• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Composites Shell Subjected to Hydrostatic Pressure to Maximize Design Pressure Factor

    2018-01-04 08:25:03SHENKechunPANGuangSHIYao
    船舶力學 2017年12期
    關(guān)鍵詞:靜水壓力西北工業(yè)大學耐壓

    SHEN Ke-chun,PAN Guang,SHI Yao

    (a.School of Marine Science and Technology;b.Key Laboratory for Unmanned Underwater Vehicle,Northwestern Polytechnical University,Xi’an 710072,China)

    Optimization of Composites Shell Subjected to Hydrostatic Pressure to Maximize Design Pressure Factor

    SHEN Ke-chuna,b,PAN Guanga,b,SHI Yaoa,b

    (a.School of Marine Science and Technology;b.Key Laboratory for Unmanned Underwater Vehicle,Northwestern Polytechnical University,Xi’an 710072,China)

    This paper presented an optimization design of composites pressure hull subjected to hydrostatic pressure.An Optimization Platform was set up by interworking genetic algorithm and numerical analysis.The design pressure factor was considered as the objective function.Buckling and material failure were constraint conditions.Types of layup,fiber angle and ply number are optimized for Carbon/epoxy,Boron/epoxy and Glass/epoxy composites.The results revealed that the buckling pressure or the material failure pressure would restrict the design pressure for different kind of composites.Different types of layup impacted the design pressure factor significantly.Application of composite materials for deep-water pressure shell had more reserve buoyancy.Results of this study could provide a valuable reference for designers of underwater vehicles.And this paper suggests that new way of enhancement,such as variable thickness,composites ribs would be used to solve the conflict of buckling pressure and material failure pressure,and increase the smaller one to improve the design pressure.

    hydrostatic pressure;composites pressure shell;optimization;buckling;failure

    0 Introduction

    Some three-quarters of the Earth’s surface are covered by water and only little of the ocean bottom has been explored.The greatest ocean depth of the oceans is 11.52 km.Most underwater vehicles can only dive to a depth of about 1 500 m which is much less than the average depth of the oceans that is between 4 000 and 5 000 m.

    For an underwater vehicle in deep sea,reserve buoyancy is required for integral structure,and weight reduction is expected for more efficient performance.This can be easily met by applying composite materials.Composite materials have an excellent specific stiffness and strength to withstand very high external pressure,in addition,sound absorption and corrosion resistance are crucially important for underwater vehicles[1].When designing composites pressure vessel subjected to hydrostatic pressure,load carrying capacity is priority.Buckling andstatic material failure may be caused by insufficient rigidity and lack of strength.There has been considerable amount of work carried out on buckling analysis of composites material structures subjected to hydrostatic pressure.Moon[2]investigated the buckling behavior of filament-wound carbon/epoxy composite cylinders under external hydrostatic pressure through finite element analysis and testing.Maalawi[3]presented a mathematical model to enhance the buckling stability of composite cylinders under external pressure.Nguyan[4]studied the stability of the perfect cylindrical shell variable thickness by introducing the coupled linearized governing stability equation for cylindrical shell under the external pressure.Messager[5]maximized the stability limits of thin-walled laminated composite vessels for underwater vehicles.Lopatin[6]studied the buckling of the clamped-clamped sandwich cylindrical shell under uniform external pressure.As for the failure behavior of composites material pressure hulls,a number of papers are available.Tafreshi[7-8]studied the effect of delamination of composite cylindrical shells under external pressure employing the combined double-layer and single-layer of shell elements.Blachut[9]analyzed the first ply failure of composite toroidal pressure hull based on a single,symmetric lamination.Lee[10]optimized the design load of composite sandwich cylinder under external hydrostatic pressure considering the buckling and static material failure.

    From reviewing on the previous studies,the literatures on analyzing the design pressure factor of filament-wound composite material pressure hulls subjected to hydrostatic pressure both considering the structural stability and material failure are rarely reported.Accordingly,an optimization of composite pressure hull for underwater vehicle was conducted for Carbon/epoxy,Boron/epoxy and Glass/epoxy composite.First,an optimization platform was set up to maximize the design pressure factor.Afterwards,the effects of design variables on buckling pressure,material failure pressure,and design pressure were analyzed.Next,the design pressure factors were achieved for three candidates composite material.Finally,according to the current results,new directions were pointed for the future research.

    1 Analytical fundamentals

    The structure model used to represent the composite laminated shell-structure is shown in Fig.1.The 1,2 and 3 are the principal directions of an orthotropic lamina,described as follows:

    Direction 1 is principal fiber direction which is also called fiber longitudinal direction.Direction 2 is transversal direction which is in-plane direction perpendicular to fiber direction.Direction 3 is normal direction which is out-of-plane direction perpendicular to fiber direction.For any point P in the surface,the Radius vector is ρ.Parameters α and β are Gauss coordinate.where ρi(i=1, )

    2 and n are base vector and normal vector;A and B are the Lamé parameters.

