• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Composites Shell Subjected to Hydrostatic Pressure to Maximize Design Pressure Factor

    2018-01-04 08:25:03SHENKechunPANGuangSHIYao
    船舶力學 2017年12期
    關(guān)鍵詞:靜水壓力西北工業(yè)大學耐壓

    SHEN Ke-chun,PAN Guang,SHI Yao

    (a.School of Marine Science and Technology;b.Key Laboratory for Unmanned Underwater Vehicle,Northwestern Polytechnical University,Xi’an 710072,China)

    Optimization of Composites Shell Subjected to Hydrostatic Pressure to Maximize Design Pressure Factor

    SHEN Ke-chuna,b,PAN Guanga,b,SHI Yaoa,b

    (a.School of Marine Science and Technology;b.Key Laboratory for Unmanned Underwater Vehicle,Northwestern Polytechnical University,Xi’an 710072,China)

    This paper presented an optimization design of composites pressure hull subjected to hydrostatic pressure.An Optimization Platform was set up by interworking genetic algorithm and numerical analysis.The design pressure factor was considered as the objective function.Buckling and material failure were constraint conditions.Types of layup,fiber angle and ply number are optimized for Carbon/epoxy,Boron/epoxy and Glass/epoxy composites.The results revealed that the buckling pressure or the material failure pressure would restrict the design pressure for different kind of composites.Different types of layup impacted the design pressure factor significantly.Application of composite materials for deep-water pressure shell had more reserve buoyancy.Results of this study could provide a valuable reference for designers of underwater vehicles.And this paper suggests that new way of enhancement,such as variable thickness,composites ribs would be used to solve the conflict of buckling pressure and material failure pressure,and increase the smaller one to improve the design pressure.

    hydrostatic pressure;composites pressure shell;optimization;buckling;failure

    0 Introduction

    Some three-quarters of the Earth’s surface are covered by water and only little of the ocean bottom has been explored.The greatest ocean depth of the oceans is 11.52 km.Most underwater vehicles can only dive to a depth of about 1 500 m which is much less than the average depth of the oceans that is between 4 000 and 5 000 m.

    For an underwater vehicle in deep sea,reserve buoyancy is required for integral structure,and weight reduction is expected for more efficient performance.This can be easily met by applying composite materials.Composite materials have an excellent specific stiffness and strength to withstand very high external pressure,in addition,sound absorption and corrosion resistance are crucially important for underwater vehicles[1].When designing composites pressure vessel subjected to hydrostatic pressure,load carrying capacity is priority.Buckling andstatic material failure may be caused by insufficient rigidity and lack of strength.There has been considerable amount of work carried out on buckling analysis of composites material structures subjected to hydrostatic pressure.Moon[2]investigated the buckling behavior of filament-wound carbon/epoxy composite cylinders under external hydrostatic pressure through finite element analysis and testing.Maalawi[3]presented a mathematical model to enhance the buckling stability of composite cylinders under external pressure.Nguyan[4]studied the stability of the perfect cylindrical shell variable thickness by introducing the coupled linearized governing stability equation for cylindrical shell under the external pressure.Messager[5]maximized the stability limits of thin-walled laminated composite vessels for underwater vehicles.Lopatin[6]studied the buckling of the clamped-clamped sandwich cylindrical shell under uniform external pressure.As for the failure behavior of composites material pressure hulls,a number of papers are available.Tafreshi[7-8]studied the effect of delamination of composite cylindrical shells under external pressure employing the combined double-layer and single-layer of shell elements.Blachut[9]analyzed the first ply failure of composite toroidal pressure hull based on a single,symmetric lamination.Lee[10]optimized the design load of composite sandwich cylinder under external hydrostatic pressure considering the buckling and static material failure.

    From reviewing on the previous studies,the literatures on analyzing the design pressure factor of filament-wound composite material pressure hulls subjected to hydrostatic pressure both considering the structural stability and material failure are rarely reported.Accordingly,an optimization of composite pressure hull for underwater vehicle was conducted for Carbon/epoxy,Boron/epoxy and Glass/epoxy composite.First,an optimization platform was set up to maximize the design pressure factor.Afterwards,the effects of design variables on buckling pressure,material failure pressure,and design pressure were analyzed.Next,the design pressure factors were achieved for three candidates composite material.Finally,according to the current results,new directions were pointed for the future research.

    1 Analytical fundamentals

    The structure model used to represent the composite laminated shell-structure is shown in Fig.1.The 1,2 and 3 are the principal directions of an orthotropic lamina,described as follows:

    Direction 1 is principal fiber direction which is also called fiber longitudinal direction.Direction 2 is transversal direction which is in-plane direction perpendicular to fiber direction.Direction 3 is normal direction which is out-of-plane direction perpendicular to fiber direction.For any point P in the surface,the Radius vector is ρ.Parameters α and β are Gauss coordinate.where ρi(i=1, )

    2 and n are base vector and normal vector;A and B are the Lamé parameters.

