• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Predictions of the PPTC Propeller Tip Vortex Cavitation in Uniform Flow

    2018-01-04 08:24:56LIUDengchengWEIXizhong
    船舶力學 2017年12期
    關鍵詞:渦量空泡螺旋槳

    LIU Deng-cheng,WEI Xi-zhong

    (1.National Key Laboratory on Ship Vibration&Noise,China Ship Scientific Research Center,Wuxi 214082,China;2.Jiangsu Key Laboratory of Green Ship Technology,Wuxi 214082,China)

    Numerical Predictions of the PPTC Propeller Tip Vortex Cavitation in Uniform Flow

    LIU Deng-cheng1,2,WEI Xi-zhong1

    (1.National Key Laboratory on Ship Vibration&Noise,China Ship Scientific Research Center,Wuxi 214082,China;2.Jiangsu Key Laboratory of Green Ship Technology,Wuxi 214082,China)

    Using Sauer’s cavitation model,the effects of grid type and turbulence model on propeller tip vortex cavitation simulation results are researched.It shows that the Sauer’s cavitation model is suitable for the propeller tip vortex cavitation simulation,and the key point is the grid density at the tip vortex cavitation region.A local grid refinement method is proposed.The simulation of PPTC propeller wetted flow and tip vortex cavitation flow is implemented,and the propeller tip vortex cavitation shape is compared with the corresponding experiments results.In order to analyse the main features of tip vortex and tip vortex cavitation, ‘Q-Criterion’ and ‘λ2-Criterion’ are used.The vorticity distribution in the tip vortex region of wetted flow presents single hump shape,and the minimum value is at the tip vortex core.The vorticity distribution in the tip vortex cavity region of cavitation flow presents double humps shape,and the minimum value is not at the tip vortex cavitation core.

    uniform flow;tip vortex cavitation;propeller;numerical prediction

    0 Introduction

    Cavitating flows are highly complicated because it is a rapid phase change phenomenon,which often occurs in the high-speed or rotating fluid machineries when the local pressure drops below its vapor pressure.It is well known that the cavitating flow raises up the vibration,the noise and the erosion.Therefore,the research on the cavitating flow is of great interest.

    Cavitation presents complex unsteady,turbulent and multi-phase flow phenomena with a large density difference and mass transfer.These features result in a unique challenge for the simulation of cavitating flows,especially tip vortex cavitation.

    Numerical method is a highly important approach for studying the cavitating flow.Computational methods for cavitation have been studied since over two decades ago.In general,the methods can be largely categorized into two groups:single-phase modeling with cavitation interface tracking and multi-phase modeling with cavitation interface capturing.

    The former approach has been widely adopted for inviscid flow solution methods,such as potential flow boundary element methods.Kinnas and Fine[1]developed non-linear boundaryelement method based on speed potential,and so on.

    The latter approach can be adopted for viscous flow solution methods,and is very popular in the cavitation research recently with the development of CFD.The cavitating flow is treated as the homogeneous equilibrium single-fluid flow which satisfies Navier-Stokes equation.In this approach,the mixture density concept is introduced.The key challenge is how to define the mixed density of the single-fluid flow.In general,the cavitation modeling can be largely categorized into two groups according to the relation that defines the variable density field.One cavitation modeling proposed by Delannoy and Kueny[2]is based on the equation of state that relates pressure and density.By assuming the cavitating process to be isothermal,mixed density is simply a function of local pressure.The other cavitation modeling is based on mass transport equation which introduces the concept of volume fraction,and the source term of the mass transport equation controlled the evaporation and condensation transfer process,and then the mixed density is calculated using the volume fraction.Kubota et al[3]coupled the Rayleigh-Plesset equation to compute the volume fraction based on the bubble radius.A mass transport equation cavitation model has been recently developed.Merkle et al[4],Kunz et al[5-6],Senocak and Shhy[7-9],Singal et al[10],Zwart et al[11],Schnerr and Sauer[12-14]and Liu[15]have employed similar idea based on this concept with differences in the source terms.

    Many people did some research about the simulation of foil and propeller cavitation,and these work main focus on sheet cavitation and cloud cavitation.For example,Niklas et al[16]simulated two and three dimensional cavitating flow around hydrofoil with Kunz’s cavitation model.Shin Hyung Rhee and Kawamura[17]studied the cavitating flow around a marine propeller using an unstructured mesh with FLUENT 6.1.Liu[18-20]simulated the cavitating performance of marine propeller using a hybrid mesh based on RANS solver for singhal model.Coutier-Delgosha et al[21]computed cavitating flows around 2D foil by modifying turbulence model,and the sheet cavity length and the dynamic shedding behaviour were very similar to those observed in the experiment.Li[22-23]and Liu[24]predicted unsteady cavitating flows of 2D NACA0015 foil and 3D twisted foil using the same idea.