    Fig.1 Gauss coordinate and components of force and moment

    1.1 Constitutive equations

    The classical lamination theory is applied to analyze the mechanical behavior of the composite laminate.As shown in Fig.1,the in-plane stress components are given by:

    The elements of the kthtransformed reduced stiffness matrixis referred to the reference of the surface coordinates(α,β, )n and given in the following:

    where m=cosθ,n=sinθ and θ is the fiber orientation angle of the laminate;Qijare related to the commonly known engineering constants(E11,E22,G12,ν12)and are described as follows:

    Using Kirchhoff plate theory[11],the displacements of a material point at distance z from the middle surface are:

    where u0,v0and w0are the displacements of a generic point(α, β )on the shell middle surface(z=0 )in α, β and n directions,respectively.The strain-displacement relations in terms of the middle surface strains and shell curvatures are stated as follows:

    where the middle surface strains and curvatures are given as follows[12]:

    The resultant forces and moments per unit length applied at the middle surface are obtained by the integrals:

    where h is the total shell thickness,n is the number of different layers in the stacking sequence,and zk(k=1,2,…,n )is the through thickness position of kthlayer from the middle surface.Substituting the stresses in terms of strains given by Eqs.(1)and(6)into Eqs.(7)and(8),we get:

    where Aij,Bijand Dijare called the extensional stiffness,coupling stiffness and bending stiffness,respectively and given as follows:

    where tkis the thickness of the kthlayer.

    1.2 Equilibrium equations

    Under the environment of hydrostatic pressure,P represents the hydrostatic pressure.Pi(i= α,β,n )are the components of hydrostatic pressure P in ρ1,ρ2(base vector)and n(normal vector)direction,respectively.The equilibrium equations of the shell under the hydrostatic pressure are stated as follows:

    2 Optimum design of filament-wound composites pressure hull

    2.1 Model description

    As shown in Fig.2,the filament-wound composite shell model is generally composed of number of layers(2N)for both type A and type B stacking sequence.In this study,the design variables were the fiber angles(θi)and the corresponding number of layer.The given total number of layer was 2N(N=20,25,30,35),corresponding to the shell thickness t=8,10,12,14 mm.The objective of the optimization was to maximize the design pressure factor KP,which can be taken in the form of the following ratio KP=Pde/m.Pdeis design pressure,m is the mass of the pressure hull.In order to obtain the maximum design pressure factor KP,the maximum design pressure Pdemust be derived.For each given design variable θiand t,material failure pressure Pfand buckling pressure Pcrcomposed two feasible regions.The lower value between the two feasible regions composed the optimal feasible region,and the greatest pressure of the optimal feasible region became the optimum,i.e.the maximum design pressure.The maximum design pressure factor was stated as follows:

    Fig.2 Design variables of the filament-wound composite pressure hull

    The composites pressure vessel was constituted of cylindrical shell and hemispherical heads.The dimensions were as follows:an internal diameter of 300 mm and a length of 750 mm.ANSYS,a commercial program for finite element analysis,was used to for static analysis and buckling analysis.The Tsai-Wu failure criterion was used to assess the ability of composite cylindrical hull to withstand overstressing failure[13].SHELL281 element defined by eight nodes with six degrees of freedom at each node was used to mesh the pressure hull model.The nodes at each end of the finite element model were constrained translations in the y and z axes,and rotations in the axial direction i.e.the x axe.All nodes in the symmetry plane in the axial direction were restricted rotations about the x,y,z axes,and Ux=0.Carbon/epoxy,Boron/epoxy and Glass/epoxy composite materials were selected to analyze.The properties of the unidirectional composite prepreg were given in Tab.1.

    Tab.1 Material properties[2,14]

    2.2 Optimization platform

    The optimization platform was set up by interworking genetic algorithm and finite element analysis shown in Fig.3.Firstly,an initial population was created,which was declared to the design variable for parametric modeling.Then,static analysis was conducted for material failure pressure,and then buckling pressure was achieved by stability analysis.The minor one was treated as design pressure.The design pressure factor was calculated as fitness function and returned to genetic algorithm.Repeat the above process until each individual in the initial population was analyzed.Crossover and mutation were conducted in the genetic operators,and Elite were chosen based on their fitness to obtain a new generation.Update population and conduct analysis like above cycle for ten generations and the design optimization was completed until the fitness function was converged.

    3 Numerical results and discussion

    For Carbon/epoxy composite-Type A(t=8 mm),the maximum design pressure was 13.5 MPa at[(±60°)8/(±45°)12]shown in Fig.6,which was determined by the failure pressure,because the buckling pressure was 15.32 MPa at that point.The buckling pressure and failure pressure are shown in Fig.4 and Fig.5,respectively.The maximum buckling pressure was 15.96 MPa at[(±60°)8/(±40°)12]whose failure pressure was 11.25 MPa,and the maximum failure pressure was 14.63 MPa at[(±35°)8/(±55°)12]and[(±40°)8/(±55°)12]whose buckling pressure was 11.13 MPa and 11.65 MPa,respectively;therefore,neither the maximum buckling pressure nor the maximum failure pressure was the maximum design pressure.

    As for Boron/epoxy composite-Type A(t=8 mm),the buckling pressure,failure pressure and design pressure surfaces are shown in Figs.7-9,respectively.Overall,the failure pressure was higher than the buckling pressure except for some design variables in some corner areas.Although the maximum failure pressure of 70 MPa was found at[(±70°)8/(±40°)12],the corresponding buckling pressure was 23.01 MPa only.The maximum design pressure was determined by the maximum buckling pressure.The optimum pressure was 26.31 MPa at[(±60°)8/(±40°)12].