    Fig.1 Gauss coordinate and components of force and moment

    1.1 Constitutive equations

    The classical lamination theory is applied to analyze the mechanical behavior of the composite laminate.As shown in Fig.1,the in-plane stress components are given by:

    The elements of the kthtransformed reduced stiffness matrixis referred to the reference of the surface coordinates(α,β, )n and given in the following:

    where m=cosθ,n=sinθ and θ is the fiber orientation angle of the laminate;Qijare related to the commonly known engineering constants(E11,E22,G12,ν12)and are described as follows:

    Using Kirchhoff plate theory[11],the displacements of a material point at distance z from the middle surface are:

    where u0,v0and w0are the displacements of a generic point(α, β )on the shell middle surface(z=0 )in α, β and n directions,respectively.The strain-displacement relations in terms of the middle surface strains and shell curvatures are stated as follows:

    where the middle surface strains and curvatures are given as follows[12]:

    The resultant forces and moments per unit length applied at the middle surface are obtained by the integrals:

    where h is the total shell thickness,n is the number of different layers in the stacking sequence,and zk(k=1,2,…,n )is the through thickness position of kthlayer from the middle surface.Substituting the stresses in terms of strains given by Eqs.(1)and(6)into Eqs.(7)and(8),we get:

    where Aij,Bijand Dijare called the extensional stiffness,coupling stiffness and bending stiffness,respectively and given as follows:

    where tkis the thickness of the kthlayer.

    1.2 Equilibrium equations

    Under the environment of hydrostatic pressure,P represents the hydrostatic pressure.Pi(i= α,β,n )are the components of hydrostatic pressure P in ρ1,ρ2(base vector)and n(normal vector)direction,respectively.The equilibrium equations of the shell under the hydrostatic pressure are stated as follows:

    2 Optimum design of filament-wound composites pressure hull

    2.1 Model description

    As shown in Fig.2,the filament-wound composite shell model is generally composed of number of layers(2N)for both type A and type B stacking sequence.In this study,the design variables were the fiber angles(θi)and the corresponding number of layer.The given total number of layer was 2N(N=20,25,30,35),corresponding to the shell thickness t=8,10,12,14 mm.The objective of the optimization was to maximize the design pressure factor KP,which can be taken in the form of the following ratio KP=Pde/m.Pdeis design pressure,m is the mass of the pressure hull.In order to obtain the maximum design pressure factor KP,the maximum design pressure Pdemust be derived.For each given design variable θiand t,material failure pressure Pfand buckling pressure Pcrcomposed two feasible regions.The lower value between the two feasible regions composed the optimal feasible region,and the greatest pressure of the optimal feasible region became the optimum,i.e.the maximum design pressure.The maximum design pressure factor was stated as follows:

    Fig.2 Design variables of the filament-wound composite pressure hull

    The composites pressure vessel was constituted of cylindrical shell and hemispherical heads.The dimensions were as follows:an internal diameter of 300 mm and a length of 750 mm.ANSYS,a commercial program for finite element analysis,was used to for static analysis and buckling analysis.The Tsai-Wu failure criterion was used to assess the ability of composite cylindrical hull to withstand overstressing failure[13].SHELL281 element defined by eight nodes with six degrees of freedom at each node was used to mesh the pressure hull model.The nodes at each end of the finite element model were constrained translations in the y and z axes,and rotations in the axial direction i.e.the x axe.All nodes in the symmetry plane in the axial direction were restricted rotations about the x,y,z axes,and Ux=0.Carbon/epoxy,Boron/epoxy and Glass/epoxy composite materials were selected to analyze.The properties of the unidirectional composite prepreg were given in Tab.1.

    Tab.1 Material properties[2,14]

    2.2 Optimization platform

    The optimization platform was set up by interworking genetic algorithm and finite element analysis shown in Fig.3.Firstly,an initial population was created,which was declared to the design variable for parametric modeling.Then,static analysis was conducted for material failure pressure,and then buckling pressure was achieved by stability analysis.The minor one was treated as design pressure.The design pressure factor was calculated as fitness function and returned to genetic algorithm.Repeat the above process until each individual in the initial population was analyzed.Crossover and mutation were conducted in the genetic operators,and Elite were chosen based on their fitness to obtain a new generation.Update population and conduct analysis like above cycle for ten generations and the design optimization was completed until the fitness function was converged.

    3 Numerical results and discussion

    For Carbon/epoxy composite-Type A(t=8 mm),the maximum design pressure was 13.5 MPa at[(±60°)8/(±45°)12]shown in Fig.6,which was determined by the failure pressure,because the buckling pressure was 15.32 MPa at that point.The buckling pressure and failure pressure are shown in Fig.4 and Fig.5,respectively.The maximum buckling pressure was 15.96 MPa at[(±60°)8/(±40°)12]whose failure pressure was 11.25 MPa,and the maximum failure pressure was 14.63 MPa at[(±35°)8/(±55°)12]and[(±40°)8/(±55°)12]whose buckling pressure was 11.13 MPa and 11.65 MPa,respectively;therefore,neither the maximum buckling pressure nor the maximum failure pressure was the maximum design pressure.

    As for Boron/epoxy composite-Type A(t=8 mm),the buckling pressure,failure pressure and design pressure surfaces are shown in Figs.7-9,respectively.Overall,the failure pressure was higher than the buckling pressure except for some design variables in some corner areas.Although the maximum failure pressure of 70 MPa was found at[(±70°)8/(±40°)12],the corresponding buckling pressure was 23.01 MPa only.The maximum design pressure was determined by the maximum buckling pressure.The optimum pressure was 26.31 MPa at[(±60°)8/(±40°)12].

