• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Composites Shell Subjected to Hydrostatic Pressure to Maximize Design Pressure Factor

    2018-01-04 08:25:03SHENKechunPANGuangSHIYao
    船舶力學 2017年12期
    關(guān)鍵詞:靜水壓力西北工業(yè)大學耐壓

    SHEN Ke-chun,PAN Guang,SHI Yao

    (a.School of Marine Science and Technology;b.Key Laboratory for Unmanned Underwater Vehicle,Northwestern Polytechnical University,Xi’an 710072,China)

    Optimization of Composites Shell Subjected to Hydrostatic Pressure to Maximize Design Pressure Factor

    SHEN Ke-chuna,b,PAN Guanga,b,SHI Yaoa,b

    (a.School of Marine Science and Technology;b.Key Laboratory for Unmanned Underwater Vehicle,Northwestern Polytechnical University,Xi’an 710072,China)

    This paper presented an optimization design of composites pressure hull subjected to hydrostatic pressure.An Optimization Platform was set up by interworking genetic algorithm and numerical analysis.The design pressure factor was considered as the objective function.Buckling and material failure were constraint conditions.Types of layup,fiber angle and ply number are optimized for Carbon/epoxy,Boron/epoxy and Glass/epoxy composites.The results revealed that the buckling pressure or the material failure pressure would restrict the design pressure for different kind of composites.Different types of layup impacted the design pressure factor significantly.Application of composite materials for deep-water pressure shell had more reserve buoyancy.Results of this study could provide a valuable reference for designers of underwater vehicles.And this paper suggests that new way of enhancement,such as variable thickness,composites ribs would be used to solve the conflict of buckling pressure and material failure pressure,and increase the smaller one to improve the design pressure.

    hydrostatic pressure;composites pressure shell;optimization;buckling;failure

    0 Introduction

    Some three-quarters of the Earth’s surface are covered by water and only little of the ocean bottom has been explored.The greatest ocean depth of the oceans is 11.52 km.Most underwater vehicles can only dive to a depth of about 1 500 m which is much less than the average depth of the oceans that is between 4 000 and 5 000 m.

    For an underwater vehicle in deep sea,reserve buoyancy is required for integral structure,and weight reduction is expected for more efficient performance.This can be easily met by applying composite materials.Composite materials have an excellent specific stiffness and strength to withstand very high external pressure,in addition,sound absorption and corrosion resistance are crucially important for underwater vehicles[1].When designing composites pressure vessel subjected to hydrostatic pressure,load carrying capacity is priority.Buckling andstatic material failure may be caused by insufficient rigidity and lack of strength.There has been considerable amount of work carried out on buckling analysis of composites material structures subjected to hydrostatic pressure.Moon[2]investigated the buckling behavior of filament-wound carbon/epoxy composite cylinders under external hydrostatic pressure through finite element analysis and testing.Maalawi[3]presented a mathematical model to enhance the buckling stability of composite cylinders under external pressure.Nguyan[4]studied the stability of the perfect cylindrical shell variable thickness by introducing the coupled linearized governing stability equation for cylindrical shell under the external pressure.Messager[5]maximized the stability limits of thin-walled laminated composite vessels for underwater vehicles.Lopatin[6]studied the buckling of the clamped-clamped sandwich cylindrical shell under uniform external pressure.As for the failure behavior of composites material pressure hulls,a number of papers are available.Tafreshi[7-8]studied the effect of delamination of composite cylindrical shells under external pressure employing the combined double-layer and single-layer of shell elements.Blachut[9]analyzed the first ply failure of composite toroidal pressure hull based on a single,symmetric lamination.Lee[10]optimized the design load of composite sandwich cylinder under external hydrostatic pressure considering the buckling and static material failure.

    From reviewing on the previous studies,the literatures on analyzing the design pressure factor of filament-wound composite material pressure hulls subjected to hydrostatic pressure both considering the structural stability and material failure are rarely reported.Accordingly,an optimization of composite pressure hull for underwater vehicle was conducted for Carbon/epoxy,Boron/epoxy and Glass/epoxy composite.First,an optimization platform was set up to maximize the design pressure factor.Afterwards,the effects of design variables on buckling pressure,material failure pressure,and design pressure were analyzed.Next,the design pressure factors were achieved for three candidates composite material.Finally,according to the current results,new directions were pointed for the future research.

    1 Analytical fundamentals

    The structure model used to represent the composite laminated shell-structure is shown in Fig.1.The 1,2 and 3 are the principal directions of an orthotropic lamina,described as follows:

    Direction 1 is principal fiber direction which is also called fiber longitudinal direction.Direction 2 is transversal direction which is in-plane direction perpendicular to fiber direction.Direction 3 is normal direction which is out-of-plane direction perpendicular to fiber direction.For any point P in the surface,the Radius vector is ρ.Parameters α and β are Gauss coordinate.where ρi(i=1, )

    2 and n are base vector and normal vector;A and B are the Lamé parameters.