    Fig.4 Buckling pressure of Carbon/epoxy composite-Type A(t=8 mm)

    Fig.5 Failure pressure of Carbon/epoxy composite-Type A(t=8 mm)

    Fig.6 Design pressure of Carbon/epoxy composite-Type A(t=8 mm)

    Fig.7 Buckling pressure of Boron/epoxy composite-Type A(t=8 mm)

    Fig.8 Failure pressure of Boron/epoxy composite-Type A(t=8 mm)

    Fig.9 Design pressure of Boron/epoxy composite-Type A(t=8 mm)

    Fig.10 Buckling pressure of Glass/epoxy composite-Type A(t=8 mm)

    Fig.11 Failure pressure of Glass/epoxy composite-Type A(t=8 mm)

    Fig.12 Design pressure of Glass/epoxy composite-Type A(t=8 mm)

    Fig.13 Buoyancy factor of metal alloys and composite material

    For Glass/epoxy composite-Type A(t=8 mm),as shown in Figs.10-12,the material failure pressure was much higher than the buckling pressure all over the design variable.Therefore the design pressure surface was determined by buckling pressure,and the optimum pressure was 6.65 MPa at[(90°)3/(±65°)17].

    The buoyancy factor KF=FB/m,reflecting the ratio of buoyancy and mass,was also considered.FBis the mass of fluid displaced by the body volume.As shown in Fig.13,the buoyancy factors were given,which had a downtrend for composite materials and metal alloys.Compared with metal alloy material,composite materials showed more ability to provide adequate buoyancy.This is very important for underwater vehicle.

    The buckling,failure and design pressure for Carbon,Boron and Glass/epoxy composite for Type A and Type B(t=8,10,12,14 mm)were presented and summarized in Figs.14-19.After reviewing the optimum solution,it was concluded as follows:

    For the three candidate’s composite materials,both the buckling pressure and material failure pressure increased significantly as the thickness of the pressure hull increased for both Type A and Type B.The growth rate of Type-B is higher than that of Type-A in varying degree.

    Fig.14 Carbon/epoxy composite-Type A

    Fig.15 Carbon/epoxy composite-Type B

    Fig.16 Boron/epoxy composite-Type A

    Fig.18 Glass/epoxy composite-Type A

    Fig.19 Glass/epoxy composite-Type B

    For Carbon/epoxy composite,the growth rate of buckling pressure is obviously higher than that of material failure pressure;therefore the material failure pressure determined the design pressure.For Boron/epoxy composite,the material failure pressure is larger than buckling pressure,so the bucking pressure determined the design pressure except the thickness of pressure hull equaling to 14 mm.For Glass/epoxy composite,the growth rate of material failure pressure is obviously higher than that of buckling pressure,so the bucking pressure determined the de-sign pressure.That is contrary to Carbon/epoxy composite.

    Fig.20 Design pressure factor of Carbon/epoxy composite

    Fig.21 Design pressure factor of Boron/epoxy composite

    The results of design pressure factor were shown in Figs.20-22.From the analysis of the data,Type B showed more obvious advantages than Type A in mass efficiency.To be more specific,for Carbon/epoxy composite,the optimum design pressure factor showed volatility,and got the maximum value at the t=10 mm.For Boron/epoxy composite,the optimum design pressure factor showed solid growth as the thickness of the pressure hull increased.For Glass/epoxy composite,the mass efficiency was the lowest in the three candidate’s composite material.

    4 Conclusions

    Two types of layup including[(±θ1)m/(±θ2)N-m]and[(±θ1)m/(±θ2)N-2m/(±θ3)m]were optimized for three candidate’s composite material.Applying the optimization platform,both buckling behavior and material failure were investigated to maximum the design pressure factor for composites pressure hull under external hydrostatic pressure.In the process of optimization,buckling pressure,material failure pressure and design pressure were analyzed for various values of design variables.The effects of thickness of pressure hull on buoyancy factor were also evaluated.Two kinds of metal alloys were analyzed to compare with the three candidate’s composite material.The following observations were made:

    Either buckling pressure or material failure pressure may determine design pressure for the three candidate’s composite material.For Carbon/epoxy composite,material failure re-stricted design pressure seriously.But on the contrary for Boron/epoxy and Glass/epoxy composite,buckling pressure determined design pressure.

    Types of layup had a significant impact on design pressure factor.Detailed speaking,type of layup[(±θ1)m/(±θ2)N-2m/(±θ3)m]increased the value of design pressure factor in varying degrees,compared with type of layup[(±θ1)m/(±θ2)N-m].As mentioned above,similar situation happened on the buckling pressure,material failure pressure and design pressure.

    Through the analysis of the buoyancy factor,composite material provided sufficient reserve buoyancy.That makes the underwater vehicle have good carrying capacity.Compared with applying metal alloys,applying composite material may reduce the size of underwater vehicle because of no need to fill large amount of buoyancy material.