    Fig.4 Buckling pressure of Carbon/epoxy composite-Type A(t=8 mm)

    Fig.5 Failure pressure of Carbon/epoxy composite-Type A(t=8 mm)

    Fig.6 Design pressure of Carbon/epoxy composite-Type A(t=8 mm)

    Fig.7 Buckling pressure of Boron/epoxy composite-Type A(t=8 mm)

    Fig.8 Failure pressure of Boron/epoxy composite-Type A(t=8 mm)

    Fig.9 Design pressure of Boron/epoxy composite-Type A(t=8 mm)

    Fig.10 Buckling pressure of Glass/epoxy composite-Type A(t=8 mm)

    Fig.11 Failure pressure of Glass/epoxy composite-Type A(t=8 mm)

    Fig.12 Design pressure of Glass/epoxy composite-Type A(t=8 mm)

    Fig.13 Buoyancy factor of metal alloys and composite material

    For Glass/epoxy composite-Type A(t=8 mm),as shown in Figs.10-12,the material failure pressure was much higher than the buckling pressure all over the design variable.Therefore the design pressure surface was determined by buckling pressure,and the optimum pressure was 6.65 MPa at[(90°)3/(±65°)17].

    The buoyancy factor KF=FB/m,reflecting the ratio of buoyancy and mass,was also considered.FBis the mass of fluid displaced by the body volume.As shown in Fig.13,the buoyancy factors were given,which had a downtrend for composite materials and metal alloys.Compared with metal alloy material,composite materials showed more ability to provide adequate buoyancy.This is very important for underwater vehicle.

    The buckling,failure and design pressure for Carbon,Boron and Glass/epoxy composite for Type A and Type B(t=8,10,12,14 mm)were presented and summarized in Figs.14-19.After reviewing the optimum solution,it was concluded as follows:

    For the three candidate’s composite materials,both the buckling pressure and material failure pressure increased significantly as the thickness of the pressure hull increased for both Type A and Type B.The growth rate of Type-B is higher than that of Type-A in varying degree.

    Fig.14 Carbon/epoxy composite-Type A

    Fig.15 Carbon/epoxy composite-Type B

    Fig.16 Boron/epoxy composite-Type A

    Fig.18 Glass/epoxy composite-Type A

    Fig.19 Glass/epoxy composite-Type B

    For Carbon/epoxy composite,the growth rate of buckling pressure is obviously higher than that of material failure pressure;therefore the material failure pressure determined the design pressure.For Boron/epoxy composite,the material failure pressure is larger than buckling pressure,so the bucking pressure determined the design pressure except the thickness of pressure hull equaling to 14 mm.For Glass/epoxy composite,the growth rate of material failure pressure is obviously higher than that of buckling pressure,so the bucking pressure determined the de-sign pressure.That is contrary to Carbon/epoxy composite.

    Fig.20 Design pressure factor of Carbon/epoxy composite

    Fig.21 Design pressure factor of Boron/epoxy composite

    The results of design pressure factor were shown in Figs.20-22.From the analysis of the data,Type B showed more obvious advantages than Type A in mass efficiency.To be more specific,for Carbon/epoxy composite,the optimum design pressure factor showed volatility,and got the maximum value at the t=10 mm.For Boron/epoxy composite,the optimum design pressure factor showed solid growth as the thickness of the pressure hull increased.For Glass/epoxy composite,the mass efficiency was the lowest in the three candidate’s composite material.

    4 Conclusions

    Two types of layup including[(±θ1)m/(±θ2)N-m]and[(±θ1)m/(±θ2)N-2m/(±θ3)m]were optimized for three candidate’s composite material.Applying the optimization platform,both buckling behavior and material failure were investigated to maximum the design pressure factor for composites pressure hull under external hydrostatic pressure.In the process of optimization,buckling pressure,material failure pressure and design pressure were analyzed for various values of design variables.The effects of thickness of pressure hull on buoyancy factor were also evaluated.Two kinds of metal alloys were analyzed to compare with the three candidate’s composite material.The following observations were made:

    Either buckling pressure or material failure pressure may determine design pressure for the three candidate’s composite material.For Carbon/epoxy composite,material failure re-stricted design pressure seriously.But on the contrary for Boron/epoxy and Glass/epoxy composite,buckling pressure determined design pressure.

    Types of layup had a significant impact on design pressure factor.Detailed speaking,type of layup[(±θ1)m/(±θ2)N-2m/(±θ3)m]increased the value of design pressure factor in varying degrees,compared with type of layup[(±θ1)m/(±θ2)N-m].As mentioned above,similar situation happened on the buckling pressure,material failure pressure and design pressure.

    Through the analysis of the buoyancy factor,composite material provided sufficient reserve buoyancy.That makes the underwater vehicle have good carrying capacity.Compared with applying metal alloys,applying composite material may reduce the size of underwater vehicle because of no need to fill large amount of buoyancy material.

    Because of the excellent performance,composite material has been widely applied in ocean structures.The results presented in the paper can serve as a valuable reference in design of underwater vehicle.However,to dive into deeper sea,the conflict of buckling pressure and material failure should be resolved.New way of enhancement,variable thickness,ribs or metal embedded would be effective methods,and the relevant research works would be conducted.Especially,the failure theory and criterion of composite pressure shell under the hydrostatic pressure would be the top priority.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(Grant Nos.51479170 and 11502210)and National Key R&D Program(Grant No.2016YFC0301300).