    Fig.1 Gauss coordinate and components of force and moment

    1.1 Constitutive equations

    The classical lamination theory is applied to analyze the mechanical behavior of the composite laminate.As shown in Fig.1,the in-plane stress components are given by:

    The elements of the kthtransformed reduced stiffness matrixis referred to the reference of the surface coordinates(α,β, )n and given in the following:

    where m=cosθ,n=sinθ and θ is the fiber orientation angle of the laminate;Qijare related to the commonly known engineering constants(E11,E22,G12,ν12)and are described as follows:

    Using Kirchhoff plate theory[11],the displacements of a material point at distance z from the middle surface are:

    where u0,v0and w0are the displacements of a generic point(α, β )on the shell middle surface(z=0 )in α, β and n directions,respectively.The strain-displacement relations in terms of the middle surface strains and shell curvatures are stated as follows:

    where the middle surface strains and curvatures are given as follows[12]:

    The resultant forces and moments per unit length applied at the middle surface are obtained by the integrals:

    where h is the total shell thickness,n is the number of different layers in the stacking sequence,and zk(k=1,2,…,n )is the through thickness position of kthlayer from the middle surface.Substituting the stresses in terms of strains given by Eqs.(1)and(6)into Eqs.(7)and(8),we get:

    where Aij,Bijand Dijare called the extensional stiffness,coupling stiffness and bending stiffness,respectively and given as follows:

    where tkis the thickness of the kthlayer.

    1.2 Equilibrium equations

    Under the environment of hydrostatic pressure,P represents the hydrostatic pressure.Pi(i= α,β,n )are the components of hydrostatic pressure P in ρ1,ρ2(base vector)and n(normal vector)direction,respectively.The equilibrium equations of the shell under the hydrostatic pressure are stated as follows:

    2 Optimum design of filament-wound composites pressure hull

    2.1 Model description

    As shown in Fig.2,the filament-wound composite shell model is generally composed of number of layers(2N)for both type A and type B stacking sequence.In this study,the design variables were the fiber angles(θi)and the corresponding number of layer.The given total number of layer was 2N(N=20,25,30,35),corresponding to the shell thickness t=8,10,12,14 mm.The objective of the optimization was to maximize the design pressure factor KP,which can be taken in the form of the following ratio KP=Pde/m.Pdeis design pressure,m is the mass of the pressure hull.In order to obtain the maximum design pressure factor KP,the maximum design pressure Pdemust be derived.For each given design variable θiand t,material failure pressure Pfand buckling pressure Pcrcomposed two feasible regions.The lower value between the two feasible regions composed the optimal feasible region,and the greatest pressure of the optimal feasible region became the optimum,i.e.the maximum design pressure.The maximum design pressure factor was stated as follows:

    Fig.2 Design variables of the filament-wound composite pressure hull

    The composites pressure vessel was constituted of cylindrical shell and hemispherical heads.The dimensions were as follows:an internal diameter of 300 mm and a length of 750 mm.ANSYS,a commercial program for finite element analysis,was used to for static analysis and buckling analysis.The Tsai-Wu failure criterion was used to assess the ability of composite cylindrical hull to withstand overstressing failure[13].SHELL281 element defined by eight nodes with six degrees of freedom at each node was used to mesh the pressure hull model.The nodes at each end of the finite element model were constrained translations in the y and z axes,and rotations in the axial direction i.e.the x axe.All nodes in the symmetry plane in the axial direction were restricted rotations about the x,y,z axes,and Ux=0.Carbon/epoxy,Boron/epoxy and Glass/epoxy composite materials were selected to analyze.The properties of the unidirectional composite prepreg were given in Tab.1.

    Tab.1 Material properties[2,14]

    2.2 Optimization platform

    The optimization platform was set up by interworking genetic algorithm and finite element analysis shown in Fig.3.Firstly,an initial population was created,which was declared to the design variable for parametric modeling.Then,static analysis was conducted for material failure pressure,and then buckling pressure was achieved by stability analysis.The minor one was treated as design pressure.The design pressure factor was calculated as fitness function and returned to genetic algorithm.Repeat the above process until each individual in the initial population was analyzed.Crossover and mutation were conducted in the genetic operators,and Elite were chosen based on their fitness to obtain a new generation.Update population and conduct analysis like above cycle for ten generations and the design optimization was completed until the fitness function was converged.

    3 Numerical results and discussion

    For Carbon/epoxy composite-Type A(t=8 mm),the maximum design pressure was 13.5 MPa at[(±60°)8/(±45°)12]shown in Fig.6,which was determined by the failure pressure,because the buckling pressure was 15.32 MPa at that point.The buckling pressure and failure pressure are shown in Fig.4 and Fig.5,respectively.The maximum buckling pressure was 15.96 MPa at[(±60°)8/(±40°)12]whose failure pressure was 11.25 MPa,and the maximum failure pressure was 14.63 MPa at[(±35°)8/(±55°)12]and[(±40°)8/(±55°)12]whose buckling pressure was 11.13 MPa and 11.65 MPa,respectively;therefore,neither the maximum buckling pressure nor the maximum failure pressure was the maximum design pressure.

    As for Boron/epoxy composite-Type A(t=8 mm),the buckling pressure,failure pressure and design pressure surfaces are shown in Figs.7-9,respectively.Overall,the failure pressure was higher than the buckling pressure except for some design variables in some corner areas.Although the maximum failure pressure of 70 MPa was found at[(±70°)8/(±40°)12],the corresponding buckling pressure was 23.01 MPa only.The maximum design pressure was determined by the maximum buckling pressure.The optimum pressure was 26.31 MPa at[(±60°)8/(±40°)12].