    In this paper,the effects of grid type and turbulence model on propeller tip vortex cavitation simulation results are researched.A local grid refinement method is proposed.The simulation of PPTC propeller wetted flow and tip vortex cavitation flow is implemented.In order to analyse the main features of tip vortex and tip vortex cavitation, ‘Q-Criterion’ and ‘λ2-Criterion’are used.

    1 Research object

    There are two international standard propeller models,one was named E779A which was designed in 1959 by INSEAN tank of Italy,the other was named PPTC which was proposed on the first workshop on cavitation and propeller performance.

    The first workshop on cavitation and propeller performance was held in Hamburg,Ger-many,at the end of smp’11.The workshop emphasis will be on prediction of PPTC propeller hydrodynamic performance and propeller cavitation performance in uniform flow,the test was blind test at Potsdam Model Basin.A large number of different research groups participated,and the workshop become a success.

    And the second international workshop on cavitating propeller performance was held in Austin,USA,at the end of smp’15.The workshop emphasis will be on prediction of PPTC propeller hydrodynamic performance and propeller cavitation performance in oblique flow,and the blind test will also be performed at Potsdam Model Basin.

    PPTC is a five bladed propeller(see Fig.1).It is a controllable pitch propeller with diameter D=0.250 m,hub diameter ratio of 0.3,pitch-to-diameter ratio of 1.635 at 0.7 radial section,skewed angle of 19.12°and area ratio of 0.78.

    Fig.1 The geometry of PPTC

    2 Numerical methods

    2.1 Governing equations

    For the multi-phase flow solutions,the single-fluid mixture model is employed.The governing equations are written for the mass and momentum conservation of mixed fluid as follows:

    where ρmis the mixed density,μ is the mixed viscosity,μtis the mixed eddy viscosity.

    2.2 Sauer’s cavitation model

    The mixed density is controlled by vapor mass fraction f:

    The vapor transport equation is written as:

    where ρvand ρlare the density of vapor and liquid,respectively.are the rates of vapor generation and condensation,respectively.Sauer derived the expressions ofwhere pvis saturated vapor pressure.

    2.3 Grid type and turbulence model

    For this simulation,the computational domain was created as block which is divided into static region and rotating region around propeller.Boundary conditions were set as follows:on the inlet boundary and the outer boundary,velocity components of uniform stream with the given inflow speeds were imposed;on propeller surface,the no slip condition was imposed;on the exit boundary,the static pressure was set to a constant value,which is determined by cavitation index in the cavtating cases.The initial and the free-stream turbulence quantities are set to 1%turbulence intensity and a turbulence viscosity ratio equal to 10.The advance coefficient is 1.019 and the cavitation number is 2.024.The case of computation is presented in Tab.1.The expression of advance ratio,cavitation number,thrust and torque coefficients is written as follows:

    For research the effect of different grid type and turbulence model,four different grid types filled the rotating region and three different turbulence models are employed.The grid types include trim mesh,trim mesh with tip region refinement,tetrahedral mesh and polyhe-dral mesh;these are named as Trim,Trim-tip,Tet and Poly,respectively.The turbulence models include k-ε,SST k-ω and Reynolds stress turbulence model(RSM).In Tab.2,the cases of cavitation computation about grid type and turbulence model are presented.The corresponding grid types are showed in Fig.2.For tip vortex region grid refinement,a block was created according to the helix line,and the pitch is equal to the propeller pitch at the 1.0 time radius(see Fig.3).

    Tab.1 The case2-1 of cavitation computational

    Tab.2 The cases of computation aboutgrid type and turbulence model

    Fig.2 The four different grid types

    Fig.3 The block for tip vortex region grid refinement

    3 Results and discussion

    3.1 The effect of grid types and turbulence model

    We simulated propeller cavitation performance at one advance ratio and one cavitation index with different grid types and different turbulence models.It has seven cases in Tab.2.

    Fig.4 The computational cavity shapes and compared with experimental result

    The comparison of the computed cavity shapes of different cases with the experimental result which come from Potsdam Model Basin at the first workshop on cavitation and propeller performance are presented in Fig.4.The computed cavity shapes can be confirmed by the isosurface of vapor volume fraction of 0.1.From the experimental result,we clearly see that the cavitation is to occur in the tip,root and leading edge of suction side of propeller.In Fig.4,it shows that the all computational cases catch the cavity in the root and leading edge;only the computational cases of tip vortex region grid refinement catch the tip vortex cavitation.The computational results indicated that the tip vortex cavity missing in some computations is attributed mainly to the mesh resolution in the cavitating region,but most grid types and turbulence model can deal well with cavitation flow,the Sauer’s cavitation model is not only suitable for the sheet cavitation simulation but also suitable for the propeller tip vortex cavitation simulation,where the key point is the grid density at the tip vortex cavitation region.

    3.2 The features of tip vortex and tip vortex cavitation

    According to the simulation results of PPTC propeller wetted flow and tip vortex cavitation flow using tip vortex region grid refinement and the SST k-ω turbulence model,we analyse the main features of tip vortex and tip vortex cavitation.Fig.5 presents comparison between tip vortex and tip vortex cavity.The iso-surface of the λ2 equal to 5 000 represents the tip vortex in wetted flow and tip vortex cavity in cavitation flow.We can clearly see that the streamlines of tip vortex are more helical than the streamlines of tip vortex cavity.