    [1]Ross C T F.A conceptual design of an underwater vehicle[J].Ocean Engineering,2006,33(16):2087-2104.

    [2]Moon C J,Kim I H,Choi B H,et al.Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications[J].Composite Structures,2010,92(9):2241-2251.

    [3]Maalawi K Y.Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure[J].Composite Structures,2011,93(2):351-359.

    [4]Nguyen H L T,Elishakoff I,Nguyen V T.Buckling under the external pressure of cylindrical shells with variable thickness[J].International Journal of Solids and Structures,2009,46(24):4163-4168.

    [5]Messager T,Pyrz M,Gineste B,et al.Optimal laminations of thin underwater composite cylindrical vessels[J].Composite Structures,2002,58(4):529-537.

    [6]Lopatin A V,Morozov E V.Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure[J].Composite Structures,2015,122(122):209-216.

    [7]Tafreshi A.Delamination buckling and postbuckling in composite cylindrical shells under external pressure[J].Composite Structures,2004,42(10):1379-1404.

    [8]Tafreshi A.Delamination buckling and postbuckling in composite cylindrical shells under combined axial compression and external pressure[J].Compos Struct,2006,72:401-418.

    [9]Blachut J.Buckling and first ply failure of composite toroidal pressure hull[J].Computers&Structures,2004,82(23):1981-1992.

    [10]Lee G C,Kweon J H,Choi J H.Optimization of composite sandwich cylinders for underwater vehicle application[J].Composite Structures,2013,96(4):691-697.

    [11]Simitses G J,Hutchinson J W.An Introduction to the elastic stability of structures[M].Prentice-Hall,1976.

    [12]Brush D O,Almroth B O.Buckling of bars,plates,and shells[M].US:McGraw-Hill Inc.,1975.

    [13]Tsai S W,Hahn T H.Introduction to composite materials[J].West Port:Technomic Publishing Company,1980,68(3):331-332.

    [14]Liang C C,Chen H W,Jen C Y.Optimum design of filament-wound multilayer-sandwich submersible pressure hulls[J].Ocean Engineering,2003,30(15):1941-1967.

    靜水壓力下纖維纏繞復合材料殼體耐壓因子的優(yōu)化設(shè)計

    沈克純a,b, 潘 光a,b, 施 瑤a,b

    (西北工業(yè)大學a.航海學院;b.無人水下運載技術(shù)重點實驗室,西安 710072)

    基于遺傳算法和數(shù)值分析一體式優(yōu)化平臺,以設(shè)計壓力因子為目標函數(shù),結(jié)構(gòu)失穩(wěn)和材料靜強度破壞為約束條件,纖維纏繞策略和鋪層方式為變量,對靜水壓力作用下碳/環(huán)氧、硼/環(huán)氧和玻璃/環(huán)氧等三種復合材料殼體的耐壓因子進行優(yōu)化設(shè)計。結(jié)果表明,復合材料耐壓殼體在深海環(huán)境下能夠提供充足的正浮力;對于不同的復合材料,最大設(shè)計壓力受限的因素有所不同,主要受限于結(jié)構(gòu)失穩(wěn)或材料強度破壞;纖維纏繞策略和鋪層方式對設(shè)計壓力因子具有顯著影響。文中最后提出變厚度設(shè)計、復合材料肋骨等增強方式,旨在解決結(jié)構(gòu)失穩(wěn)或材料強度破壞對最大設(shè)計壓力的限制,研究成果可為復合材料耐壓殼體結(jié)構(gòu)設(shè)計提供參考。

    靜水壓力;復合材料殼體;優(yōu)化設(shè)計;失穩(wěn);破壞

    U663.1

    A

    國家自然科學基金資助項目(51479170,11502210);國家重點研發(fā)計劃(2016YFC0301300)

    沈克純(1987-),男,西北工業(yè)大學博士研究生;

    潘 光(1969-),男,西北工業(yè)大學教授,博士生導師;

    施 瑤(1988-),男,西北工業(yè)大學講師。

    U663.1 Document code:A

    10.3969/j.issn.1007-7294.2017.12.010

    date:2017-09-01

    Supported by the National Natural Science Foundation of China(Grant Nos.51479170 and 11502210);by the National Key Research and Development Program(Grant No.2016YFC0301300)

    Biography:SHEN Ke-chun(1987-),male,Ph.D.student of Northwestern Polytechnical University,E-mail:shenkechun@126.com;PAN Guang(1969-),male,professor/tutor,correponding author;E-mail:panguang601@163.com;SHI Yao(1988-),male,lecturer,E-mail:nh880408@gmail.com.