    Fig.4 Buckling pressure of Carbon/epoxy composite-Type A(t=8 mm)

    Fig.5 Failure pressure of Carbon/epoxy composite-Type A(t=8 mm)

    Fig.6 Design pressure of Carbon/epoxy composite-Type A(t=8 mm)

    Fig.7 Buckling pressure of Boron/epoxy composite-Type A(t=8 mm)

    Fig.8 Failure pressure of Boron/epoxy composite-Type A(t=8 mm)

    Fig.9 Design pressure of Boron/epoxy composite-Type A(t=8 mm)

    Fig.10 Buckling pressure of Glass/epoxy composite-Type A(t=8 mm)

    Fig.11 Failure pressure of Glass/epoxy composite-Type A(t=8 mm)

    Fig.12 Design pressure of Glass/epoxy composite-Type A(t=8 mm)

    Fig.13 Buoyancy factor of metal alloys and composite material

    For Glass/epoxy composite-Type A(t=8 mm),as shown in Figs.10-12,the material failure pressure was much higher than the buckling pressure all over the design variable.Therefore the design pressure surface was determined by buckling pressure,and the optimum pressure was 6.65 MPa at[(90°)3/(±65°)17].

    The buoyancy factor KF=FB/m,reflecting the ratio of buoyancy and mass,was also considered.FBis the mass of fluid displaced by the body volume.As shown in Fig.13,the buoyancy factors were given,which had a downtrend for composite materials and metal alloys.Compared with metal alloy material,composite materials showed more ability to provide adequate buoyancy.This is very important for underwater vehicle.

    The buckling,failure and design pressure for Carbon,Boron and Glass/epoxy composite for Type A and Type B(t=8,10,12,14 mm)were presented and summarized in Figs.14-19.After reviewing the optimum solution,it was concluded as follows:

    For the three candidate’s composite materials,both the buckling pressure and material failure pressure increased significantly as the thickness of the pressure hull increased for both Type A and Type B.The growth rate of Type-B is higher than that of Type-A in varying degree.

    Fig.14 Carbon/epoxy composite-Type A

    Fig.15 Carbon/epoxy composite-Type B

    Fig.16 Boron/epoxy composite-Type A

    Fig.18 Glass/epoxy composite-Type A

    Fig.19 Glass/epoxy composite-Type B

    For Carbon/epoxy composite,the growth rate of buckling pressure is obviously higher than that of material failure pressure;therefore the material failure pressure determined the design pressure.For Boron/epoxy composite,the material failure pressure is larger than buckling pressure,so the bucking pressure determined the design pressure except the thickness of pressure hull equaling to 14 mm.For Glass/epoxy composite,the growth rate of material failure pressure is obviously higher than that of buckling pressure,so the bucking pressure determined the de-sign pressure.That is contrary to Carbon/epoxy composite.

    Fig.20 Design pressure factor of Carbon/epoxy composite

    Fig.21 Design pressure factor of Boron/epoxy composite

    The results of design pressure factor were shown in Figs.20-22.From the analysis of the data,Type B showed more obvious advantages than Type A in mass efficiency.To be more specific,for Carbon/epoxy composite,the optimum design pressure factor showed volatility,and got the maximum value at the t=10 mm.For Boron/epoxy composite,the optimum design pressure factor showed solid growth as the thickness of the pressure hull increased.For Glass/epoxy composite,the mass efficiency was the lowest in the three candidate’s composite material.

    4 Conclusions

    Two types of layup including[(±θ1)m/(±θ2)N-m]and[(±θ1)m/(±θ2)N-2m/(±θ3)m]were optimized for three candidate’s composite material.Applying the optimization platform,both buckling behavior and material failure were investigated to maximum the design pressure factor for composites pressure hull under external hydrostatic pressure.In the process of optimization,buckling pressure,material failure pressure and design pressure were analyzed for various values of design variables.The effects of thickness of pressure hull on buoyancy factor were also evaluated.Two kinds of metal alloys were analyzed to compare with the three candidate’s composite material.The following observations were made:

    Either buckling pressure or material failure pressure may determine design pressure for the three candidate’s composite material.For Carbon/epoxy composite,material failure re-stricted design pressure seriously.But on the contrary for Boron/epoxy and Glass/epoxy composite,buckling pressure determined design pressure.

    Types of layup had a significant impact on design pressure factor.Detailed speaking,type of layup[(±θ1)m/(±θ2)N-2m/(±θ3)m]increased the value of design pressure factor in varying degrees,compared with type of layup[(±θ1)m/(±θ2)N-m].As mentioned above,similar situation happened on the buckling pressure,material failure pressure and design pressure.

    Through the analysis of the buoyancy factor,composite material provided sufficient reserve buoyancy.That makes the underwater vehicle have good carrying capacity.Compared with applying metal alloys,applying composite material may reduce the size of underwater vehicle because of no need to fill large amount of buoyancy material.