    Fig.6 The vorticity comparison between tip vortex and tip vortex cavity(x=0.32R)

    The vorticity comparison between tip vortex and tip vortex cavity at the cross face of propeller downstream(x=0.32R)is presented in Fig.6.The vorticity and λ2 distribution across the tip vortex respectively(r=0.96R,x=0.32R)are presented in Fig.7 and Fig.8.The vorticity distribution in the tip vortex region of wetted flow presents single hump shape,and the minimum value is at the tip vortex core.The vorticity distribution in the tip vortex cavity region of cavitation flow presents double humps shape,and the minimum value is not at the tip vortex cavitation core.It is showed that the vorticity and the absolute value of λ2 in the tip vortex of wetted flow are larger than these in the tip vortex cavity of cavitation flow,and the radius of tip vortex cavity in cavitation flow is larger than the radius of tip vortex in wetted flow.The reason is that the pressure in the tip vortex of wetted flow is lower than the pressure in the tip vortex cavity of cavitation flow which is about equal to the saturated pressure.

    Fig.7 The vorticity distribution across the tip vortex(r=0.96R,x=0.32R)

    Fig.8 The λ2 distribution across the tip vortex(r=0.96R,x=0.32R)

    4 Conclusions

    Using Sauer’s cavitation model,the effects of grid type and turbulence model on propeller tip vortex cavitation simulation results are researched.It shows that the Sauer’s cavitation model is suitable for the propeller tip vortex cavitation simulation,and the key point is the grid density at the tip vortex cavitation region.A local grid refinement method is proposed.The simulation of PPTC propeller wetted flow and tip vortex cavitation flow is implemented,and the propeller tip vortex cavitation shape is compared with the corresponding experimental results.In order to analyse the main features of tip vortex and tip vortex cavitation,‘Q-Criterion’ and‘λ2-Criterion’ are used.The vorticity distribution in the tip vortex region of wetted flow presents single hump shape,and the minimum value is at the tip vortex core.The vorticity distribution in the tip vortex cavity region of cavitation flow presents double humps shape,and the minimum value is not at the tip vortex cavitation core.

    [1]Kinnas S A,Fine E A.Numerical nonlinear analysis of the flow around 3-D cavitating hydrofoil[J].Journal of Fluid Mechanics,1993,254:151-181.

    [2]Delannoy Y,Kueny J L.Two phase flow approach in unsteady cavitation modeling[C]//ASME Fluids Engineering Division.Toronto,Ontario,1990:153-158.

    [3]Kubota A,Kato H,Yamaguchi H.A new modeling of cavitating flows:A numerical study of unsteady cavitation on a hydrofoil section[J].J of Fluid Mechanics,1992,240:59-96.

    [4]Merkle C L,Feng J,Buelow P E O.Computational modeling of the dynamics of sheet cavitation[C]//Proceedings of 3rd International Symposium on Cavitation.Grenoble,France,1998.

    [5]Kunz R F,Boger D A.A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J].Computers&Fluids,2000,29:849-875.

    [6]Kunz R F,Lindau J W.Unsteady RANS and detached eddy simulations of cavitating flow over a hydrofoil[C]//Fifth International Symposium on Cavitation,cav2003.Osaka,Japan,2003:1-4.

    [7]Senocak I,Shyy W.Numerical simulation of turbulent with sheet cavitation[C].Fourth International Symposium on Cavitation,cav2001,SessionA7.002,2001.

    [8]Senocak I,Shyy W.A pressure-based method for turbulent cavitating flow computation[J].Journal of Computational Physics,2002,176:363-383.

    [9]Senocak I,Shyy W.Interfacial dynamics-based modelling of turbulent cavitating flows,Part-1:Model development and steady-state computations[J].Int.J Numer.Methods Fluids,2004,44(9):975-995.

    [10]Singhal A K,Athavale M M.Mathematical basis and validation of the full cavitation model[J].Journal of Fluids Engineering,2002,124:617-624.

    [11]Zwart P J,Gerber A G,Belamri T.A two-phase flow model for predicting cavitation dynamics[C]//Proceedings of International Conference on Multiphase Flow.Yokohama,Japan,2004.

    [12]Schnerr G H,Sauer J.Physical and numerical modeling of unsteady cavitation dynamics[C]//Proceedings of 4th International Conference on Multiphase Flow.New Orleans,USA,2001.

    [13]Schnerr G H,Sezal I H,Schmidt S J.Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics[J].Phys.Fluids.,2008,20(4):040703.

    [14]ANSYS Corporation.ANSYS Fluent Documentations[K].2010.

    [15]Liu Dengcheng.The numerical simulation of propeller sheet cavitation with a new cavitation model[C]//7th International Conference on Fluid Mechanics,ICFM7.Qingdao,China,2015.