    1007-7294(2017)12-1551-13

    猜你喜歡
    靜水壓力西北工業(yè)大學耐壓
    環(huán)肋對耐壓圓柱殼碰撞響應(yīng)的影響
    鈦合金耐壓殼在碰撞下的動力屈曲數(shù)值模擬
    耐壓軟管在埋地管道腐蝕治理中的研究與應(yīng)用
    新型裝卸軟管耐壓試驗方法探討
    作品三
    作品一
    二次供水豎向分區(qū)技術(shù)分析
    價值工程(2018年19期)2018-08-29 11:05:58
    如何做好救生筏壓力釋放器及相關(guān)部件的連接
    中國船檢(2018年6期)2018-06-22 09:40:22
    西北工業(yè)大學學報2016年第34卷總目次(總第157期~總第162期(2016年)
    巖土類材料的靜水壓力效應(yīng)分析
    山西建筑(2015年23期)2015-04-05 21:06:46
    人人妻人人爽人人添夜夜欢视频| 色网站视频免费| 亚洲精品成人av观看孕妇| 一级a做视频免费观看| 满18在线观看网站| 美女中出高潮动态图| 日本欧美国产在线视频| 中文精品一卡2卡3卡4更新| 两个人的视频大全免费| av在线app专区| 啦啦啦视频在线资源免费观看| 观看av在线不卡| 女性生殖器流出的白浆| 日日摸夜夜添夜夜添av毛片| 亚洲,一卡二卡三卡| 视频在线观看一区二区三区| 精品国产乱码久久久久久小说| 国产深夜福利视频在线观看| 日韩av免费高清视频| 一级毛片黄色毛片免费观看视频| 天堂俺去俺来也www色官网| 黑人猛操日本美女一级片| 精品人妻偷拍中文字幕| 秋霞伦理黄片| 国产日韩欧美视频二区| 中国国产av一级| 一区在线观看完整版| 国产欧美亚洲国产| 丝袜在线中文字幕| 综合色丁香网| av福利片在线| 亚洲av二区三区四区| 日日啪夜夜爽| 大香蕉97超碰在线| 有码 亚洲区| 亚洲激情五月婷婷啪啪| 欧美老熟妇乱子伦牲交| 亚洲av综合色区一区| 久久精品久久精品一区二区三区| 久久精品久久久久久噜噜老黄| 久久国产精品大桥未久av| 丝袜喷水一区| 女性被躁到高潮视频| 色哟哟·www| 亚洲精品视频女| 高清视频免费观看一区二区| 欧美 日韩 精品 国产| 毛片一级片免费看久久久久| 久久久久久伊人网av| 寂寞人妻少妇视频99o| 另类亚洲欧美激情| 亚洲精品中文字幕在线视频| 在线观看免费高清a一片| 菩萨蛮人人尽说江南好唐韦庄| 在线天堂最新版资源| 免费人成在线观看视频色| 99热这里只有是精品在线观看| 最近中文字幕高清免费大全6| 最新中文字幕久久久久| 老司机影院毛片| 久久婷婷青草| 亚洲国产欧美日韩在线播放| 国产精品久久久久久av不卡| 亚洲一级一片aⅴ在线观看| 日本av免费视频播放| 街头女战士在线观看网站| 午夜激情久久久久久久| 中国三级夫妇交换| 国产探花极品一区二区| 丝瓜视频免费看黄片| 一区二区三区免费毛片| 国产一区亚洲一区在线观看| a级毛片在线看网站| 日韩成人伦理影院| 久久精品国产亚洲av天美| 大香蕉97超碰在线| 在线播放无遮挡| 亚洲国产欧美日韩在线播放| 性色avwww在线观看| 色哟哟·www| 午夜av观看不卡| 99视频精品全部免费 在线| 青春草视频在线免费观看| 热re99久久国产66热| 99久久中文字幕三级久久日本| 成年美女黄网站色视频大全免费 | 欧美变态另类bdsm刘玥| 国产精品久久久久久久久免| 婷婷色综合www| 男女国产视频网站| 精品国产乱码久久久久久小说| 永久免费av网站大全| 人妻制服诱惑在线中文字幕| 午夜影院在线不卡| 婷婷成人精品国产| 最近手机中文字幕大全| 九色成人免费人妻av| 精品久久久久久久久亚洲| 夜夜看夜夜爽夜夜摸| 久久亚洲国产成人精品v| videos熟女内射| 久久久精品区二区三区| 人妻人人澡人人爽人人| 制服人妻中文乱码| 国产精品秋霞免费鲁丝片| a级毛片在线看网站| 国产高清不卡午夜福利| 精品人妻在线不人妻| 久久精品国产a三级三级三级| 国产精品99久久99久久久不卡 | 五月玫瑰六月丁香| 亚洲精品乱码久久久久久按摩| .