    Because of the excellent performance,composite material has been widely applied in ocean structures.The results presented in the paper can serve as a valuable reference in design of underwater vehicle.However,to dive into deeper sea,the conflict of buckling pressure and material failure should be resolved.New way of enhancement,variable thickness,ribs or metal embedded would be effective methods,and the relevant research works would be conducted.Especially,the failure theory and criterion of composite pressure shell under the hydrostatic pressure would be the top priority.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(Grant Nos.51479170 and 11502210)and National Key R&D Program(Grant No.2016YFC0301300).

    [1]Ross C T F.A conceptual design of an underwater vehicle[J].Ocean Engineering,2006,33(16):2087-2104.

    [2]Moon C J,Kim I H,Choi B H,et al.Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications[J].Composite Structures,2010,92(9):2241-2251.

    [3]Maalawi K Y.Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure[J].Composite Structures,2011,93(2):351-359.

    [4]Nguyen H L T,Elishakoff I,Nguyen V T.Buckling under the external pressure of cylindrical shells with variable thickness[J].International Journal of Solids and Structures,2009,46(24):4163-4168.

    [5]Messager T,Pyrz M,Gineste B,et al.Optimal laminations of thin underwater composite cylindrical vessels[J].Composite Structures,2002,58(4):529-537.

    [6]Lopatin A V,Morozov E V.Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure[J].Composite Structures,2015,122(122):209-216.

    [7]Tafreshi A.Delamination buckling and postbuckling in composite cylindrical shells under external pressure[J].Composite Structures,2004,42(10):1379-1404.

    [8]Tafreshi A.Delamination buckling and postbuckling in composite cylindrical shells under combined axial compression and external pressure[J].Compos Struct,2006,72:401-418.

    [9]Blachut J.Buckling and first ply failure of composite toroidal pressure hull[J].Computers&Structures,2004,82(23):1981-1992.

    [10]Lee G C,Kweon J H,Choi J H.Optimization of composite sandwich cylinders for underwater vehicle application[J].Composite Structures,2013,96(4):691-697.

    [11]Simitses G J,Hutchinson J W.An Introduction to the elastic stability of structures[M].Prentice-Hall,1976.

    [12]Brush D O,Almroth B O.Buckling of bars,plates,and shells[M].US:McGraw-Hill Inc.,1975.

    [13]Tsai S W,Hahn T H.Introduction to composite materials[J].West Port:Technomic Publishing Company,1980,68(3):331-332.

    [14]Liang C C,Chen H W,Jen C Y.Optimum design of filament-wound multilayer-sandwich submersible pressure hulls[J].Ocean Engineering,2003,30(15):1941-1967.

    靜水壓力下纖維纏繞復合材料殼體耐壓因子的優(yōu)化設(shè)計

    沈克純a,b, 潘 光a,b, 施 瑤a,b

    (西北工業(yè)大學a.航海學院;b.無人水下運載技術(shù)重點實驗室,西安 710072)

    基于遺傳算法和數(shù)值分析一體式優(yōu)化平臺,以設(shè)計壓力因子為目標函數(shù),結(jié)構(gòu)失穩(wěn)和材料靜強度破壞為約束條件,纖維纏繞策略和鋪層方式為變量,對靜水壓力作用下碳/環(huán)氧、硼/環(huán)氧和玻璃/環(huán)氧等三種復合材料殼體的耐壓因子進行優(yōu)化設(shè)計。結(jié)果表明,復合材料耐壓殼體在深海環(huán)境下能夠提供充足的正浮力;對于不同的復合材料,最大設(shè)計壓力受限的因素有所不同,主要受限于結(jié)構(gòu)失穩(wěn)或材料強度破壞;纖維纏繞策略和鋪層方式對設(shè)計壓力因子具有顯著影響。文中最后提出變厚度設(shè)計、復合材料肋骨等增強方式,旨在解決結(jié)構(gòu)失穩(wěn)或材料強度破壞對最大設(shè)計壓力的限制,研究成果可為復合材料耐壓殼體結(jié)構(gòu)設(shè)計提供參考。

    靜水壓力;復合材料殼體;優(yōu)化設(shè)計;失穩(wěn);破壞

    U663.1

    A

    國家自然科學基金資助項目(51479170,11502210);國家重點研發(fā)計劃(2016YFC0301300)

    沈克純(1987-),男,西北工業(yè)大學博士研究生;

    潘 光(1969-),男,西北工業(yè)大學教授,博士生導師;

    施 瑤(1988-),男,西北工業(yè)大學講師。

    U663.1 Document code:A

    10.3969/j.issn.1007-7294.2017.12.010

    date:2017-09-01

    Supported by the National Natural Science Foundation of China(Grant Nos.51479170 and 11502210);by the National Key Research and Development Program(Grant No.2016YFC0301300)

    Biography:SHEN Ke-chun(1987-),male,Ph.D.student of Northwestern Polytechnical University,E-mail:shenkechun@126.com;PAN Guang(1969-),male,professor/tutor,correponding author;E-mail:panguang601@163.com;SHI Yao(1988-),male,lecturer,E-mail:nh880408@gmail.com.