    [16]Niklas,Goran Bark,Christer Fureby.Large eddy simulation of cavitating submerged objects[C]//The 8th International Conference on Numerical Ship Hydrodynamics.Busan,Korea,2003.

    [17]Shin Hyung Rhee,Takarumi Kawamura.A study of propeller cavitation using a RANS CFD method[C]//The 8th International Conference on Numerical Ship Hydrodynamics.Busan,Korea,2003.

    [18]Liu Dengcheng,Hong Fangwen,Zhao Feng,et al.The CFD analysis of propeller sheet cavitation[C]//Proceedings of the 8th International Conference on Hydrodynamics.Nantes France,2008.

    [19]Liu Dengcheng,Hong Fangwen.The numerical predicted of SMP11 propeller performance with and without cavitation[C]//Second International Symposium on Marine Propulsors,SMP’11.Hamburg,Germany,2011.

    [20]Liu Dengcheng.The numerical predicted of VP1304 propeller cavitation performance in oblique flow[C]//Fourth International Symposium on Marine Propulsors,smp’15.Austin,USA,2015.

    [21]Olivier Coutier-Delgosha,Fortes-Patella R,Reboud L.Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation[J].Journal of Fluids Engineering,2003,125(1):38-45.

    [22]Li D Q,Grekula.Prediction of dynamic shedding of cloud cavitation on a 3D twisted foil and comparison with experiments[C]//27th Symposium on Naval Hydrodynamics.Seoul,Korea,2008.

    [23]Li Daqing,Mikael Grekula,Per Lindell.A modified SST k-ω turbulence model to predict the steady and unsteady sheet cavitation on 2D and 3D hydrofoils[C]//Proceedings of the 7th International Symposium on Cavitation,CAV2009.Ann Arbor,Michigan,USA,2009.

    [24]Liu Dengcheng,Hong Fangwen,Lu Fang.The numerical and experimental research on tip vortex flow and unsteady cloud cavitating flow of 3D elliptical hydrofoil[C]//Proceedings of the 9th International Conference on Hydrodynamics.Shanghai,China,2010.

    均流中PPTC螺旋槳梢渦空泡數(shù)值預報

    劉登成1,2, 韋喜忠1

    (1.中國船舶科學研究中心 船舶振動噪聲重點實驗室,江蘇 無錫214082;2.江蘇省綠色船舶技術重點實驗室,江蘇 無錫 214082)

    文章采用Sauer空化模型,研究了網格類型和湍流模型對均流中螺旋槳梢渦空泡數(shù)值模擬的影響,研究表明,現(xiàn)有的空泡模型適合于螺旋槳梢渦空泡的數(shù)值模擬,其中梢渦空泡區(qū)域網格密度是關鍵,文中提出了一種合適的梢渦空泡區(qū)域網格加密方法。對PPTC螺旋槳全濕流和梢渦空泡進行了數(shù)值預報,螺旋槳梢渦空泡形態(tài)與試驗結果進行了對比,并應用渦判據(jù)“Q準則”和“λ2準則”分析了梢渦與梢渦空泡的流動特征。全濕流中梢渦區(qū)域的渦量隨周向的分布呈現(xiàn)單峰特性,最小渦量在渦心處,而空泡流中梢渦空泡區(qū)域的渦量隨周向的分布呈現(xiàn)雙峰特性,最小渦量不在渦心處。

    均流;梢渦空泡;螺旋槳;數(shù)值預報

    U661.73

    A

    國家自然科學基金資助項目(11332009)

    劉登成(1982-),男,中國船舶科學研究中心高級工程師;

    韋喜忠(1982-),男,中國船舶科學研究中心高級工程師。

    U661.73 Document code:A

    10.3969/j.issn.1007-7294.2017.12.004

    date:2017-07-14

    Supported by the National Natural Science Foundation of China(Grant No.11332009)

    Biography:LIU Deng-cheng(1982-),male,senior engineer,E-mail:edon_001@163.com;WEI Xi-zhong(1982-),male,senior engineer.

