• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Algorithm Simulation of Ship Dynamic Positioning Using Adaptive Fading Memory Filter

    2018-01-04 08:24:58ZHANGShnZOUZojin
    船舶力學(xué) 2017年12期
    關(guān)鍵詞:上海交通大學(xué)濾波動力

    ZHANG Shn,ZOU Zo-jin,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Algorithm Simulation of Ship Dynamic Positioning Using Adaptive Fading Memory Filter

    ZHANG Shana,ZOU Zao-jiana,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Due to the complexity and nonlinearity of ship motion at seas,an accurate mathematical model for ship dynamic positioning system is difficult to establish.In order to achieve efficient control,it is necessary to obtain the required signals of low frequency motion by means of a filter algorithm for state estimation.Using the conventional Kalman filter,the correction effect of new measurement data of state variables on the prediction decreases,while the influence of the old measurement data increases with the time step,which is the main reason of filter divergence.To solve the problem of inaccurate model,inaccurate expression of system noises and measurement noises when applying Kalman filter in a ship dynamic positioning system,an adaptive fading memory filter is employed to estimate the low frequency motion.By introducing the fading memory factor in the state estimation algorithm,the effect weight of the old measurement data on the state estimation is decreased,and the impact of the new measurement data is increased.Besides,according to the criterion for filter divergence,a proper fading memory factor is chosen to restrain the filter divergence and to make the controller output relatively smooth,so that the unnecessary energy consumption of the thruster system is reduced.The simulation results show that the designed adaptive filter is superior to Kalman filter in convergence and traceability,and the positioning precision and stability of the system are effectively improved.

    ship dynamic positioning;state estimation;adaptive fading memory filter;Kalman filter

    0 Introduction

    Due to the disturbance of wind,waves and current,the ship motion at seas is complicated and nonlinear.In the ship dynamic positioning system,the sensor signals are always polluted by external environment and internal physical properties itself,which has negative impact on the controller performance.In this sense,a model-based filter is necessary for the control system.A filter is used to restrain or avoid the disturbing components of input signals,and modifies the frequency values and phases to enhance the precision of the output signals.Itdeals with the signals of ship motion and eliminates the high frequency components,the system noises and measurement noises to make the output of the controller tend to be smooth and stable[1].

    Kalman filter[2]is generally restricted to a stochastic linear system with accurate model,and requires the system noises and measurement noises to be specified Gaussian white noise sequences.However,the complexity of the environment and the inertia of the vessel lead to the discrepancy between the low frequency motion model established and the actual situation,which reflects the limitations of using Kalman filter[3].Moreover,for a complex and nonlinear system like a surface vessel at seas,it is difficult to guarantee the existence of the optimal solution when using an optimal estimation algorithm.If the mean square errors of state prediction could not be updated adaptively,they will accumulate with the recursive calculation steps,which is destined to cause distortion of the gain matrix and deterioration of the global asymptotic stability.As a result,the low frequency motion tracking is hard to ensure[4].

    An adaptive filter can effectively compensate the errors as well as suppress the disturbances caused by the imprecise system model and insufficient statistical characteristic of system noises and measurement noises,so that the convergence and stability are improved with a certain reliability[5].Extended Kalman filter[6]and unscented Kalman filter[7]are mainly used to solve the problem of model nonlinearity.The adaptive filter constructed with neural network[8]requires a large quantity of training samples as foundation and has heavy computational burden.Adaptive fuzzy filter[9]is applied with prior knowledge of the environment and appropriately regulates the membership functions according to the noise characteristics.

    In this paper,an adaptive fading memory filter is designed to estimate the low-frequency motion including the position and heading information of a given vessel.Particularly,a fading memory factor is introduced into the conventional Kalman filter algorithm.A digital suboptimal filter is formed to alleviate the dependence on prior estimations and at the same time to raise the weight of current measurements of state variables.Simulation experiments using the proposed adaptive fading memory filter and the conventional Kalman filter are conducted,and the results are compared to evaluate the effects of the filters.It confirms that higher positioning precision can be achieved by using the proposed filter.