    1007-7294(2017)12-1551-13

    猜你喜歡
    靜水壓力西北工業(yè)大學耐壓
    環(huán)肋對耐壓圓柱殼碰撞響應(yīng)的影響
    鈦合金耐壓殼在碰撞下的動力屈曲數(shù)值模擬
    耐壓軟管在埋地管道腐蝕治理中的研究與應(yīng)用
    新型裝卸軟管耐壓試驗方法探討
    作品三
    作品一
    二次供水豎向分區(qū)技術(shù)分析
    價值工程(2018年19期)2018-08-29 11:05:58
    如何做好救生筏壓力釋放器及相關(guān)部件的連接
    中國船檢(2018年6期)2018-06-22 09:40:22
    西北工業(yè)大學學報2016年第34卷總目次(總第157期~總第162期(2016年)
    巖土類材料的靜水壓力效應(yīng)分析
    山西建筑(2015年23期)2015-04-05 21:06:46
    如日韩欧美国产精品一区二区三区 | 亚洲国产精品专区欧美| 久久久久久久久久人人人人人人| a级片在线免费高清观看视频| 免费看av在线观看网站| 美女国产高潮福利片在线看| 亚洲av免费高清在线观看| 亚洲精品久久午夜乱码| 精品午夜福利在线看| 十分钟在线观看高清视频www| 3wmmmm亚洲av在线观看| 亚洲激情五月婷婷啪啪| 国产av码专区亚洲av| 亚洲人成77777在线视频| 国产探花极品一区二区| 人妻 亚洲 视频| 国产日韩欧美在线精品| 国产69精品久久久久777片| 国产精品99久久99久久久不卡 | 日韩中字成人| 日韩一本色道免费dvd| 狠狠婷婷综合久久久久久88av| videosex国产| 亚洲在久久综合| av专区在线播放| 99久久精品一区二区三区| 中文字幕久久专区| 免费少妇av软件| 国产高清三级在线| 美女中出高潮动态图| 色婷婷久久久亚洲欧美| 性色avwww在线观看| 高清不卡的av网站| 色视频在线一区二区三区| 青春草亚洲视频在线观看| 亚洲欧洲日产国产| 十八禁网站网址无遮挡| 热99久久久久精品小说推荐| 欧美 亚洲 国产 日韩一| 美女内射精品一级片tv| 2022亚洲国产成人精品| 欧美三级亚洲精品| 免费观看在线日韩| 免费观看在线日韩| 日本-黄色视频高清免费观看| 久久99一区二区三区| 精品熟女少妇av免费看| 国产有黄有色有爽视频| 久久国产精品大桥未久av| 黑丝袜美女国产一区| 免费av不卡在线播放| 色94色欧美一区二区| 人妻制服诱惑在线中文字幕| 尾随美女入室| 亚洲性久久影院| 精品少妇黑人巨大在线播放| 亚洲精品一二三| 麻豆成人av视频| 国产在线视频一区二区| 亚洲在久久综合| 精品人妻熟女毛片av久久网站| 亚洲国产精品999| 蜜桃在线观看..| 亚洲精品一二三| 午夜福利,免费看| 免费看光身美女| 国产探花极品一区二区| 女人久久www免费人成看片| 少妇高潮的动态图| 国产成人精品在线电影| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线观看99| 九草在线视频观看| 亚洲人成77777在线视频| 99视频精品全部免费 在线| 夜夜看夜夜爽夜夜摸| 欧美三级亚洲精品| 日韩av在线免费看完整版不卡| 欧美精品人与动牲交sv欧美| 汤姆久久久久久久影院中文字幕| 欧美精品一区二区免费开放| 精品久久久久久久久亚洲| 搡女人真爽免费视频火全软件| 最近最新中文字幕免费大全7| 国产精品人妻久久久影院| 久久ye,这里只有精品| 亚洲色图综合在线观看| 亚洲成人手机| 亚洲综合精品二区| 中文乱码字字幕精品一区二区三区| 老司机亚洲免费影院| 国产精品99久久99久久久不卡 | 国产亚洲精品久久久com| 在线 av 中文字幕| 人妻少妇偷人精品九色| 欧美3d第一页| 久久精品国产亚洲av天美| 精品一区二区三卡| 在线精品无人区一区二区三| 大香蕉久久网| 免费观看av网站的网址| 亚洲精品aⅴ在线观看| 91午夜精品亚洲一区二区三区| 国产精品偷伦视频观看了| 人人妻人人澡人人看| 国产一区亚洲一区在线观看| 国产成人精品婷婷| 亚洲av电影在线观看一区二区三区| 亚洲情色 制服丝袜| 亚洲,一卡二卡三卡| 美女福利国产在线| 女性被躁到高潮视频| 亚洲中文av在线| 久久女婷五月综合色啪小说| 欧美精品一区二区大全| 午夜av观看不卡| 十分钟在线观看高清视频www| 丰满乱子伦码专区| av卡一久久| av电影中文网址| 老司机亚洲免费影院| 欧美精品亚洲一区二区| 欧美3d第一页| 亚洲国产成人一精品久久久| 国产日韩欧美视频二区| 久久精品国产亚洲av天美| 18+在线观看网站| 亚洲人成网站在线观看播放| 成年女人在线观看亚洲视频| 国产精品不卡视频一区二区| 成人免费观看视频高清| 在线天堂最新版资源| 国产女主播在线喷水免费视频网站| 边亲边吃奶的免费视频| 日本与韩国留学比较| 久久99蜜桃精品久久| 最新中文字幕久久久久| 中国三级夫妇交换| 有码 亚洲区| 日本爱情动作片www.