    1007-7294(2017)12-1480-09

    猜你喜歡
    渦量空泡螺旋槳
    水下航行體雙空泡相互作用數(shù)值模擬研究
    含沙空化對軸流泵內渦量分布的影響
    基于CFD的螺旋槳拉力確定方法
    自由表面渦流動現(xiàn)象的數(shù)值模擬
    基于LPV的超空泡航行體H∞抗飽和控制
    基于CFD的對轉槳無空泡噪聲的仿真預報
    船海工程(2015年4期)2016-01-05 15:53:28
    3800DWT加油船螺旋槳諧鳴分析及消除方法
    廣東造船(2015年6期)2015-02-27 10:52:46
    航態(tài)對大型船舶甲板氣流場的影響
    螺旋槳轂帽鰭節(jié)能性能的數(shù)值模擬
    The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method
    亚洲熟女精品中文字幕| 五月伊人婷婷丁香| 精品久久久久久电影网| 国产欧美另类精品又又久久亚洲欧美| 王馨瑶露胸无遮挡在线观看| 纯流量卡能插随身wifi吗| 国产色爽女视频免费观看| 国产精品.久久久| 婷婷色麻豆天堂久久| 亚洲国产欧美在线一区| 国产黄片视频在线免费观看| 成年免费大片在线观看| 久久久久久久久久成人| 国产精品无大码| 伦理电影免费视频| 下体分泌物呈黄色| 夜夜爽夜夜爽视频| 九九在线视频观看精品| 国产伦精品一区二区三区视频9| 搡老乐熟女国产| 下体分泌物呈黄色| 国产又色又爽无遮挡免| 国产极品天堂在线| 超碰av人人做人人爽久久| 男人和女人高潮做爰伦理| 99热这里只有是精品在线观看| 国产女主播在线喷水免费视频网站| 大香蕉久久网| 大又大粗又爽又黄少妇毛片口| 亚洲三级黄色毛片| 午夜精品国产一区二区电影| 国产成人精品婷婷| av国产免费在线观看| 亚洲天堂av无毛| 最新中文字幕久久久久| 久久久久久伊人网av| 大片电影免费在线观看免费| 亚洲精品国产成人久久av| 久久6这里有精品| 热99国产精品久久久久久7| 人妻系列 视频| 国产久久久一区二区三区| 中文字幕久久专区| 亚洲在久久综合| 熟女电影av网| 日本免费在线观看一区| 国产无遮挡羞羞视频在线观看| 免费观看的影片在线观看| 亚州av有码| 97在线视频观看| 亚洲国产毛片av蜜桃av| 成人一区二区视频在线观看| 91精品一卡2卡3卡4卡| 波野结衣二区三区在线| 91久久精品电影网| 日韩精品有码人妻一区| 一级片'在线观看视频| av国产精品久久久久影院| 精品久久久久久久末码| 亚洲欧美清纯卡通| 人妻系列 视频| 欧美变态另类bdsm刘玥| 国产极品天堂在线| 成人漫画全彩无遮挡| 精品人妻熟女av久视频| h视频一区二区三区| 边亲边吃奶的免费视频| 亚洲av电影在线观看一区二区三区| 韩国av在线不卡| 午夜免费男女啪啪视频观看| 日本av免费视频播放| 久久青草综合色| 在线亚洲精品国产二区图片欧美 | 成年人午夜在线观看视频| 观看免费一级毛片| 男的添女的下面高潮视频| 麻豆国产97在线/欧美| 欧美xxxx性猛交bbbb| av视频免费观看在线观看| 男人舔奶头视频| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 亚洲精品一二三| av播播在线观看一区| 欧美性感艳星| 蜜桃久久精品国产亚洲av| 久久久久久久久久人人人人人人| 久久人人爽人人爽人人片va| 97精品久久久久久久久久精品| 少妇的逼水好多| 2022亚洲国产成人精品| 国产免费视频播放在线视频| 国产日韩欧美在线精品| 国产女主播在线喷水免费视频网站| 国产精品欧美亚洲77777| 亚洲欧美日韩另类电影网站 | 亚洲自偷自拍三级| 熟女人妻精品中文字幕| 国产欧美亚洲国产| 黑人高潮一二区| 女性被躁到高潮视频| 成年女人在线观看亚洲视频| av播播在线观看一区| 欧美zozozo另类| 丝瓜视频免费看黄片| 国产av精品麻豆| 一本色道久久久久久精品综合| 一本一本综合久久| 亚洲无线观看免费| 七月丁香在线播放| 亚洲人与动物交配视频| 网址你懂的国产日韩在线| 菩萨蛮人人尽说江南好唐韦庄| 春色校园在线视频观看| 国产又色又爽无遮挡免| 欧美bdsm另类| 国产在视频线精品| 国产午夜精品一二区理论片| 欧美bdsm另类| 久久久久精品性色| 黄色配什么色好看| 日韩大片免费观看网站| 人妻系列 视频| 国产在线免费精品| 高清日韩中文字幕在线| 亚洲国产色片| 中文资源天堂在线| 婷婷色综合大香蕉| 久久久久网色| 伊人久久精品亚洲午夜| 99热网站在线观看| 秋霞在线观看毛片| 久久久久久久久久人人人人人人| 