卡一卡二卡四卡免费| av免费在线观看网站| 美女视频免费永久观看网站| 久久国产精品男人的天堂亚洲| 高清视频免费观看一区二区| 午夜福利在线观看吧| 婷婷丁香在线五月| 亚洲av成人一区二区三| 成人av一区二区三区在线看 | 高清av免费在线| 热re99久久国产66热| 欧美精品亚洲一区二区| 国产高清视频在线播放一区 | 青草久久国产| 久久精品久久久久久噜噜老黄| 夫妻午夜视频| 国产在视频线精品| 99热全是精品| 男女午夜视频在线观看| 捣出白浆h1v1| 1024视频免费在线观看| 一本色道久久久久久精品综合| 黑人猛操日本美女一级片| 天堂8中文在线网| 欧美精品啪啪一区二区三区 | 啦啦啦 在线观看视频| 日韩大码丰满熟妇| 2018国产大陆天天弄谢| 亚洲中文日韩欧美视频| 动漫黄色视频在线观看| 男人添女人高潮全过程视频| 亚洲中文av在线| 欧美亚洲 丝袜 人妻 在线| 国产亚洲欧美精品永久| 国产av国产精品国产| 老司机靠b影院| 一二三四社区在线视频社区8| 老鸭窝网址在线观看| 亚洲五月婷婷丁香| 最新在线观看一区二区三区| 一区二区三区四区激情视频| 丝袜脚勾引网站| 嫩草影视91久久| 亚洲av美国av| 一级片免费观看大全| 久久香蕉激情| 熟女少妇亚洲综合色aaa.| 日韩免费高清中文字幕av| 不卡一级毛片| 国产一区有黄有色的免费视频| 国产精品.久久久| 亚洲性夜色夜夜综合| 老鸭窝网址在线观看| 菩萨蛮人人尽说江南好唐韦庄| 黄片播放在线免费| 久久精品亚洲熟妇少妇任你| 男人爽女人下面视频在线观看| 一边摸一边做爽爽视频免费| 亚洲精品国产区一区二| 十八禁高潮呻吟视频| 国产一区二区三区综合在线观看| 亚洲精华国产精华精| 成人黄色视频免费在线看| 日韩中文字幕视频在线看片| 亚洲av成人一区二区三| 免费在线观看影片大全网站| 日韩欧美一区视频在线观看| 日本五十路高清| 亚洲精品一区蜜桃| h视频一区二区三区| 美女脱内裤让男人舔精品视频| 中文字幕人妻丝袜制服| 亚洲熟女精品中文字幕| 中文字幕最新亚洲高清| 亚洲欧美一区二区三区久久| 男人舔女人的私密视频| h视频一区二区三区| 国产一区二区激情短视频 | 一级毛片电影观看| 国产精品久久久久久精品电影小说| 精品人妻1区二区| 国产免费现黄频在线看| 三级毛片av免费| 久久99热这里只频精品6学生| 亚洲欧美精品综合一区二区三区| 欧美在线黄色| 天堂中文最新版在线下载| 欧美一级毛片孕妇| 久久久久网色| 99国产精品一区二区蜜桃av | 在线精品无人区一区二区三| 成年女人毛片免费观看观看9 | 黄色a级毛片大全视频| 一个人免费看片子| 日本一区二区免费在线视频| 啦啦啦啦在线视频资源| 午夜福利在线观看吧| 国产免费一区二区三区四区乱码| 91精品三级在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 悠悠久久av| av网站免费在线观看视频| 在线观看免费高清a一片| 两个人免费观看高清视频| 18禁黄网站禁片午夜丰满| 国产精品免费视频内射| 91av网站免费观看| 高潮久久久久久久久久久不卡| 在线观看一区二区三区激情| 少妇人妻久久综合中文| 久久久久久免费高清国产稀缺| 亚洲七黄色美女视频| www.