国产精品久久| 久久久欧美国产精品| 国产在线一区二区三区精| 久久久久国产精品人妻一区二区| 亚洲综合精品二区| 观看美女的网站| 亚洲欧洲日产国产| 桃花免费在线播放| 亚洲天堂av无毛| 天天操日日干夜夜撸| 久久国产精品大桥未久av| 亚洲,欧美,日韩| 免费人成在线观看视频色| 亚洲精品第二区| 亚洲av免费高清在线观看| 在线观看免费高清a一片| 9色porny在线观看| 有码 亚洲区| 亚洲一级一片aⅴ在线观看| 午夜av观看不卡| 视频在线观看一区二区三区| 欧美xxⅹ黑人| av有码第一页| 熟女电影av网| 成人毛片60女人毛片免费| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院入口| 国产免费一级a男人的天堂| 欧美激情 高清一区二区三区| 丁香六月天网| 国产精品蜜桃在线观看| 国产乱来视频区| 中文乱码字字幕精品一区二区三区| 校园人妻丝袜中文字幕| 精品一区在线观看国产| 日韩中字成人| 永久免费av网站大全| 中文字幕人妻丝袜制服| 亚洲成色77777| 久久久久久久久久成人| 国产又色又爽无遮挡免| 亚洲av成人精品一区久久| 成年av动漫网址| 飞空精品影院首页| 久久精品久久久久久久性| 国产精品一区www在线观看| 性色avwww在线观看| 在线观看免费高清a一片| 日本爱情动作片www.在线观看| 激情五月婷婷亚洲| 精品午夜福利在线看| 热99久久久久精品小说推荐| 亚洲第一av免费看| 97在线人人人人妻| 久久久久久久大尺度免费视频| 亚洲欧美一区二区三区国产| 国产免费视频播放在线视频| 亚洲国产av新网站| 国产一区二区在线观看日韩| 蜜臀久久99精品久久宅男| 久久热精品热| 91久久精品电影网| 欧美xxⅹ黑人| 男女免费视频国产| 精品国产一区二区三区久久久樱花| 精品酒店卫生间| 99re6热这里在线精品视频| kizo精华| 欧美老熟妇乱子伦牲交| 午夜免费男女啪啪视频观看| 青春草视频在线免费观看| 美女中出高潮动态图| 久久狼人影院| 中文字幕久久专区| 黄色欧美视频在线观看| 国产日韩欧美在线精品| 久久久a久久爽久久v久久| 日本91视频免费播放| 国产日韩欧美亚洲二区| 老女人水多毛片| 在线观看人妻少妇| 丝袜喷水一区| 国产色爽女视频免费观看| av在线老鸭窝| 午夜福利视频在线观看免费| videos熟女内射| 一个人免费看片子| 国产色爽女视频免费观看| 日本欧美视频一区| 成年女人在线观看亚洲视频| 两个人免费观看高清视频| 精品人妻在线不人妻| 国产午夜精品一二区理论片| 考比视频在线观看| 免费看不卡的av| 80岁老熟妇乱子伦牲交| 热99久久久久精品小说推荐| 国产伦理片在线播放av一区| 十八禁网站网址无遮挡| 亚洲无线观看免费| 十八禁网站网址无遮挡| 国产精品一区二区三区四区免费观看| 亚洲久久久国产精品| 亚洲精品美女久久av网站| www.av在线官网国产| 夫妻性生交免费视频一级片| 大陆偷拍与自拍| 亚洲欧美一区二区三区黑人 | 综合色丁香网| 观看美女的网站| 久久人人爽av亚洲精品天堂| 黄色怎么调成土黄色| 毛片一级片免费看久久久久| av卡一久久| 色婷婷久久久亚洲欧美| 女性被躁到高潮视频| 久久精品夜色国产| 晚上一个人看的免费电影| 国产深夜福利视频在线观看| 一级爰片在线观看| 亚洲人成网站在线观看播放| 久久精品国产亚洲av涩爱| 日韩熟女老妇一区二区性免费视频| 免费高清在线观看日韩| 成人毛片60女人毛片免费| 免费高清在线观看视频在线观看| 看非洲黑人一级黄片| 99久久中文字幕三级久久日本| 亚洲综合色网址| 亚洲国产精品一区三区| 国精品久久久久久国模美| 一本大道久久a久久精品| 亚洲人与动物交配视频| 国产精品久久久久久久久免| 久久久a久久爽久久v久久| 夜夜骑夜夜射夜夜干| av不卡在线播放| 狂野欧美白嫩少妇大欣赏| 欧美亚洲日本最大视频资源| 日日啪夜夜爽| 久久这里有精品视频免费| 国产精品99久久久久久久久| 久久国产精品大桥未久av| av网站免费在线观看视频| 蜜臀久久99精品久久宅男| 免费播放大片免费观看视频在线观看| 免费看不卡的av| 精品亚洲成国产av| 免费黄网站久久成人精品| 美女国产高潮福利片在线看| 午夜激情福利司机影院| 九色亚洲精品在线播放| 久久97久久精品| av卡一久久| 色哟哟·www| 国产黄片视频在线免费观看| 久久午夜福利片| 国产精品一二三区在线看| 亚洲成人av在线免费| av黄色大香蕉| 51国产日韩欧美| 亚洲精品国产av成人精品| 国产精品嫩草影院av在线观看| 亚洲国产精品成人久久小说| 国产视频内射| 亚洲不卡免费看| 欧美97在线视频| 伊人久久精品亚洲午夜| 黑丝袜美女国产一区| 男女啪啪激烈高潮av片| 婷婷色综合大香蕉| 亚洲av福利一区| 9色porny在线观看| 亚洲高清免费不卡视频| 国产黄色视频一区二区在线观看| 特大巨黑吊av在线直播| 成人综合一区亚洲| 在线精品无人区一区二区三| 老司机影院毛片| 亚洲av中文av极速乱| 亚洲av成人精品一二三区| 又粗又硬又长又爽又黄的视频| 一级二级三级毛片免费看| 美女cb高潮喷水在线观看| 久久精品国产亚洲网站| 国产深夜福利视频在线观看| 精品人妻在线不人妻| .