    1 Mathematic models

    Since a vessel is at a slow speed when operated under dynamic positioning control,the motions of heave,roll and pitch have little influence on the dynamic positioning operation,while the motions of surge,sway and yaw with small heading angle are usually the main concern[10].The mathematical model with disturbances in the vessel-fixed frame is expressed as[11]:where M is the inertia matrix of the system including added mass,D is the damping matrix;ν=[u,v,r]Tdenotes the velocity components and yaw rate,τ represents the force and moment acting on the vessel;η=[x,y, ψ ]Tis the position and heading in the earth-fixed frame,R(ψ)is the rotation matrix for transformation;Eυrepresents the maximum amplitudes of system noise,while ωυis a Gaussian white noise vector which reflects model uncertainty due to the wind,current and second-order waves.b is the slowly varying environment force and moment,and always presented as a one-order Gauss-Markov model:

    where Tbis a diagonal matrix which contains time constants,ωbis a Gaussian white noise vector and Ebis the maximum amplitudes of the noise.

    The linear wave-frequency motion of state space model can be described as:

    where ηw=[xw,yw,ψw]Tis the high frequency motion induced by the first-order waves;Ew=[03×3Eh]T,where Ehrepresents the maximum amplitude of Gaussian white noise ωw.The other coefficient matrices in the model are:

    where ω21and ω22are related to the main frequency of waves ω0and the relative damping ζ.They are given as:

    The measurement data of the system are always corrupted by noise.They can be expressed as:

    where ωyis the measurement noise and set as Gaussian white noise.

    Eqs.(1),(2),(3)and(6)constitute the mathematical model for the ship dynamic positioning system,which is copied by the filter for state estimation.

    The equations of state and measurement in discrete form can be written as:

    The characteristics of the initial state variables x0and ωk, υkare independent of each other,namely,

    2 Adaptive fading memory filter

    In this paper,an adaptive fading memory filter is proposed to improve the Kalman filter algorithm.It also consists of two parts:firstly,update time to estimate the low frequency motions;then,update measurement to correct the previous state estimation by utilizing the known observations.P0,the variance of the deviation between x0and the initial estimationis used to describeRk,the variance of υk,is used to describe the measurement yk.The improved filter can automatically determine the utilization of the observation samples andwhen calculating the variableswhere n is the number of the measured historic observations.In this way,the impact ofand yoncan be reduced by increasing Pand R[12].

    k0k

    A fading memory factor f,a specific scalar,is introduced in the Kalman filter for the propose of adaptively correcting P0and Rk:

    To simplify the filtering process,the system noise is put in another transformation:

    Similarly,other variables in the Kalman filter are defined by

    The converted filter equations can be written as:

    In the conventional Kalman filter,the optimal control gain matrix is solved only according to the priori variance matrix and the noise variance.The inaccuracy or extreme change of priori information may lead to filter divergence.Therefore,in order to correct the estimated values,f in the fading memory filter is applied not only to adjust weightedly the system noise and measurement noise,but also to adjust the variance of measurement noise adaptively and the control gain matrix completely.Setting f>1,it always holds thatsimultaneously.Furthermore,since

    the weight of priori estimated valuesis decreased,while the measurements ykhave higher confidence level.

    The covariance matrixes of the system errors will become infinite when the filter diverges.k→∞ may cause the gain matrixesresulting in the actual estimated errors much more higher than the theoretical values.An inequality is set up as the judgment condition to limit the divergence:

    where the left term is the sum of the squares of the new sequences,and the right term is the trace of the covariance matrix,λ is the redundancy coefficient and λ≥1;rkis the deviation of the measurements from their estimations,including errors caused by the difference between the actual ship motion and that determined by the simulation model.It can be written as:

    The judgment condition to evaluate the divergence can be further expressed as:

    where λ=1 means the most strict standard.

    If the coefficient matrix cannot satisfy Eq.(16)when circular computations are implemented by using the filter equation,Eq.(12),it suggests that the estimated values are larger than the theoretical values or are λ times of the theoretical values.

    Considering rkas the white noise term,with λ=1,it follows

    and the formula for solving fkautomatically is given as:

    where d is the dimension of the measurements.In the present study,d=3.