在线观看| 久久久久久久精品精品| 王馨瑶露胸无遮挡在线观看| 一级毛片我不卡| 97精品久久久久久久久久精品| 久久久久久久大尺度免费视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲不卡免费看| 日韩视频在线欧美| 欧美+日韩+精品| 老司机影院毛片| 久久人妻熟女aⅴ| 亚洲av中文av极速乱| 九九久久精品国产亚洲av麻豆| 啦啦啦在线观看免费高清www| 国产高清国产精品国产三级| 免费观看无遮挡的男女| 中文乱码字字幕精品一区二区三区| 建设人人有责人人尽责人人享有的| 91精品国产九色| 99久久人妻综合| 18+在线观看网站| 五月开心婷婷网| 纵有疾风起免费观看全集完整版| 国产一区二区三区av在线| 亚洲国产av影院在线观看| 2018国产大陆天天弄谢| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产色片| 51国产日韩欧美| 内地一区二区视频在线| 老女人水多毛片| 考比视频在线观看| 国产在线视频一区二区| 寂寞人妻少妇视频99o| 只有这里有精品99| 人人妻人人澡人人看| av一本久久久久| 国产免费视频播放在线视频| 国产精品99久久99久久久不卡 | 久久久久久久国产电影| 中文字幕久久专区| 亚洲成色77777| 日韩av在线免费看完整版不卡| 如日韩欧美国产精品一区二区三区 | 国产免费现黄频在线看| 亚洲av日韩在线播放| 日本av免费视频播放| 日韩三级伦理在线观看| 日韩成人av中文字幕在线观看| av国产久精品久网站免费入址| 美女国产高潮福利片在线看| 成年av动漫网址| 丝袜喷水一区| 一个人看视频在线观看www免费| 中文字幕人妻丝袜制服| a级毛片在线看网站| 亚洲国产av影院在线观看| 2018国产大陆天天弄谢| 免费大片18禁| av不卡在线播放| 欧美亚洲日本最大视频资源| 亚洲人成网站在线观看播放| 国产av精品麻豆| 亚洲精品日韩在线中文字幕| 99热网站在线观看| 国产高清国产精品国产三级| 国产在视频线精品| 美女视频免费永久观看网站| 大又大粗又爽又黄少妇毛片口| 亚洲国产日韩一区二区| 亚洲精品日韩在线中文字幕| 七月丁香在线播放| 久久人人爽av亚洲精品天堂| 春色校园在线视频观看| 国产精品一二三区在线看| 久久久久久人妻| 高清午夜精品一区二区三区| 天堂中文最新版在线下载| av在线观看视频网站免费| 美女国产视频在线观看| 青春草亚洲视频在线观看| 亚洲综合精品二区| 在线免费观看不下载黄p国产| 国产69精品久久久久777片| 精品99又大又爽又粗少妇毛片| 久久婷婷青草| 精品酒店卫生间| 制服丝袜香蕉在线| 日本wwww免费看| 美女xxoo啪啪120秒动态图| 亚洲成人手机| 亚洲成人一二三区av| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区综合在线观看 | av视频免费观看在线观看| 亚洲久久久国产精品| 亚洲欧美一区二区三区黑人 | 99热6这里只有精品| 美女中出高潮动态图| 女性生殖器流出的白浆| 视频在线观看一区二区三区| 久久久久久久久大av| 91在线精品国自产拍蜜月| 水蜜桃什么品种好| 精品人妻一区二区三区麻豆| 久久久久国产网址| 日产精品乱码卡一卡2卡三| 高清av免费在线| 国模一区二区三区四区视频| 热re99久久精品国产66热6| 日韩一区二区视频免费看| 国产熟女欧美一区二区| 久久精品久久久久久噜噜老黄| 成人影院久久| 久久久久国产精品人妻一区二区| 在线观看一区二区三区激情| 亚洲成人av在线免费| 亚洲欧美成人综合另类久久久| 最近中文字幕高清免费大全6| 建设人人有责人人尽责人人享有的| 久久婷婷青草| 国产免费福利视频在线观看| 美女主播在线视频| 成人18禁高潮啪啪吃奶动态图 | 久久这里有精品视频免费| 国产av码专区亚洲av| 亚洲欧洲国产日韩| av卡一久久| 国产欧美日韩一区二区三区在线 | 国国产精品蜜臀av免费| 高清欧美精品videossex| 老女人水多毛片| 国产高清不卡午夜福利| 免费播放大片免费观看视频在线观看| 9色porny在线观看| 狂野欧美白嫩少妇大欣赏| 一区二区日韩欧美中文字幕 | kizo精华| 亚洲精品自拍成人| 国国产精品蜜臀av免费| 一级黄片播放器| 欧美变态另类bdsm刘玥| 国产永久视频网站| 国产欧美另类精品又又久久亚洲欧美| 国精品久久久久久国模美| 婷婷色av中文字幕| 高清视频免费观看一区二区| 只有这里有精品99| 在线观看国产h片| 51国产日韩欧美| 日韩一区二区视频免费看| 91久久精品电影网| av免费在线看不卡| 亚洲国产最新在线播放| 国产爽快片一区二区三区| 久久久久国产网址| 草草在线视频免费看| 91久久精品国产一区二区成人| 欧美成人午夜免费资源| www.av在线官网国产| 超色免费av| 丰满乱子伦码专区| 午夜激情福利司机影院| 18+在线观看网站| 日本av免费视频播放| 高清不卡的av网站| 亚洲精品乱码久久久v下载方式| 成人免费观看视频高清| 欧美bdsm另类| 一区二区三区免费毛片| 极品少妇高潮喷水抽搐| 最近中文字幕2019免费版| 久久久久精品久久久久真实原创| 日本爱情动作片www.