自拍欧美九色日韩亚洲蝌蚪91 | 18+在线观看网站| 日本午夜av视频| 亚洲婷婷狠狠爱综合网| 18+在线观看网站| 观看av在线不卡| 欧美成人一区二区免费高清观看| 亚洲人成网站在线观看播放| 一区在线观看完整版| 午夜老司机福利剧场| 少妇精品久久久久久久| 亚洲精品,欧美精品| 少妇猛男粗大的猛烈进出视频| 新久久久久国产一级毛片| 日韩欧美 国产精品| 精品一区在线观看国产| 晚上一个人看的免费电影| 国产有黄有色有爽视频| 国产精品精品国产色婷婷| 亚洲美女搞黄在线观看| av网站免费在线观看视频| 青春草亚洲视频在线观看| 国产欧美日韩一区二区三区在线 | 成人亚洲精品一区在线观看 | 欧美成人午夜免费资源| 成人毛片a级毛片在线播放| 成人18禁高潮啪啪吃奶动态图 | 成人无遮挡网站| 日韩电影二区| 日韩伦理黄色片| 亚洲av免费高清在线观看| 国产在线男女| 少妇人妻 视频| 美女cb高潮喷水在线观看| 成人综合一区亚洲| 婷婷色综合大香蕉| 久久久久精品性色| 成人一区二区视频在线观看| 欧美xxⅹ黑人| 久久99热这里只有精品18| 亚洲av国产av综合av卡| 亚洲欧洲国产日韩| av一本久久久久| 久久国内精品自在自线图片| 一级爰片在线观看| 天堂中文最新版在线下载| 一级毛片 在线播放| 久久午夜福利片| 2021少妇久久久久久久久久久| 国产精品久久久久久精品电影小说 | 成人毛片60女人毛片免费| 一个人看视频在线观看www免费| 熟女av电影| 哪个播放器可以免费观看大片| 在线观看免费高清a一片| 一级a做视频免费观看| 麻豆精品久久久久久蜜桃| 91狼人影院| 亚洲欧美成人综合另类久久久| 国产在视频线精品| videos熟女内射| 亚洲精品一二三| 免费大片黄手机在线观看| 91午夜精品亚洲一区二区三区| 十分钟在线观看高清视频www | 国产精品免费大片| 久久人人爽人人片av| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看| 男男h啪啪无遮挡| 最近最新中文字幕大全电影3| av福利片在线观看| 黄片wwwwww| 成人影院久久| 国产精品熟女久久久久浪| 国产免费又黄又爽又色| 婷婷色麻豆天堂久久| 亚州av有码| 51国产日韩欧美| 免费黄频网站在线观看国产| 九草在线视频观看| 精品久久久久久电影网| 精品一区二区三区视频在线| 18+在线观看网站| 日本-黄色视频高清免费观看| 亚洲av.av天堂| 女性被躁到高潮视频| 久久亚洲国产成人精品v| 国产精品秋霞免费鲁丝片| 我要看黄色一级片免费的| 国产精品国产三级国产专区5o| 久久99热这里只有精品18| 噜噜噜噜噜久久久久久91| 美女福利国产在线 | 国产 一区 欧美 日韩| 国产爱豆传媒在线观看| 久久97久久精品| 尤物成人国产欧美一区二区三区| 美女脱内裤让男人舔精品视频| 精品一区二区免费观看| 2021少妇久久久久久久久久久| 又黄又爽又刺激的免费视频.| 中国美白少妇内射xxxbb| 日本-黄色视频高清免费观看| 亚洲精品色激情综合| 国产精品嫩草影院av在线观看| 免费少妇av软件| 边亲边吃奶的免费视频| 亚洲精品国产成人久久av| a级毛色黄片| 欧美激情国产日韩精品一区| 日韩中字成人| 91精品伊人久久大香线蕉| 嘟嘟电影网在线观看| 女人久久www免费人成看片| av国产免费在线观看| 国产精品久久久久久av不卡| 久久久久久久亚洲中文字幕| 男女免费视频国产| 国产精品久久久久久av不卡| 涩涩av久久男人的天堂| 亚洲国产精品999| 国产成人aa在线观看| 一级av片app| 久久久久久久亚洲中文字幕| 大陆偷拍与自拍| 亚洲精品亚洲一区二区| 一级片'在线观看视频| 51国产日韩欧美| 人妻一区二区av| 婷婷色综合大香蕉| 亚洲国产最新在线播放| 亚洲av成人精品一区久久| 国产免费一级a男人的天堂| 亚洲国产欧美人成| 久久久久性生活片| 国产一区二区三区综合在线观看 | av免费观看日本| 六月丁香七月| 少妇熟女欧美另类| 成年人午夜在线观看视频| 久久影院123| 18禁裸乳无遮挡免费网站照片| 91精品国产九色| 国产伦理片在线播放av一区| 免费高清在线观看视频在线观看| 日韩中文字幕视频在线看片 | 国产又色又爽无遮挡免| 欧美日韩视频精品一区| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| 男女免费视频国产| 狂野欧美激情性xxxx在线观看| 免费看日本二区| 99精国产麻豆久久婷婷| 麻豆国产97在线/欧美| 欧美3d第一页| 国产精品一区二区在线观看99| 日日撸夜夜添| 亚洲精品第二区| 成人免费观看视频高清| 久久久国产一区二区| 国产精品一二三区在线看| 