    Substituting Eq.(18)into Eqs.(8)-(11),it yields from Eq.(12)the complete fading memory filter process.

    3 Simulation experiment and result analysis

    The control system for ship dynamic positioning is a closed-loop system consisting of an estimator,a controller and a thrust allocation module.With the help of the measurement system,it detects the deviations between the actual positions,headings and the target ones of the vessel,as well as the impact of external disturbances such as wind,waves,and current.Then the estimator estimates the slowly varying external disturbances to which the vessel has to respond,and the controller outputs the instructions for thrust system to implement to ensure the vessel to maintain the desired position and heading as much as possible.

    To verify the effectiveness of the improved filter,simulations are carried out,and a LQ controller was connected with the improved filter in the simulations.Some parameters in the simulations are set as follows:The sampling period is 0.2 s,the simulation time is 500 s;and the variance matrix of the system noise Q,the measurement noise R and some other environment parameters are set as:

    3.1 Ship model

    Tab.1 Principal dimensions of the ship model

    Take a ship model of a 75m-platform supply vessel with scale ratio 1:20 as the study object[13].The principal dimensions of the ship model are given in Tab.1.

    The simulation begins with η0=[0 m 0 m 0°]Tas the initial position and heading,and the vessel is desired to move to the setpoint ηd=[10 m 10 m 0°]T.The inertia matrix M and hydrodynamic damping matrix D of this ship model are obtained by CFD method using Fluent software,the dimensionless M and D are given as follows[13]:

    3.2 Effects of the adaptive fading memory filter

    A description of the low frequency ship motion estimated by the designed adaptive fading memory filter is illustrated in Fig.1,where the measured position is composed of the dead reckoning of the ship,system noise,measurement noise and environment noise.The estimated position is obtained from the measured value by the filter.

    The comparison of the measured position and the estimated position indicates that the designed adaptive fading memory filter can effectively eliminate the disturbances.Particularly,the curves of the estimated position are significantly smoother than the measured position and stably converge to the vicinity of the desired values,which confirms that the filter can suppress the positioning error to a certain extent,thus improve the positioning accuracy of the control system.On the other hand,as can be seen from Fig.1(c),the filtering effect on the yaw motion is less than those on the surge and sway motions.This is mainly due to the fact that the input in the yaw motion is torque which is harder to perform than force input with equal flexibility.

    Fig.2 depicts the trajectory of the ship in the horizontal plane.It shows that the ship reaches the target location in both longitudinal and transverse directions almost simultaneously,which is in line with the law of actual ship motions.The filter operates as expected to let the vessel follow a smoother trajectory,and tend to converge to a stable state,thereby the accuracy of the control system is improved effectively.

    Fig.1 Filter effect in ship dynamic positioning

    Fig.2 Trajectory of the ship on the horizontal plane in ship dynamic positioning

    Fig.3 e varying with number n of historical observation data,when f=1.003

    In view of the fading memory factor f and the number of historical observations n,the deviation between the estimated state variables by the filter and the dead reckoning values obtained from the mathematical model is taken for further comparison,which is defined as:where xfidenotes the filtering value at time step i,xmidenotes the corresponding mathematical model value.

    As an example,Fig.3 shows the results at a fixed f(f=1.003)with a varying n.It reveals that for a fixed value of f,the deviation increases with the amount of the historical observations,which further validates the impact of the historical data on the estimated values.

    In order to testify the superiority of the proposed filter over the conventional Kalman filter,the deviations are calculated with both filters under the same initial external conditions,defined as:

    Fig.4 demonstrates that the adaptive fading memory filter has a better convergence and target position tracking performance than the conventional Kalman filter,resulting in better disturbance rejection and considerably reducing the oscillation amplitude of the control output.Consequently,the unnecessary operation of the actuators can be avoided.