国产精品久久| 久久久午夜欧美精品| 视频区图区小说| 有码 亚洲区| 毛片一级片免费看久久久久| 狂野欧美激情性bbbbbb| 黑人巨大精品欧美一区二区蜜桃 | 飞空精品影院首页| 日韩精品免费视频一区二区三区 | 99热这里只有是精品在线观看| 国产深夜福利视频在线观看| 国产精品人妻久久久久久| 国产成人精品在线电影| 精品人妻偷拍中文字幕| av福利片在线| 精品久久国产蜜桃| 一区二区三区免费毛片| 97精品久久久久久久久久精品| 高清毛片免费看| 国产精品国产av在线观看| 女人久久www免费人成看片| av网站免费在线观看视频| 精品国产一区二区久久| 免费久久久久久久精品成人欧美视频 | 中国国产av一级| av电影中文网址| 欧美日韩亚洲高清精品| 日韩精品免费视频一区二区三区 | 国产无遮挡羞羞视频在线观看| 欧美精品高潮呻吟av久久| 国产成人freesex在线| 日韩人妻高清精品专区| 亚洲国产精品专区欧美| 99九九线精品视频在线观看视频| 老司机亚洲免费影院| 99热这里只有精品一区| a级片在线免费高清观看视频| 肉色欧美久久久久久久蜜桃| 日本色播在线视频| 久久久精品94久久精品| 夜夜骑夜夜射夜夜干| 久久久久久久国产电影| 熟女av电影| 国产成人精品久久久久久| 99热国产这里只有精品6| 中国国产av一级| 简卡轻食公司| 亚洲国产毛片av蜜桃av| 亚洲av二区三区四区| av在线观看视频网站免费| 日本猛色少妇xxxxx猛交久久| 性色avwww在线观看| 国产欧美日韩一区二区三区在线 | 久久久国产一区二区| 一区二区三区乱码不卡18| 欧美日韩亚洲高清精品| 91精品一卡2卡3卡4卡| 亚洲av欧美aⅴ国产| 亚洲精品乱久久久久久| 少妇猛男粗大的猛烈进出视频| 建设人人有责人人尽责人人享有的| 久久久久久久亚洲中文字幕| 国产成人精品福利久久| 亚洲精品,欧美精品| √禁漫天堂资源中文www| 亚洲精品一二三| 国产成人精品久久久久久| 亚洲伊人久久精品综合| 免费观看性生交大片5| 天堂俺去俺来也www色官网| 亚洲丝袜综合中文字幕| 欧美xxⅹ黑人| 我的女老师完整版在线观看| 男男h啪啪无遮挡| 欧美丝袜亚洲另类| 亚洲中文av在线| 成人国产av品久久久| 美女福利国产在线| 天堂俺去俺来也www色官网| 久久精品熟女亚洲av麻豆精品| 精品国产露脸久久av麻豆| 亚洲欧美成人综合另类久久久| 黄片播放在线免费| 天堂俺去俺来也www色官网| 亚洲人成网站在线观看播放| 日韩一本色道免费dvd| 免费av中文字幕在线| 丝袜脚勾引网站| 男女无遮挡免费网站观看| 成人毛片60女人毛片免费| 中文精品一卡2卡3卡4更新| 色婷婷久久久亚洲欧美| 免费少妇av软件| 我的老师免费观看完整版| 啦啦啦在线观看免费高清www| 热99国产精品久久久久久7| 久久久国产欧美日韩av| 性高湖久久久久久久久免费观看| 美女主播在线视频| 亚洲情色 制服丝袜| 亚洲成人一二三区av| 日本黄色日本黄色录像| av福利片在线| 国产成人免费无遮挡视频| 免费黄网站久久成人精品| 亚洲成色77777| 日日撸夜夜添| 中文字幕精品免费在线观看视频 | 蜜桃久久精品国产亚洲av| 亚洲中文av在线| 亚洲怡红院男人天堂| 能在线免费看毛片的网站| 久久精品国产鲁丝片午夜精品| 大陆偷拍与自拍| 极品人妻少妇av视频| av在线播放精品| 免费av中文字幕在线| 91久久精品国产一区二区成人| 成人无遮挡网站| 亚洲精品成人av观看孕妇| 国产深夜福利视频在线观看| 亚洲欧美成人精品一区二区| 男女免费视频国产| 成人手机av| 中国国产av一级| 中文乱码字字幕精品一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲精品国产av蜜桃| 国产色婷婷99| 国产成人精品在线电影| 免费观看a级毛片全部| 男女边吃奶边做爰视频| 久久国内精品自在自线图片| 中文字幕亚洲精品专区| 日韩成人伦理影院| a级毛片在线看网站| 少妇的逼好多水| 王馨瑶露胸无遮挡在线观看| 久热久热在线精品观看| 久久毛片免费看一区二区三区| 久久久久久久久久久免费av| 99热国产这里只有精品6| 在线观看美女被高潮喷水网站| 国产精品一区www在线观看| 久久久a久久爽久久v久久| 国产高清不卡午夜福利| 亚洲国产av新网站| 91久久精品国产一区二区成人| 国产精品久久久久久精品古装| av专区在线播放| 欧美精品人与动牲交sv欧美| 国产一区亚洲一区在线观看| 亚洲成人手机| 免费黄网站久久成人精品| 亚洲高清免费不卡视频| 久久人人爽人人片av| 国产不卡av网站在线观看| 国产午夜精品久久久久久一区二区三区| 