色综合色国产| 哪个播放器可以免费观看大片| 日本与韩国留学比较| 免费观看a级毛片全部| 成人国产麻豆网| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久v下载方式| 国产免费福利视频在线观看| 久久ye,这里只有精品| 99热这里只有精品一区| 在线看a的网站| 日韩成人av中文字幕在线观看| 又爽又黄a免费视频| av在线蜜桃| 黑人猛操日本美女一级片| 女的被弄到高潮叫床怎么办| 夜夜看夜夜爽夜夜摸| 国产亚洲最大av| 亚洲人成网站在线播| 亚洲第一区二区三区不卡| 中国国产av一级| 亚洲精品一区蜜桃| 日韩一本色道免费dvd| 久久6这里有精品| 精品一品国产午夜福利视频| 一边亲一边摸免费视频| 一级爰片在线观看| 精品午夜福利在线看| 高清毛片免费看| 黄片wwwwww| 亚洲精品中文字幕在线视频 | 国产高潮美女av| 国产亚洲精品久久久com| 久久久久久久久久久免费av| 噜噜噜噜噜久久久久久91| 亚洲精品一区蜜桃| 成人高潮视频无遮挡免费网站| 少妇精品久久久久久久| 熟女电影av网| 视频区图区小说| 久久韩国三级中文字幕| 大又大粗又爽又黄少妇毛片口| 日韩av不卡免费在线播放| 男男h啪啪无遮挡| 精品一品国产午夜福利视频| 国产亚洲5aaaaa淫片| 亚洲婷婷狠狠爱综合网| 男女无遮挡免费网站观看| 精品人妻视频免费看| 一本久久精品| 色5月婷婷丁香| 中国三级夫妇交换| a级毛色黄片| 九九在线视频观看精品| 中国国产av一级| av在线老鸭窝| 亚洲欧美精品专区久久| 能在线免费看毛片的网站| 蜜桃在线观看..| 久久久久久伊人网av| 天堂俺去俺来也www色官网| 九九在线视频观看精品| 美女xxoo啪啪120秒动态图| 一级爰片在线观看| 亚洲成人中文字幕在线播放| 免费看日本二区| 哪个播放器可以免费观看大片| 超碰97精品在线观看| 国产精品成人在线| 欧美3d第一页| 看非洲黑人一级黄片| 久久久久久久大尺度免费视频| 成人黄色视频免费在线看| 日本黄色片子视频| 哪个播放器可以免费观看大片| 免费看日本二区| 亚洲熟女精品中文字幕| 国产爽快片一区二区三区| 国产一区二区在线观看日韩| 老熟女久久久| 黑人高潮一二区| 精品久久久噜噜| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 一级毛片电影观看| 麻豆成人av视频| 18禁在线播放成人免费| 久久久久国产网址| 在线观看免费高清a一片| 亚洲经典国产精华液单| 成人无遮挡网站| 日本免费在线观看一区| 精品一区二区三区视频在线| 男人舔奶头视频| 麻豆精品久久久久久蜜桃| 日本与韩国留学比较| 一级av片app| 少妇被粗大猛烈的视频| 丝瓜视频免费看黄片| 美女国产视频在线观看| 夜夜爽夜夜爽视频| 亚洲精品国产色婷婷电影| 欧美高清成人免费视频www| 99九九线精品视频在线观看视频| 不卡视频在线观看欧美| 91精品国产国语对白视频| .国产精品久久| 一本久久精品| 男的添女的下面高潮视频| 午夜激情福利司机影院| 亚洲天堂av无毛| 国产爽快片一区二区三区| 亚洲国产精品专区欧美| 成人综合一区亚洲| 久久久久人妻精品一区果冻| 99国产精品免费福利视频| 嫩草影院新地址| 女人久久www免费人成看片| 精品久久久久久久末码| 身体一侧抽搐| 国产精品久久久久久精品电影小说 | 18禁裸乳无遮挡动漫免费视频| 夜夜爽夜夜爽视频| 国产精品一区二区在线不卡| 一个人看视频在线观看www免费| 一二三四中文在线观看免费高清| 黑丝袜美女国产一区| 国内精品宾馆在线| 婷婷色麻豆天堂久久| 亚洲av综合色区一区| 久久精品国产自在天天线| av线在线观看网站| 日韩中文字幕视频在线看片 | 最近中文字幕高清免费大全6| 五月开心婷婷网| 18禁裸乳无遮挡免费网站照片| 在线看a的网站| 97精品久久久久久久久久精品| av播播在线观看一区| 久久久久久久国产电影| 日韩三级伦理在线观看| kizo精华| 国产免费视频播放在线视频| 欧美xxⅹ黑人| 麻豆精品久久久久久蜜桃| 观看av在线不卡| 纯流量卡能插随身wifi吗| 精品久久久久久电影网| 丝袜喷水一区| 免费av中文字幕在线| 久久久欧美国产精品| 丰满迷人的少妇在线观看| 亚洲欧美日韩东京热| 99久久综合免费| 日本免费在线观看一区| 日韩 亚洲 欧美在线| freevideosex欧美| 中文字幕亚洲精品专区| 国产成人91sexporn| 亚洲第一av免费看| 成人影院久久| 精品酒店卫生间| 丰满少妇做爰视频| av网站免费在线观看视频| 麻豆乱淫一区二区| 欧美日韩在线观看h| 特大巨黑吊av在线直播| 