在线观看| 国产无遮挡羞羞视频在线观看| 国产精品人妻久久久久久| 久久久午夜欧美精品| 欧美性感艳星| 久久精品国产亚洲网站| 国产伦理片在线播放av一区| 欧美日韩视频精品一区| 久久 成人 亚洲| 亚洲av在线观看美女高潮| 国产高清不卡午夜福利| 一本—道久久a久久精品蜜桃钙片| 丝袜美足系列| 久久久久久久国产电影| 久久精品人人爽人人爽视色| 菩萨蛮人人尽说江南好唐韦庄| 九色亚洲精品在线播放| 亚洲国产日韩一区二区| 九色成人免费人妻av| 午夜精品国产一区二区电影| 天天操日日干夜夜撸| 成人影院久久| 蜜桃国产av成人99| 免费大片黄手机在线观看| 久久久久精品久久久久真实原创| 人妻系列 视频| 国产伦理片在线播放av一区| 哪个播放器可以免费观看大片| 一二三四中文在线观看免费高清| 狠狠精品人妻久久久久久综合| 亚洲av二区三区四区| 美女国产视频在线观看| 一本大道久久a久久精品| 中文字幕久久专区| 人成视频在线观看免费观看| 久久ye,这里只有精品| 性色av一级| 午夜福利,免费看| av免费观看日本| 高清不卡的av网站| 蜜桃国产av成人99| 欧美人与善性xxx| 亚洲色图 男人天堂 中文字幕 | 婷婷色综合大香蕉| 高清不卡的av网站| 老女人水多毛片| 国产免费福利视频在线观看| 一级片'在线观看视频| 国产日韩欧美视频二区| 久久精品国产亚洲av涩爱| 亚洲欧美成人综合另类久久久| 性色avwww在线观看| 久久国产精品男人的天堂亚洲 | 久久久久久久久久久久大奶| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 精品酒店卫生间| 在线观看三级黄色| 国产成人aa在线观看| 一个人看视频在线观看www免费| 极品人妻少妇av视频| 欧美日韩av久久| 亚洲精品美女久久av网站| 中国三级夫妇交换| 黄色视频在线播放观看不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人漫画全彩无遮挡| 欧美日韩亚洲高清精品| 精品熟女少妇av免费看| 激情五月婷婷亚洲| 在线亚洲精品国产二区图片欧美 | 99九九在线精品视频| 大又大粗又爽又黄少妇毛片口| 这个男人来自地球电影免费观看 | 久久精品久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 大陆偷拍与自拍| 多毛熟女@视频| 中文字幕免费在线视频6| av.在线天堂| 少妇的逼好多水| 嘟嘟电影网在线观看| 91精品一卡2卡3卡4卡| 一区在线观看完整版| 91精品伊人久久大香线蕉| 国产色婷婷99| 国产一区二区三区av在线| 一级毛片我不卡| 免费少妇av软件| 午夜福利在线观看免费完整高清在| 人体艺术视频欧美日本| av黄色大香蕉| 亚洲av免费高清在线观看| 久久精品国产自在天天线| 亚洲中文av在线| 亚洲av国产av综合av卡| 午夜久久久在线观看| 成人二区视频| 大香蕉久久网| 一级片'在线观看视频| 热re99久久精品国产66热6| 色网站视频免费| 久久久精品94久久精品| 亚洲精品国产av蜜桃| 大话2 男鬼变身卡| 亚洲国产精品一区三区| 熟妇人妻不卡中文字幕| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| a 毛片基地| 麻豆成人av视频| 国产成人免费观看mmmm| 九色亚洲精品在线播放| 久久这里有精品视频免费| 日本色播在线视频| 春色校园在线视频观看| 久久亚洲国产成人精品v| 九九久久精品国产亚洲av麻豆| 日韩 亚洲 欧美在线| 免费看光身美女| 久久人人爽人人爽人人片va| 久久久久久久大尺度免费视频| 日本黄大片高清| 亚洲精品久久午夜乱码| 成人综合一区亚洲| 看非洲黑人一级黄片| 在现免费观看毛片| 日韩,欧美,国产一区二区三区| 亚洲精品乱久久久久久| 建设人人有责人人尽责人人享有的| 久久久久久久久久人人人人人人| 久久影院123| 一级爰片在线观看| 在线观看免费日韩欧美大片 | 日韩,欧美,国产一区二区三区| 亚州av有码| 久久久精品区二区三区| 色网站视频免费| 亚洲av电影在线观看一区二区三区| 国产亚洲av片在线观看秒播厂| 国产精品 国内视频| 久久97久久精品| 亚洲丝袜综合中文字幕| 亚洲美女视频黄频| 一级黄片播放器| 免费av不卡在线播放| 制服人妻中文乱码| 国产日韩欧美亚洲二区| 视频在线观看一区二区三区| 丰满少妇做爰视频| 久久久欧美国产精品| 寂寞人妻少妇视频99o| 蜜桃在线观看..