    Because of the excellent performance,composite material has been widely applied in ocean structures.The results presented in the paper can serve as a valuable reference in design of underwater vehicle.However,to dive into deeper sea,the conflict of buckling pressure and material failure should be resolved.New way of enhancement,variable thickness,ribs or metal embedded would be effective methods,and the relevant research works would be conducted.Especially,the failure theory and criterion of composite pressure shell under the hydrostatic pressure would be the top priority.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(Grant Nos.51479170 and 11502210)and National Key R&D Program(Grant No.2016YFC0301300).

    [1]Ross C T F.A conceptual design of an underwater vehicle[J].Ocean Engineering,2006,33(16):2087-2104.

    [2]Moon C J,Kim I H,Choi B H,et al.Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications[J].Composite Structures,2010,92(9):2241-2251.

    [3]Maalawi K Y.Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure[J].Composite Structures,2011,93(2):351-359.

    [4]Nguyen H L T,Elishakoff I,Nguyen V T.Buckling under the external pressure of cylindrical shells with variable thickness[J].International Journal of Solids and Structures,2009,46(24):4163-4168.

    [5]Messager T,Pyrz M,Gineste B,et al.Optimal laminations of thin underwater composite cylindrical vessels[J].Composite Structures,2002,58(4):529-537.

    [6]Lopatin A V,Morozov E V.Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure[J].Composite Structures,2015,122(122):209-216.

    [7]Tafreshi A.Delamination buckling and postbuckling in composite cylindrical shells under external pressure[J].Composite Structures,2004,42(10):1379-1404.

    [8]Tafreshi A.Delamination buckling and postbuckling in composite cylindrical shells under combined axial compression and external pressure[J].Compos Struct,2006,72:401-418.

    [9]Blachut J.Buckling and first ply failure of composite toroidal pressure hull[J].Computers&Structures,2004,82(23):1981-1992.

    [10]Lee G C,Kweon J H,Choi J H.Optimization of composite sandwich cylinders for underwater vehicle application[J].Composite Structures,2013,96(4):691-697.

    [11]Simitses G J,Hutchinson J W.An Introduction to the elastic stability of structures[M].Prentice-Hall,1976.

    [12]Brush D O,Almroth B O.Buckling of bars,plates,and shells[M].US:McGraw-Hill Inc.,1975.

    [13]Tsai S W,Hahn T H.Introduction to composite materials[J].West Port:Technomic Publishing Company,1980,68(3):331-332.

    [14]Liang C C,Chen H W,Jen C Y.Optimum design of filament-wound multilayer-sandwich submersible pressure hulls[J].Ocean Engineering,2003,30(15):1941-1967.

    靜水壓力下纖維纏繞復合材料殼體耐壓因子的優(yōu)化設(shè)計

    沈克純a,b, 潘 光a,b, 施 瑤a,b

    (西北工業(yè)大學a.航海學院;b.無人水下運載技術(shù)重點實驗室,西安 710072)

    基于遺傳算法和數(shù)值分析一體式優(yōu)化平臺,以設(shè)計壓力因子為目標函數(shù),結(jié)構(gòu)失穩(wěn)和材料靜強度破壞為約束條件,纖維纏繞策略和鋪層方式為變量,對靜水壓力作用下碳/環(huán)氧、硼/環(huán)氧和玻璃/環(huán)氧等三種復合材料殼體的耐壓因子進行優(yōu)化設(shè)計。結(jié)果表明,復合材料耐壓殼體在深海環(huán)境下能夠提供充足的正浮力;對于不同的復合材料,最大設(shè)計壓力受限的因素有所不同,主要受限于結(jié)構(gòu)失穩(wěn)或材料強度破壞;纖維纏繞策略和鋪層方式對設(shè)計壓力因子具有顯著影響。文中最后提出變厚度設(shè)計、復合材料肋骨等增強方式,旨在解決結(jié)構(gòu)失穩(wěn)或材料強度破壞對最大設(shè)計壓力的限制,研究成果可為復合材料耐壓殼體結(jié)構(gòu)設(shè)計提供參考。

    靜水壓力;復合材料殼體;優(yōu)化設(shè)計;失穩(wěn);破壞

    U663.1

    A

    國家自然科學基金資助項目(51479170,11502210);國家重點研發(fā)計劃(2016YFC0301300)

    沈克純(1987-),男,西北工業(yè)大學博士研究生;

    潘 光(1969-),男,西北工業(yè)大學教授,博士生導師;

    施 瑤(1988-),男,西北工業(yè)大學講師。

    U663.1 Document code:A

    10.3969/j.issn.1007-7294.2017.12.010

    date:2017-09-01

    Supported by the National Natural Science Foundation of China(Grant Nos.51479170 and 11502210);by the National Key Research and Development Program(Grant No.2016YFC0301300)

    Biography:SHEN Ke-chun(1987-),male,Ph.D.student of Northwestern Polytechnical University,E-mail:shenkechun@126.com;PAN Guang(1969-),male,professor/tutor,correponding author;E-mail:panguang601@163.com;SHI Yao(1988-),male,lecturer,E-mail:nh880408@gmail.com.