精品久久久久久电影网| 中文字幕久久专区| 欧美性感艳星| 亚洲成人av在线免费| 99久久综合免费| 欧美xxⅹ黑人| 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| 国产 一区 欧美 日韩| 有码 亚洲区| 欧美老熟妇乱子伦牲交| 午夜福利视频精品| av在线蜜桃| 国产乱来视频区| 成人黄色视频免费在线看| 亚洲精品国产av蜜桃| 亚洲一级一片aⅴ在线观看| 久久这里有精品视频免费| 日韩一本色道免费dvd| 嫩草影院新地址| 成人亚洲精品一区在线观看 | 99国产精品免费福利视频| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| 97热精品久久久久久| 午夜福利网站1000一区二区三区| 久久精品夜色国产| 日本色播在线视频| 99久久人妻综合| 又粗又硬又长又爽又黄的视频| 熟女av电影| 亚洲婷婷狠狠爱综合网| 国产精品一区二区性色av| 啦啦啦啦在线视频资源| 色婷婷av一区二区三区视频| 精品视频人人做人人爽| 亚洲av电影在线观看一区二区三区| 精品少妇黑人巨大在线播放| 精品少妇久久久久久888优播| 亚洲无线观看免费| 日韩强制内射视频| 免费人成在线观看视频色| 九九久久精品国产亚洲av麻豆| 国产精品一二三区在线看| 在线观看免费日韩欧美大片 | 亚洲精品日韩av片在线观看| 色视频www国产| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 全区人妻精品视频| 婷婷色综合www| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 精品国产露脸久久av麻豆| 亚洲综合精品二区| 成人亚洲欧美一区二区av| 国产免费一区二区三区四区乱码| 少妇高潮的动态图| 欧美少妇被猛烈插入视频| 久久久久久久久久久丰满| 日本午夜av视频| 99久久人妻综合| 又粗又硬又长又爽又黄的视频| 人人妻人人看人人澡| 人人妻人人添人人爽欧美一区卜 | 日本色播在线视频| 人妻系列 视频| 全区人妻精品视频| 高清欧美精品videossex| 人体艺术视频欧美日本| 亚洲色图综合在线观看| 在线播放无遮挡| 午夜激情久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 日韩人妻高清精品专区| 韩国高清视频一区二区三区| 一级毛片 在线播放| 尾随美女入室| 婷婷色综合www| 国产午夜精品久久久久久一区二区三区| 国产 一区 欧美 日韩| 日韩三级伦理在线观看| 国产av一区二区精品久久 | 亚洲欧美成人精品一区二区| 王馨瑶露胸无遮挡在线观看| freevideosex欧美| av黄色大香蕉| 伦理电影免费视频| 99精国产麻豆久久婷婷| 韩国高清视频一区二区三区| 97超视频在线观看视频| 久久精品国产亚洲av涩爱| 久久久久网色| 男女下面进入的视频免费午夜| 人妻 亚洲 视频| videossex国产| 国产精品偷伦视频观看了| 涩涩av久久男人的天堂| 青青草视频在线视频观看| 日本黄大片高清| 精品99又大又爽又粗少妇毛片| 免费av中文字幕在线| 久久久久久久久久人人人人人人| 春色校园在线视频观看| 日韩欧美 国产精品| 黄色视频在线播放观看不卡| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 1000部很黄的大片| 国产精品久久久久成人av| 欧美精品一区二区大全| 久久久久性生活片| 五月伊人婷婷丁香| 亚洲精品一区蜜桃| 中文精品一卡2卡3卡4更新| 久久这里有精品视频免费| 久久人人爽av亚洲精品天堂 | 超碰av人人做人人爽久久| 亚洲色图av天堂| 99久国产av精品国产电影| 欧美精品人与动牲交sv欧美| 国产视频内射| 久久精品久久久久久噜噜老黄| 中文在线观看免费www的网站| 少妇的逼好多水| 亚洲性久久影院| 精品久久久久久久末码| 1000部很黄的大片| 99热这里只有是精品在线观看| 精品国产乱码久久久久久小说| 中文字幕人妻熟人妻熟丝袜美| 国产国拍精品亚洲av在线观看| 中国美白少妇内射xxxbb| 在线观看免费高清a一片| 精品国产一区二区三区久久久樱花 | 久久97久久精品| 久久国产精品大桥未久av | 小蜜桃在线观看免费完整版高清| 日韩免费高清中文字幕av| 美女主播在线视频| 免费看不卡的av| 在现免费观看毛片| 成人国产麻豆网| 国产伦在线观看视频一区| 亚洲国产精品成人久久小说| 久久久成人免费电影| 久久精品国产亚洲av涩爱| 51国产日韩欧美| 亚洲精品色激情综合| 国产黄片美女视频| 亚洲成人一二三区av| 欧美另类一区|