| 成人国产麻豆网| 久久久久国产精品人妻一区二区| 波野结衣二区三区在线| 久久久精品94久久精品| 久久狼人影院| 国产精品无大码| 亚洲高清免费不卡视频| 免费看不卡的av| 亚洲精品色激情综合| 婷婷成人精品国产| 男女啪啪激烈高潮av片| av国产久精品久网站免费入址| 熟女av电影| 大片电影免费在线观看免费| 狠狠精品人妻久久久久久综合| 久久免费观看电影| 亚洲综合精品二区| 高清视频免费观看一区二区| 有码 亚洲区| 精品人妻一区二区三区麻豆| 国产 一区精品| 精品人妻熟女av久视频| 久久久久久久久久人人人人人人| 日本av手机在线免费观看| 久久毛片免费看一区二区三区| 亚洲国产精品专区欧美| 另类精品久久| 精品熟女少妇av免费看| 久久韩国三级中文字幕| 伊人久久精品亚洲午夜| 一级片'在线观看视频| 三上悠亚av全集在线观看| 人妻夜夜爽99麻豆av| 91精品伊人久久大香线蕉| 国产精品人妻久久久久久| 97超视频在线观看视频| 国产无遮挡羞羞视频在线观看| 精品人妻偷拍中文字幕| 高清欧美精品videossex| 国产免费现黄频在线看| 欧美日韩视频高清一区二区三区二| h视频一区二区三区| 午夜激情久久久久久久| 涩涩av久久男人的天堂| 26uuu在线亚洲综合色| 妹子高潮喷水视频| 国产黄色免费在线视频| 2021少妇久久久久久久久久久| 夫妻性生交免费视频一级片| 亚洲精品久久午夜乱码| 亚洲欧美成人精品一区二区| 国产精品免费大片| 男女无遮挡免费网站观看| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 午夜av观看不卡| 三级国产精品片| 日韩av在线免费看完整版不卡| 性色avwww在线观看| videosex国产| 热re99久久国产66热| 亚洲中文av在线| 国精品久久久久久国模美| 亚洲久久久国产精品| 亚洲国产精品一区三区| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 亚洲欧美色中文字幕在线| 久久久久久久久大av| 精品99又大又爽又粗少妇毛片| 国产一区二区在线观看日韩| 亚洲精品456在线播放app| 国产一区二区三区av在线| 三级国产精品片| 大香蕉久久成人网| 久久精品国产亚洲网站| 亚洲精品久久久久久婷婷小说| 五月天丁香电影| 精品熟女少妇av免费看| 一区二区三区免费毛片| 黄色配什么色好看| 日日摸夜夜添夜夜爱| 欧美日本中文国产一区发布| 啦啦啦中文免费视频观看日本| 久久亚洲国产成人精品v| a级毛片免费高清观看在线播放| 少妇被粗大的猛进出69影院 | 永久网站在线| 亚洲精品国产av成人精品| 在线天堂最新版资源| 日韩欧美精品免费久久| 精品熟女少妇av免费看| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| 国产精品久久久久成人av| 男女免费视频国产| 在线 av 中文字幕| 中文字幕人妻丝袜制服| 一区二区三区乱码不卡18| 国产熟女欧美一区二区| 中文字幕精品免费在线观看视频 | 精品国产露脸久久av麻豆| videossex国产| 欧美xxⅹ黑人| 老司机亚洲免费影院| 亚洲精品aⅴ在线观看| 美女国产高潮福利片在线看| 午夜福利在线观看免费完整高清在| 一本一本综合久久| 一级,二级,三级黄色视频| 韩国av在线不卡| 黄片无遮挡物在线观看| 久久精品久久久久久久性| 91aial.com中文字幕在线观看| 建设人人有责人人尽责人人享有的| 国产午夜精品久久久久久一区二区三区| 在线观看www视频免费| 哪个播放器可以免费观看大片| 熟妇人妻不卡中文字幕| 日韩制服骚丝袜av| 日本91视频免费播放| 国产精品秋霞免费鲁丝片| 国产日韩欧美亚洲二区| 大码成人一级视频| 久热这里只有精品99| 久久ye,这里只有精品| 国产在线视频一区二区| 午夜福利视频精品| 最近中文字幕2019免费版| av不卡在线播放| 22中文网久久字幕| 一边摸一边做爽爽视频免费| 国产精品成人在线| 欧美亚洲日本最大视频资源| 亚洲国产av影院在线观看| 大又大粗又爽又黄少妇毛片口| 免费久久久久久久精品成人欧美视频 | 久久精品国产自在天天线| 亚洲精品一区蜜桃| 97超视频在线观看视频| 秋霞伦理黄片| 伦理电影免费视频| 伦精品一区二区三区| 亚洲成人手机| 国产成人精品久久久久久| 少妇人妻精品综合一区二区| 91国产中文字幕| 蜜桃久久精品国产亚洲av| 中国三级夫妇交换|