    Fig.4 Comparison of adaptive fading memory filter and conventional Kalman filter

    4 Conclusions

    An improved filtering algorithm for control system of ship dynamic positioning is proposed.An adaptive fading memory filter is designed by introducing a fading memory factor f and making use of n historical observation data to estimate the ship’s position and heading in low-frequency motion.It overcomes the restrictions of needing to know the exact mathematical model while using the conventional Kalman filter.Furthermore,it can amend the unknown or uncertain model error,system noise and measurement noise in real-time or online according to environment changes,therefore the influences of the historical observations on the estimated values are reduced and more emphasis can be put on the new measurements,which provides the control system with the advantages of adaptability and higher accuracy.

    The simulation results show that the proposed algorithm has better filtering effects compared to those of the conventional Kalman filter,and the convergence and tracking ability are improved.On the other hand,the control output of the ship dynamic positioning system is optimized,reducing the unnecessary operations of the thrust system,thereby reducing the energy consumption and avoiding wear and tear of the mechanical system.

    Acknowledgements

    This work is supported by the project of the Ministry of Industry and Information Technology of China for Ships with High Technology:Independent Development of Semi-submersible Engineering Vessels of 100 000 Tonnage.

    [1]Xiong Jianbin,Wang Qinruo,Liu Yijun,et al.A linear signal filtering smoothing algorithm for ship dynamic positioning[C]//Proceedings of the 31st Chinese Control Conference,IEEE.Hefei,China,2012:3718-3722.

    [2]Fossen Thor I,Perez Tristan.Kalman filtering for positioning and heading control of ships and offshore rigs[J].IEEE Control Systems Magazine,2009,29(6):32-46.

    [3]Guo Juan,Zou Zaojian.Analysis and comparison of two filtering methods for ship dynamic positioning system[J].Journal of Ship Mechanics,2013,17(6):592-603.

    [4]Ran Chenjian,Deng Zili.Self-tuning weighted measurement fusion Kalman filter and its convergence analysis[C]//Proceedings of the 48th IEEE Conference on Decision and Control/28th Chinese Control Conference.Shanghai,China,2009:1830-1835.

    [5]Ding Weidong,Wang Jinling,Rizos Chris,et al.Improving adaptive Kalman estimation in GPS/INS integration[J].Journal of Navigation,2007,60(3):517-529.

    [6]Mauro Candeloro,S?rensen Asgeir J,et al.Observers for dynamic positioning of ROVs with experimental results[C]//Proceedings of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft.Arenzano,Italy,2012:85-90.

    [7]Hu Gaoge,Gao Shesheng,Zhong Yongmin,et al.Modified strong tracking unscented Kalman filter for nonlinear state estimation with process model uncertainty[J].International Journal of Adaptive Control and Signal Processing,2015,29(12):1561-1577.

    [8]Negin Musavi,Jafar Keighobadi.Adaptive fuzzy neuro-observer applied to low cost INS/GPS[J].Applied Soft Computing,2015(9):82-94.

    [9]Sung W J,Lee S C,You K H.Ultra-precision positioning using adaptive fuzzy-Kalman filter observer[J].Precision Engineering,2010(34):195-199.

    [10]S?rensen Asgeir J.A survey of dynamic positioning control systems[J].Annual Reviews in Control,2011,35(1):123-136.

    [11]Fossen Thor I,Handbook of marine craft hydrodynamics and motion control[M].United Kingdom:John Wiley&Sons,Ltd.,2011:133-157.

    [12]Gao Shesheng,He Pengjü,Yang Bo.The principle and application of integrated navigation system[M].Xi’an:Northwestern Polytechnic University Press,2012:63-74.(in Chinese)

    [13]Ke Xiaobing,Luo Wei,Zhao Xiaosa,et al.The regression formula of location hydrodynamic derivatives of supply vessels based on CFD method[J].Chinese Journal of Ship Research,2014,9(4):50-54.(in Chinese)

    基于漸消記憶自適應(yīng)濾波的船舶動力定位算法仿真

    張 閃a, 鄒早建a,b

    (上海交通大學(xué)a.船舶海洋與建筑工程學(xué)院;b.海洋工程國家重點(diǎn)實(shí)驗(yàn)室,上海 200240)