    1007-7294(2017)12-1551-13

    猜你喜歡
    靜水壓力西北工業(yè)大學耐壓
    環(huán)肋對耐壓圓柱殼碰撞響應(yīng)的影響
    鈦合金耐壓殼在碰撞下的動力屈曲數(shù)值模擬
    耐壓軟管在埋地管道腐蝕治理中的研究與應(yīng)用
    新型裝卸軟管耐壓試驗方法探討
    作品三
    作品一
    二次供水豎向分區(qū)技術(shù)分析
    價值工程(2018年19期)2018-08-29 11:05:58
    如何做好救生筏壓力釋放器及相關(guān)部件的連接
    中國船檢(2018年6期)2018-06-22 09:40:22
    西北工業(yè)大學學報2016年第34卷總目次(總第157期~總第162期(2016年)
    巖土類材料的靜水壓力效應(yīng)分析
    山西建筑(2015年23期)2015-04-05 21:06:46
    久热这里只有精品99| 午夜激情福利司机影院| 国产精品国产三级国产专区5o| 狠狠精品人妻久久久久久综合| 国产精品麻豆人妻色哟哟久久| 成人一区二区视频在线观看| 日本一本二区三区精品| 九草在线视频观看| freevideosex欧美| 夜夜看夜夜爽夜夜摸| 少妇人妻一区二区三区视频| 国产精品三级大全| 日韩欧美精品免费久久| 极品教师在线视频| 美女被艹到高潮喷水动态| 国产白丝娇喘喷水9色精品| 男人舔奶头视频| 最近最新中文字幕免费大全7| 国产高清有码在线观看视频| 亚洲欧美日韩另类电影网站 | 国产成人免费无遮挡视频| 免费在线观看成人毛片| 亚洲在线观看片| 网址你懂的国产日韩在线| av播播在线观看一区| 精品久久久久久久久av| 日韩欧美精品免费久久| 久久久久久久大尺度免费视频| 国产精品国产av在线观看| 亚洲电影在线观看av| 久久久久精品久久久久真实原创| 深爱激情五月婷婷| 精品人妻熟女av久视频| 亚洲人成网站高清观看| 黄色日韩在线| 免费观看a级毛片全部| 精品一区在线观看国产| 中文乱码字字幕精品一区二区三区| 高清毛片免费看| 伊人久久精品亚洲午夜| 国产精品.久久久| 黄色配什么色好看| 街头女战士在线观看网站| 亚洲欧洲日产国产| 日韩亚洲欧美综合| 新久久久久国产一级毛片| 黄色一级大片看看| 国产午夜精品久久久久久一区二区三区| 亚洲内射少妇av| 高清欧美精品videossex| 亚洲精品国产av蜜桃| 亚洲在久久综合| 日日啪夜夜撸| 精品久久国产蜜桃| 亚洲精品日本国产第一区| 丝袜喷水一区| 久久久久久久久久人人人人人人| 婷婷色综合大香蕉| 综合色丁香网| 秋霞在线观看毛片| 人妻 亚洲 视频| 交换朋友夫妻互换小说| 在线观看三级黄色| 精品久久久精品久久久| 欧美成人午夜免费资源| 国产精品一区二区三区四区免费观看| 91aial.com中文字幕在线观看| 久久ye,这里只有精品| 日韩 亚洲 欧美在线| 中文字幕久久专区| 天堂中文最新版在线下载 | 下体分泌物呈黄色| 亚洲av成人精品一区久久| 老司机影院毛片| 免费播放大片免费观看视频在线观看| 视频中文字幕在线观看| a级毛色黄片| 国产成人午夜福利电影在线观看| 国产永久视频网站| 一边亲一边摸免费视频| 亚洲av免费高清在线观看| 五月天丁香电影| 真实男女啪啪啪动态图| 美女脱内裤让男人舔精品视频| 亚洲怡红院男人天堂| 亚洲,一卡二卡三卡| 国产精品久久久久久精品古装| 日日摸夜夜添夜夜添av毛片| 亚洲精品自拍成人| 一级毛片电影观看| 国产美女午夜福利| 日韩欧美一区视频在线观看 | 直男gayav资源| 伊人久久精品亚洲午夜| 亚洲精品aⅴ在线观看| 男女边摸边吃奶| 久久久久久伊人网av| 国产精品三级大全| 一区二区三区免费毛片| 中文字幕亚洲精品专区| 国产精品99久久久久久久久| 免费看a级黄色片| 久久精品综合一区二区三区| 国产免费视频播放在线视频| 成人二区视频| 午夜视频国产福利| 亚洲经典国产精华液单| 午夜日本视频在线| 一本色道久久久久久精品综合| 69av精品久久久久久| 一级毛片我不卡| 久久久久久伊人网av| 一级毛片电影观看| 老司机影院成人| 亚洲国产色片| 观看免费一级毛片| 中文字幕久久专区| 国产成人精品福利久久| av福利片在线观看| 日本熟妇午夜| 大话2 男鬼变身卡| 在线观看av片永久免费下载| 成人黄色视频免费在线看| 在线天堂最新版资源| 熟女av电影| 国产女主播在线喷水免费视频网站| 成人国产av品久久久| 久久久精品免费免费高清| 五月开心婷婷网| 91午夜精品亚洲一区二区三区| 精品久久久久久久久亚洲| 欧美另类一区| 亚洲精品国产av成人精品| 女人被狂操c到高潮| av专区在线播放| 