熟女人妻精品国产| a 毛片基地| 亚洲专区中文字幕在线| 99re6热这里在线精品视频| 美国免费a级毛片| 美国免费a级毛片| 欧美精品高潮呻吟av久久| 又大又爽又粗| 天堂8中文在线网| 黄色 视频免费看| 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| 男男h啪啪无遮挡| 国产精品麻豆人妻色哟哟久久| 国产免费福利视频在线观看| 两人在一起打扑克的视频| 丝袜美足系列| 亚洲欧美色中文字幕在线| 中亚洲国语对白在线视频| 亚洲欧洲精品一区二区精品久久久| 欧美 日韩 精品 国产| 90打野战视频偷拍视频| 国产激情久久老熟女| 亚洲中文字幕日韩| 搡老岳熟女国产| 成人亚洲精品一区在线观看| 嫁个100分男人电影在线观看| 国产精品一区二区免费欧美 | 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 久久久精品区二区三区| 国产精品.久久久| 午夜久久久在线观看| 老汉色∧v一级毛片| 少妇裸体淫交视频免费看高清 | 国内毛片毛片毛片毛片毛片| 国产成人免费观看mmmm| a级毛片黄视频| 啦啦啦 在线观看视频| 狂野欧美激情性xxxx| 在线观看www视频免费| avwww免费| 午夜老司机福利片| 国产99久久九九免费精品| 精品一区二区三卡| 欧美日韩福利视频一区二区| 亚洲午夜精品一区,二区,三区| 91麻豆精品激情在线观看国产 | 男男h啪啪无遮挡| 亚洲精品一区蜜桃| 日韩三级视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 男人爽女人下面视频在线观看| 亚洲国产精品999| 亚洲色图 男人天堂 中文字幕| 精品卡一卡二卡四卡免费| 国产在线观看jvid| 最近最新中文字幕大全免费视频| 久久久久国产一级毛片高清牌| 欧美 亚洲 国产 日韩一| 日韩视频在线欧美| 久久人妻福利社区极品人妻图片| 女警被强在线播放| 色播在线永久视频| 人人妻,人人澡人人爽秒播| 51午夜福利影视在线观看| 伦理电影免费视频| 精品福利观看| 亚洲欧美色中文字幕在线| 免费人妻精品一区二区三区视频| 丝袜美足系列| 亚洲精品久久成人aⅴ小说| 中文欧美无线码| 正在播放国产对白刺激| 亚洲精品国产一区二区精华液| 在线观看舔阴道视频| 人妻 亚洲 视频| 如日韩欧美国产精品一区二区三区| 久久 成人 亚洲| 日本91视频免费播放| 亚洲黑人精品在线| 午夜成年电影在线免费观看| 国产无遮挡羞羞视频在线观看| 中文字幕人妻丝袜一区二区| 国产欧美日韩综合在线一区二区| av不卡在线播放| 少妇被粗大的猛进出69影院| 制服诱惑二区| 成年人午夜在线观看视频| 免费高清在线观看日韩| 久久ye,这里只有精品| 久久久久久久国产电影| 亚洲性夜色夜夜综合| 亚洲欧洲日产国产| 国产一级毛片在线| 亚洲九九香蕉| 91麻豆av在线| 热re99久久精品国产66热6| 俄罗斯特黄特色一大片| 2018国产大陆天天弄谢| 妹子高潮喷水视频| 亚洲精品中文字幕一二三四区 | 少妇的丰满在线观看| 国产精品一二三区在线看| 久久国产精品大桥未久av| 夫妻午夜视频| 老熟女久久久| 亚洲激情五月婷婷啪啪| 91精品三级在线观看| 国产亚洲午夜精品一区二区久久| 国产av一区二区精品久久| 国产亚洲欧美精品永久| 久久精品aⅴ一区二区三区四区| 亚洲avbb在线观看| 午夜免费观看性视频| 久久久国产一区二区| 久久国产精品男人的天堂亚洲| 日韩中文字幕视频在线看片| av欧美777| 国产成人啪精品午夜网站| 国产精品香港三级国产av潘金莲| 高清在线国产一区| 欧美黑人欧美精品刺激| 中文字幕av电影在线播放| 亚洲精品美女久久av网站| 高潮久久久久久久久久久不卡| 99国产精品免费福利视频| 我的亚洲天堂| 日韩熟女老妇一区二区性免费视频| av在线播放精品| 久久久欧美国产精品| 正在播放国产对白刺激| 中文字幕人妻丝袜一区二区| 国产成人免费无遮挡视频| 日本精品一区二区三区蜜桃| 国产1区2区3区精品| 日韩三级视频一区二区三区| 亚洲av片天天在线观看| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 亚洲,欧美精品.