    由于船舶在海上運(yùn)動的復(fù)雜性和非線性,精確的船舶動力定位系統(tǒng)數(shù)學(xué)模型難以建立。為了實(shí)現(xiàn)有效的動力定位控制,需要應(yīng)用一定的狀態(tài)估計(jì)濾波算法得到所需的船舶運(yùn)動低頻信號。采用常規(guī)的Kalman濾波,狀態(tài)變量的新測量值對預(yù)測值的修正作用下降,舊測量值的影響隨著計(jì)算步數(shù)的累積而相對提高,這是引起濾波發(fā)散的主要原因之一。文章針對船舶動力定位系統(tǒng)中使用常規(guī)的Kalman濾波而存在的模型不精確、不能準(zhǔn)確表達(dá)系統(tǒng)噪聲和測量噪聲等問題,采用漸消記憶自適應(yīng)濾波估算低頻運(yùn)動信息,在狀態(tài)估計(jì)算法中引入漸消記憶因子,減小舊測量值對狀態(tài)估計(jì)值的影響權(quán)重,從而增大新測量值的作用;并根據(jù)濾波發(fā)散判斷準(zhǔn)則,選擇適當(dāng)?shù)臐u消記憶因子值來抑制濾波器的發(fā)散,使控制器輸出較為平穩(wěn),從而降低推力系統(tǒng)不必要的能耗。仿真實(shí)驗(yàn)表明,所設(shè)計(jì)的自適應(yīng)濾波器的收斂性、跟蹤性優(yōu)于常規(guī)的Kalman濾波,有效地提高了系統(tǒng)的定位精度和穩(wěn)定性。

    船舶動力定位;狀態(tài)估計(jì);漸消記憶自適應(yīng)濾波;Kalman濾波

    U661.3

    A

    張 閃(1990-),女,上海交通大學(xué)碩士生;

    鄒早建(1956-),男,上海交通大學(xué)教授,博士生導(dǎo)師。

    U661.3 Document code:A

    10.3969/j.issn.1007-7294.2017.12.006

    date:2017-07-25

    Supported by the Projet of the Ministry of Industry and Information Technology of China for Ships with High Technology

    Biography:ZHANG Shan(1990-),female,master student of Shanghai Jiao Tong University,E-mail:shancheung@sjtu.edu.cn;ZOU Zao-jian(1956-),professor/tutor,E-mail:zjzou@sjtu.edu.cn.