大片电影免费在线观看免费| 欧美日韩国产mv在线观看视频| 国产爽快片一区二区三区| 国产在线免费精品| 婷婷色综合大香蕉| 精品少妇久久久久久888优播| 性色av一级| 欧美激情国产日韩精品一区| 免费人妻精品一区二区三区视频| 一级毛片电影观看| 婷婷色综合www| 国产一区有黄有色的免费视频| 国产日韩欧美在线精品| 99精国产麻豆久久婷婷| 亚洲av男天堂| 一本久久精品| 久久久久久人妻| 国产在线免费精品| 精品久久久久久久久亚洲| 久久综合国产亚洲精品| 热re99久久精品国产66热6| 亚洲性久久影院| 国产一区二区三区av在线| 亚洲av电影在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 热99久久久久精品小说推荐| 久久久午夜欧美精品| 青春草亚洲视频在线观看| 亚洲人与动物交配视频| 午夜免费观看性视频| 天天操日日干夜夜撸| 一级片'在线观看视频| 美女cb高潮喷水在线观看| 青春草视频在线免费观看| 国产成人精品久久久久久| 大码成人一级视频| 国产亚洲精品久久久com| 精品一区二区三卡| 国产永久视频网站| 久久午夜综合久久蜜桃| 在线观看www视频免费| 亚洲,欧美,日韩| 欧美bdsm另类| 99九九在线精品视频| 国产色爽女视频免费观看| 中文天堂在线官网| 99热网站在线观看| 美女cb高潮喷水在线观看| 亚洲美女搞黄在线观看| 国产白丝娇喘喷水9色精品| 视频区图区小说| 亚洲国产最新在线播放| 午夜影院在线不卡| 22中文网久久字幕| 国产日韩一区二区三区精品不卡 | 日韩 亚洲 欧美在线| 国产伦理片在线播放av一区| 亚洲熟女精品中文字幕| 亚洲精品av麻豆狂野| 内地一区二区视频在线| 国产在线视频一区二区| 日韩伦理黄色片| 在线观看免费高清a一片| 老女人水多毛片| av网站免费在线观看视频| 18禁在线播放成人免费| 美女视频免费永久观看网站| 少妇高潮的动态图| 亚洲av.av天堂| 我要看黄色一级片免费的| av专区在线播放| 黄片无遮挡物在线观看| 亚洲高清免费不卡视频| 国产色爽女视频免费观看| 日本av免费视频播放| 久久午夜福利片| 精品亚洲成国产av| 男女边摸边吃奶| 91在线精品国自产拍蜜月| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 中文字幕最新亚洲高清| av在线老鸭窝| 最新的欧美精品一区二区| 日日摸夜夜添夜夜爱| tube8黄色片| 男女边摸边吃奶| 日日爽夜夜爽网站| 精品久久久噜噜| 2022亚洲国产成人精品| 亚洲av免费高清在线观看| 久久毛片免费看一区二区三区| 欧美日韩精品成人综合77777| 插阴视频在线观看视频| 日韩欧美一区视频在线观看| 黄片无遮挡物在线观看| 成人无遮挡网站| 80岁老熟妇乱子伦牲交| 欧美日韩精品成人综合77777| 最近2019中文字幕mv第一页| 国产精品99久久久久久久久| 亚洲av男天堂| 免费黄色在线免费观看| 亚洲中文av在线| 欧美少妇被猛烈插入视频| 亚洲不卡免费看| 母亲3免费完整高清在线观看 | 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 日日摸夜夜添夜夜添av毛片| 欧美精品一区二区免费开放| av一本久久久久| 久久久久久久国产电影| 看十八女毛片水多多多| 色婷婷av一区二区三区视频| a级毛片黄视频| 免费看光身美女| 在线观看国产h片| 精品人妻一区二区三区麻豆| 亚洲精品自拍成人| 亚洲国产最新在线播放| 免费看不卡的av| 日本午夜av视频| 国语对白做爰xxxⅹ性视频网站| 男人添女人高潮全过程视频| 欧美人与性动交α欧美精品济南到 | 99久久人妻综合| 国产成人精品无人区| 亚洲精品国产av成人精品| 黑人巨大精品欧美一区二区蜜桃 | 国产成人91sexporn| 熟女人妻精品中文字幕| 成人免费观看视频高清| 高清av免费在线| 亚洲不卡免费看| 久久久亚洲精品成人影院| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 亚洲精品国产色婷婷电影| 日日啪夜夜爽| 国产精品国产三级专区第一集| 午夜福利影视在线免费观看| 免费看光身美女| 久久久精品94久久精品| 老熟女久久久| 街头女战士在线观看网站| 亚洲四区av| 亚洲内射少妇av| 一级黄片播放器| 国产女主播在线喷水免费视频网站| 国产av国产精品国产| 午夜免费观看性视频| 国产一区二区在线观看av| 99热这里只有是精品在线观看| freevideosex欧美| 老司机亚洲免费影院| 麻豆成人av视频| 久久99热这里只频精品6学生|