久久久久久久久久久免费av| 中文欧美无线码| 日韩av免费高清视频| 最后的刺客免费高清国语| av黄色大香蕉| 人妻一区二区av| 免费高清在线观看视频在线观看| 精品一区在线观看国产| 大码成人一级视频| 九草在线视频观看| 亚洲精品亚洲一区二区| 91久久精品国产一区二区三区| 国产一区二区亚洲精品在线观看| 日韩亚洲欧美综合| 亚洲av在线观看美女高潮| 搞女人的毛片| 国产一区二区三区av在线| 精品一区在线观看国产| 最近手机中文字幕大全| 亚洲不卡免费看| 在线精品无人区一区二区三 | 制服丝袜香蕉在线| 亚洲av男天堂| 王馨瑶露胸无遮挡在线观看| 女的被弄到高潮叫床怎么办| 久久亚洲国产成人精品v| 永久免费av网站大全| 日韩伦理黄色片| 欧美zozozo另类| 男人狂女人下面高潮的视频| 国产伦理片在线播放av一区| 91久久精品电影网| 亚洲av福利一区| 亚洲综合精品二区| 高清毛片免费看| 日本熟妇午夜| 国产真实伦视频高清在线观看| 欧美少妇被猛烈插入视频| 五月天丁香电影| 日本一本二区三区精品| 国产精品一区二区性色av| 一级毛片久久久久久久久女| 成人综合一区亚洲| 精品国产三级普通话版| 99热6这里只有精品| 欧美激情久久久久久爽电影| 一级毛片电影观看| videos熟女内射| 日韩人妻高清精品专区| 一级毛片我不卡| 18+在线观看网站| 又大又黄又爽视频免费| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 欧美性猛交╳xxx乱大交人| 亚洲精品一区蜜桃| 国产精品福利在线免费观看| 在线免费十八禁| 伊人久久精品亚洲午夜| 成人特级av手机在线观看| 亚洲久久久久久中文字幕| 中文天堂在线官网| 成人无遮挡网站| 亚洲精品影视一区二区三区av| 国产69精品久久久久777片| 免费av不卡在线播放| 国产国拍精品亚洲av在线观看| 欧美丝袜亚洲另类| 久久久久久久久久久免费av| 精品国产三级普通话版| videossex国产| 在线观看一区二区三区激情| 精品国产露脸久久av麻豆| 国产精品av视频在线免费观看| 亚洲,一卡二卡三卡| 亚洲人成网站在线播| 久久久久国产网址| 丝瓜视频免费看黄片| 男人添女人高潮全过程视频| 三级国产精品欧美在线观看| 亚洲一级一片aⅴ在线观看| 一区二区三区免费毛片| 亚洲人成网站在线播| 女人久久www免费人成看片| 欧美bdsm另类| 欧美zozozo另类| 中文字幕亚洲精品专区| 大香蕉久久网| 亚洲av成人精品一二三区| 丝袜美腿在线中文| 18+在线观看网站| 久久久久久伊人网av| 久久99热6这里只有精品| 人体艺术视频欧美日本| 国产视频首页在线观看| 精品久久久噜噜| 亚洲成人中文字幕在线播放| 国产精品99久久99久久久不卡 | 国产老妇伦熟女老妇高清| 十八禁网站网址无遮挡 | 久久99热这里只有精品18| 亚洲欧美日韩另类电影网站 | av在线观看视频网站免费| 国产在视频线精品| 99久久九九国产精品国产免费| 男女边吃奶边做爰视频| 在线观看一区二区三区激情| 亚洲国产精品专区欧美| 晚上一个人看的免费电影| 交换朋友夫妻互换小说| 毛片女人毛片| 波野结衣二区三区在线| 在线观看国产h片| 乱码一卡2卡4卡精品| 自拍偷自拍亚洲精品老妇| 日本一二三区视频观看| 在线a可以看的网站| 在线观看美女被高潮喷水网站| 国产探花在线观看一区二区| 免费不卡的大黄色大毛片视频在线观看| 麻豆精品久久久久久蜜桃| 免费观看av网站的网址| 精品少妇久久久久久888优播| 国产探花在线观看一区二区| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩另类电影网站 | 2021天堂中文幕一二区在线观| 男插女下体视频免费在线播放| 特级一级黄色大片| 精品一区在线观看国产| 秋霞伦理黄片| 精品午夜福利在线看| 中文字幕制服av| 亚洲精品日韩在线中文字幕| 亚洲国产精品成人久久小说| 大话2 男鬼变身卡| 禁无遮挡网站| 色网站视频免费| 精品少妇久久久久久888优播| 99久久精品一区二区三区| 国产精品av视频在线免费观看| 色视频www国产| 国产高潮美女av| 精品久久久久久久末码| 成人高潮视频无遮挡免费网站| 久久久久久久午夜电影| 一级毛片aaaaaa免费看小| 久久久久久久久大av| 晚上一个人看的免费电影| 婷婷色麻豆天堂久久| 亚洲综合精品二区| 欧美区成人在线视频| 国精品久久久久久国模美| 另类亚洲欧美激情| 午夜激情久久久久久久| 成人美女网站在线观看视频| 国产精品一及| videos熟女内射| 又大又黄又爽视频免费| 亚洲人成网站在线播| 黄片无遮挡物在线观看| 