| 亚洲精品国产一区二区精华液| 亚洲成人免费电影在线观看| 日韩,欧美,国产一区二区三区| 女人精品久久久久毛片| 亚洲va日本ⅴa欧美va伊人久久 | a在线观看视频网站| 国产精品熟女久久久久浪| 精品人妻熟女毛片av久久网站| av网站在线播放免费| 欧美日韩亚洲高清精品| 视频在线观看一区二区三区| 人妻人人澡人人爽人人| 亚洲国产日韩一区二区| 91麻豆av在线| 亚洲av成人不卡在线观看播放网 | 九色亚洲精品在线播放| 亚洲久久久国产精品| 亚洲欧美成人综合另类久久久| 国产精品1区2区在线观看. | 午夜免费鲁丝| 日韩精品免费视频一区二区三区| 亚洲天堂av无毛| 亚洲精品国产色婷婷电影| 国产深夜福利视频在线观看| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频| 日本精品一区二区三区蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲专区中文字幕在线| av网站免费在线观看视频| 一级毛片精品| 久久毛片免费看一区二区三区| 十分钟在线观看高清视频www| 少妇粗大呻吟视频| 永久免费av网站大全| 制服人妻中文乱码| 少妇精品久久久久久久| 99热国产这里只有精品6| 丰满饥渴人妻一区二区三| 免费观看a级毛片全部| 成人国产一区最新在线观看| 日韩中文字幕视频在线看片| 国产又色又爽无遮挡免| 日本av手机在线免费观看| 亚洲av日韩精品久久久久久密| 丰满少妇做爰视频| 啪啪无遮挡十八禁网站| 日韩一区二区三区影片| bbb黄色大片| 精品亚洲成国产av| 亚洲欧美成人综合另类久久久| 亚洲国产欧美日韩在线播放| a级片在线免费高清观看视频| 麻豆乱淫一区二区| 91成年电影在线观看| 午夜免费鲁丝| 自线自在国产av| 久久国产精品男人的天堂亚洲| 操出白浆在线播放| 一级a爱视频在线免费观看| 午夜福利免费观看在线| 两人在一起打扑克的视频| 成人18禁高潮啪啪吃奶动态图| 嫩草影视91久久| 桃红色精品国产亚洲av| a 毛片基地| 久久人妻福利社区极品人妻图片| 亚洲精华国产精华精| 中文欧美无线码| 亚洲国产欧美在线一区| 国产日韩欧美视频二区| 天天添夜夜摸| 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站| 国产免费现黄频在线看| 少妇猛男粗大的猛烈进出视频| 欧美日本中文国产一区发布| 国产日韩一区二区三区精品不卡| 久久精品熟女亚洲av麻豆精品| 成人国语在线视频| 十八禁高潮呻吟视频| bbb黄色大片| 黄色 视频免费看| 国产精品偷伦视频观看了| 水蜜桃什么品种好| 国产成人精品无人区| 不卡av一区二区三区| 叶爱在线成人免费视频播放| 大片免费播放器 马上看| 美女高潮到喷水免费观看| 色视频在线一区二区三区| 宅男免费午夜| 伦理电影免费视频| 午夜福利一区二区在线看| 国产男人的电影天堂91| 国产成人系列免费观看| 老司机午夜十八禁免费视频| 伊人久久大香线蕉亚洲五| 99精品久久久久人妻精品| 婷婷成人精品国产| 日本av免费视频播放| 性色av一级| 国产成人影院久久av| 一级a爱视频在线免费观看| 欧美精品人与动牲交sv欧美| 欧美激情久久久久久爽电影 | 丝瓜视频免费看黄片| 日韩有码中文字幕| 