亚洲精品成人av观看孕妇| 国产免费福利视频在线观看| 午夜福利视频1000在线观看| 大陆偷拍与自拍| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 国产精品精品国产色婷婷| 欧美潮喷喷水| 国产av不卡久久| av黄色大香蕉| 国产成人免费观看mmmm| 国产在线一区二区三区精| 免费观看a级毛片全部| 99热全是精品| 国产极品天堂在线| 亚洲欧美日韩另类电影网站 | 97人妻精品一区二区三区麻豆| 少妇熟女欧美另类| 汤姆久久久久久久影院中文字幕| 99热6这里只有精品| 日韩欧美 国产精品| 亚洲va在线va天堂va国产| 国产精品一区二区三区四区免费观看| 国精品久久久久久国模美| 高清视频免费观看一区二区| 青春草亚洲视频在线观看| 成年女人在线观看亚洲视频 | 国产伦理片在线播放av一区| 偷拍熟女少妇极品色| a级一级毛片免费在线观看| 各种免费的搞黄视频| 久久久久久久久久久丰满| 久久精品国产自在天天线| 久久精品久久久久久久性| 亚洲精品自拍成人| 韩国av在线不卡| 国内少妇人妻偷人精品xxx网站| 美女cb高潮喷水在线观看| 在线a可以看的网站| 欧美成人a在线观看| 天天一区二区日本电影三级| 免费观看性生交大片5| av在线亚洲专区| 丰满乱子伦码专区| 亚洲精华国产精华液的使用体验| 亚洲精品国产色婷婷电影| 成人欧美大片| 麻豆国产97在线/欧美| 熟妇人妻不卡中文字幕| 午夜日本视频在线| 99久国产av精品国产电影| 十八禁网站网址无遮挡 | 国产亚洲av嫩草精品影院| 97在线人人人人妻| 日韩一本色道免费dvd| 亚洲精品久久午夜乱码| 又黄又爽又刺激的免费视频.| 2021天堂中文幕一二区在线观| 男人和女人高潮做爰伦理| 免费看光身美女| 亚洲自偷自拍三级| 麻豆乱淫一区二区| .国产精品久久| 国产成人福利小说| 晚上一个人看的免费电影| 永久免费av网站大全| 久久99热这里只频精品6学生| 日本一本二区三区精品| 亚洲自拍偷在线| 春色校园在线视频观看| 另类亚洲欧美激情| 国产精品秋霞免费鲁丝片| 少妇人妻精品综合一区二区| 大陆偷拍与自拍| 午夜亚洲福利在线播放| 男女无遮挡免费网站观看| 亚洲精品成人久久久久久| 免费观看的影片在线观看| 十八禁网站网址无遮挡 | 三级经典国产精品| 青春草亚洲视频在线观看| 观看免费一级毛片| 亚洲天堂av无毛| 亚洲国产色片| 精品酒店卫生间| 亚洲国产欧美人成| 精品人妻一区二区三区麻豆| 国产精品福利在线免费观看| 丝袜脚勾引网站| 亚洲色图av天堂| 日韩成人av中文字幕在线观看| 97在线人人人人妻| 久久99精品国语久久久| 国内精品宾馆在线| 黄色一级大片看看| 成人特级av手机在线观看| 精品99又大又爽又粗少妇毛片| 永久免费av网站大全| 欧美激情在线99| 黄色欧美视频在线观看| av播播在线观看一区| 99久国产av精品国产电影| 黄色一级大片看看| 久久精品综合一区二区三区| 99久久人妻综合| 91aial.com中文字幕在线观看| 好男人在线观看高清免费视频| 国产毛片a区久久久久| 激情五月婷婷亚洲| 亚洲天堂国产精品一区在线| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频1000在线观看| 国产探花极品一区二区| 九色成人免费人妻av| 欧美成人午夜免费资源| 国产精品国产三级专区第一集| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看 | 国产真实伦视频高清在线观看| 狂野欧美白嫩少妇大欣赏| 2022亚洲国产成人精品| 国产精品久久久久久久久免| 免费av毛片视频| 久久久a久久爽久久v久久| 又粗又硬又长又爽又黄的视频| 欧美潮喷喷水| 免费大片18禁| 看十八女毛片水多多多| 免费观看的影片在线观看| 国产高潮美女av| 亚洲精品成人av观看孕妇| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 亚洲欧美成人综合另类久久久| 亚洲国产精品国产精品| 2018国产大陆天天弄谢| 97超碰精品成人国产| 精品少妇久久久久久888优播| 成人免费观看视频高清| 久久国内精品自在自线图片| 国产永久视频网站| 欧美丝袜亚洲另类| 日本午夜av视频| 99热这里只有精品一区| 日韩大片免费观看网站| 日韩欧美一区视频在线观看 | 日韩av免费高清视频| 97超碰精品成人国产| 精品少妇久久久久久888优播| 国产黄片美女视频| 国产老妇伦熟女老妇高清| 亚洲精品自拍成人| 久久久久久久大尺度免费视频| www.色视频.com| 亚洲人成网站高清观看| 久久ye,这里只有精品| 久久鲁丝午夜福利片| 亚洲高清免费不卡视频| av在线蜜桃| 少妇人妻精品综合一区二区| 黄片wwwwww| 国产大屁股一区二区在线视频| 中文精品一卡2卡3卡4更新| 欧美三级亚洲精品| 日本一二三区视频观看| 亚洲av国产av综合av卡| 中文字幕制服av| 最近最新中文字幕免费大全7| 久久这里有精品视频免费| 青春草亚洲视频在线观看| 国产精品一区二区三区四区免费观看| 国产亚洲精品久久久com| 22中文网久久字幕| 欧美成人精品欧美一级黄| 久久99热这里只有精品18| 中文字幕久久专区| 少妇裸体淫交视频免费看高清| 夫妻性生交免费视频一级片| 国产片特级美女逼逼视频| 日本与韩国留学比较| 日本三级黄在线观看| 久久久国产一区二区| 国产成人一区二区在线| videossex国产| 亚洲av欧美aⅴ国产| 亚洲成人一二三区av| 久久久成人免费电影| 大又大粗又爽又黄少妇毛片口| 嫩草影院精品99| 三级经典国产精品| 简卡轻食公司| 日本午夜av视频| av在线老鸭窝| 国产精品女同一区二区软件| 免费av不卡在线播放| 午夜爱爱视频在线播放| 日韩欧美精品v在线| 成人二区视频| 久久99蜜桃精品久久| 热re99久久精品国产66热6| 只有这里有精品99| 国产中年淑女户外野战色| 日韩欧美 国产精品| 亚洲人与动物交配视频| av网站免费在线观看视频| 在现免费观看毛片| 一级毛片黄色毛片免费观看视频| 亚洲色图综合在线观看| 内射极品少妇av片p| 色视频在线一区二区三区| 内射极品少妇av片p| 精品少妇久久久久久888优播| 天天一区二区日本电影三级| 久久久久久久精品精品| 伦精品一区二区三区| 观看美女的网站| 看免费成人av毛片| 男男h啪啪无遮挡| 夫妻性生交免费视频一级片| 嫩草影院新地址| 中国美白少妇内射xxxbb| 听说在线观看完整版免费高清| 80岁老熟妇乱子伦牲交| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在| 亚洲最大成人手机在线| 亚洲av日韩在线播放| 熟女人妻精品中文字幕| 欧美+日韩+精品| 看非洲黑人一级黄片| 丝瓜视频免费看黄片| 少妇人妻久久综合中文| 国产精品蜜桃在线观看| 搡女人真爽免费视频火全软件| 免费黄频网站在线观看国产| 麻豆国产97在线/欧美| 日韩成人伦理影院| 日韩制服骚丝袜av| 久久99热这里只频精品6学生| 成人免费观看视频高清| 插阴视频在线观看视频| 国产毛片a区久久久久| 国产一区二区三区av在线| 久久精品国产亚洲网站| 亚洲欧美精品专区久久| 国产国拍精品亚洲av在线观看| 久久精品久久久久久久性| 日韩伦理黄色片| 人妻系列 视频| 日韩中字成人| 亚洲图色成人| 国产欧美另类精品又又久久亚洲欧美| 99久久精品一区二区三区| 日韩成人av中文字幕在线观看| 大香蕉久久网| 听说在线观看完整版免费高清| 内射极品少妇av片p| 国产精品女同一区二区软件| 黄色视频在线播放观看不卡| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 国产成人精品福利久久| 女人十人毛片免费观看3o分钟| 色综合色国产| 美女cb高潮喷水在线观看| 中文天堂在线官网| 成人鲁丝片一二三区免费| 亚洲欧美成人综合另类久久久| 久热久热在线精品观看| 国内揄拍国产精品人妻在线| 国产成人精品一,二区| 亚洲内射少妇av| 99re6热这里在线精品视频| 精品久久久久久久末码| 日本-黄色视频高清免费观看| 黄色视频在线播放观看不卡| av播播在线观看一区| 狠狠精品人妻久久久久久综合| 最新中文字幕久久久久| 久久精品国产a三级三级三级| 亚洲av免费在线观看| 看黄色毛片网站| 校园人妻丝袜中文字幕| av天堂中文字幕网| 最近手机中文字幕大全| 国产爱豆传媒在线观看| 麻豆精品久久久久久蜜桃| 少妇人妻 视频| 观看免费一级毛片| 精品久久国产蜜桃| 欧美+日韩+精品| 国产精品久久久久久av不卡| 国产成人精品久久久久久| 97精品久久久久久久久久精品| 成人黄色视频免费在线看| 亚洲国产精品国产精品| 国产成人精品婷婷| 另类亚洲欧美激情| 亚洲欧美日韩卡通动漫| 国产av码专区亚洲av| 亚洲国产色片| 亚洲熟女精品中文字幕| av在线app专区| 黑人高潮一二区| 日韩在线高清观看一区二区三区| 啦啦啦中文免费视频观看日本| av在线蜜桃| 亚洲不卡免费看| 深爱激情五月婷婷| 交换朋友夫妻互换小说| 国产乱人偷精品视频| 午夜免费鲁丝| 精品人妻偷拍中文字幕| 国产日韩欧美亚洲二区| 啦啦啦中文免费视频观看日本| 国产黄色免费在线视频| 欧美97在线视频| 欧美xxxx黑人xx丫x性爽| 亚洲精品日韩av片在线观看|