欧美日韩亚洲高清精品| 免费观看a级毛片全部| 999久久久精品免费观看国产| tocl精华| 亚洲 国产 在线| 亚洲七黄色美女视频| 国产成人影院久久av| 精品卡一卡二卡四卡免费| 天天添夜夜摸| 日日夜夜操网爽| 黄色视频不卡| 啦啦啦中文免费视频观看日本| 国产欧美亚洲国产| 国产成人av激情在线播放| 两个人免费观看高清视频| 欧美日韩亚洲国产一区二区在线观看 | 日韩欧美免费精品| 两个人看的免费小视频| 日本欧美视频一区| 国产精品欧美亚洲77777| 国产亚洲av片在线观看秒播厂| 性少妇av在线| 老熟妇仑乱视频hdxx| 国产av又大| 免费在线观看影片大全网站| 亚洲美女黄色视频免费看| 一进一出抽搐动态| 亚洲成人免费电影在线观看| 一区二区三区精品91| 性色av一级| 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 男人操女人黄网站| 激情视频va一区二区三区| 香蕉国产在线看| 成人av一区二区三区在线看 | 欧美激情久久久久久爽电影 | 婷婷成人精品国产| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 老司机午夜十八禁免费视频| 91成人精品电影| 大码成人一级视频| 美女午夜性视频免费| 法律面前人人平等表现在哪些方面 | 精品免费久久久久久久清纯 | 国产av又大| 999久久久国产精品视频| 精品久久久久久电影网| 新久久久久国产一级毛片| 亚洲成国产人片在线观看| 天天影视国产精品| 午夜久久久在线观看| 1024香蕉在线观看| 高潮久久久久久久久久久不卡| www.av在线官网国产| 亚洲av片天天在线观看| 国内毛片毛片毛片毛片毛片| 在线十欧美十亚洲十日本专区| 欧美精品人与动牲交sv欧美| 精品少妇一区二区三区视频日本电影| 亚洲精品日韩在线中文字幕| 另类精品久久| 一进一出抽搐动态| 精品亚洲成国产av| 国产亚洲欧美精品永久| 久久久欧美国产精品| 50天的宝宝边吃奶边哭怎么回事| 国产三级黄色录像| 美国免费a级毛片| 国产成人精品久久二区二区91| 一级a爱视频在线免费观看| 两性夫妻黄色片| 男人舔女人的私密视频| 日本一区二区免费在线视频| 精品亚洲成a人片在线观看| www.999成人在线观看| 国产高清videossex| 99国产精品免费福利视频| 99九九在线精品视频| 国产免费福利视频在线观看| 亚洲欧美精品综合一区二区三区| 久久性视频一级片| 欧美日韩亚洲高清精品| 亚洲av男天堂| 搡老岳熟女国产| 成人影院久久| 亚洲中文av在线| 亚洲av成人一区二区三| 亚洲第一青青草原| 久久99一区二区三区| 午夜两性在线视频| 国产成人av教育| 精品国产一区二区三区四区第35| 国产高清国产精品国产三级| 视频区欧美日本亚洲| 男人爽女人下面视频在线观看| 久久性视频一级片| av在线app专区| 久久女婷五月综合色啪小说| √禁漫天堂资源中文www| 久久精品国产a三级三级三级| 在线观看免费午夜福利视频| 真人做人爱边吃奶动态| 亚洲av日韩在线播放| av不卡在线播放| 免费高清在线观看视频在线观看| 丝瓜视频免费看黄片| 国产精品免费大片| 国产在线视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 精品少妇内射三级| 国产精品自产拍在线观看55亚洲 | 欧美日韩亚洲国产一区二区在线观看 | 在线观看免费午夜福利视频| 国产又爽黄色视频| 久久久久久久久免费视频了| 成年人免费黄色播放视频| netflix在线观看网站| 中国美女看黄片|