    1007-7294(2017)12-1497-10

    猜你喜歡
    上海交通大學(xué)濾波動力
    上海交通大學(xué)
    電氣自動化(2022年2期)2023-01-07 03:51:56
    學(xué)習(xí)動力不足如何自給自足
    上海交通大學(xué)參加機(jī)器人比賽
    胖胖一家和瘦瘦一家(10)
    動力船
    RTS平滑濾波在事后姿態(tài)確定中的應(yīng)用
    基于線性正則變換的 LMS 自適應(yīng)濾波
    遙測遙控(2015年2期)2015-04-23 08:15:18
    基于多動力總成的六點(diǎn)懸置匹配計(jì)算
    基于隨機(jī)加權(quán)估計(jì)的Sage自適應(yīng)濾波及其在導(dǎo)航中的應(yīng)用
    基于Sage—Husa濾波的GNSS/INS組合導(dǎo)航自適應(yīng)濾波
    国产成人精品久久久久久| 国内精品宾馆在线| 最近的中文字幕免费完整| 亚洲av不卡在线观看| 亚洲人成网站高清观看| 少妇的逼水好多| 一个人看视频在线观看www免费| 免费观看在线日韩| 精品久久久久久久久亚洲| 97在线视频观看| 国产免费视频播放在线视频 | 午夜精品一区二区三区免费看| 看免费成人av毛片| 国产真实伦视频高清在线观看| 日韩三级伦理在线观看| av在线播放精品| 成人av在线播放网站| 国产av一区在线观看免费| 日韩成人伦理影院| 纵有疾风起免费观看全集完整版 | 爱豆传媒免费全集在线观看| 国产黄片视频在线免费观看| 欧美3d第一页| 日韩欧美在线乱码| 国内少妇人妻偷人精品xxx网站| 99久久中文字幕三级久久日本| 免费看美女性在线毛片视频| 亚洲成人久久爱视频| 老师上课跳d突然被开到最大视频| 岛国毛片在线播放| 自拍偷自拍亚洲精品老妇| 九色成人免费人妻av| 国模一区二区三区四区视频| 亚洲av电影不卡..在线观看| 免费看光身美女| 亚洲精品日韩在线中文字幕| 九色成人免费人妻av| 一本一本综合久久| 又黄又爽又刺激的免费视频.| 大香蕉久久网| 国产 一区精品| 色综合站精品国产| 简卡轻食公司| 精品国内亚洲2022精品成人| 国产免费一级a男人的天堂| 哪个播放器可以免费观看大片| 九九热线精品视视频播放| 亚洲av免费高清在线观看| 直男gayav资源| 国产探花极品一区二区| 哪个播放器可以免费观看大片| 欧美性猛交╳xxx乱大交人| 熟女人妻精品中文字幕| 99热精品在线国产| 成人毛片60女人毛片免费| 日日撸夜夜添| 春色校园在线视频观看| 少妇人妻精品综合一区二区| 色视频www国产| 久久久久久久久久成人| 亚洲天堂国产精品一区在线| 欧美变态另类bdsm刘玥| 久久久久性生活片| 少妇人妻精品综合一区二区| 国产三级在线视频| 夜夜爽夜夜爽视频| 如何舔出高潮| 在现免费观看毛片| 国产精品久久视频播放| 国产精品.久久久| av黄色大香蕉| 成年免费大片在线观看| 禁无遮挡网站| 成人av在线播放网站| 最后的刺客免费高清国语| 99国产精品一区二区蜜桃av| 99久久无色码亚洲精品果冻| 一边摸一边抽搐一进一小说| 男插女下体视频免费在线播放| 国产精品久久久久久精品电影小说 | 色网站视频免费| 你懂的网址亚洲精品在线观看 | av女优亚洲男人天堂| 国产 一区 欧美 日韩| 欧美最新免费一区二区三区| 色综合亚洲欧美另类图片| 少妇猛男粗大的猛烈进出视频 | 午夜激情福利司机影院| 午夜视频国产福利| 男人舔奶头视频| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久久大av| 三级经典国产精品| 国产精品一区二区在线观看99 | 一本久久精品| 欧美成人一区二区免费高清观看| 最近中文字幕高清免费大全6| 亚洲av免费在线观看| 精品久久久久久久久av| 国产精品爽爽va在线观看网站| 91精品伊人久久大香线蕉| 午夜爱爱视频在线播放| 亚洲精品456在线播放app| 免费在线观看成人毛片| 日韩人妻高清精品专区| 欧美日韩综合久久久久久| 中文资源天堂在线| 又爽又黄无遮挡网站| 国产亚洲一区二区精品| 亚洲av电影不卡..在线观看| 国产精品麻豆人妻色哟哟久久 | 欧美zozozo另类| 色吧在线观看| 免费看美女性在线毛片视频| 插阴视频在线观看视频| 一区二区三区乱码不卡18| 欧美一区二区亚洲| 精品免费久久久久久久清纯| 两个人视频免费观看高清| 好男人在线观看高清免费视频| 日本黄色片子视频| 免费在线观看成人毛片| 高清毛片免费看| a级一级毛片免费在线观看| 伦精品一区二区三区| 你懂的网址亚洲精品在线观看 | 国产精品美女特级片免费视频播放器| 啦啦啦啦在线视频资源| 精品久久久噜噜| 赤兔流量卡办理| 大香蕉久久网| 亚洲欧美精品自产自拍| 亚洲国产精品sss在线观看| 国产男人的电影天堂91| 69av精品久久久久久| 中文字幕免费在线视频6| 老司机影院毛片| 亚洲av.av天堂| 免费观看的影片在线观看| 国产免费又黄又爽又色| 91午夜精品亚洲一区二区三区| a级毛片免费高清观看在线播放| 久久精品夜色国产| 两性午夜刺激爽爽歪歪视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人午夜福利电影在线观看| 国产真实伦视频高清在线观看| 91久久精品国产一区二区成人| 成年av动漫网址| 人人妻人人澡人人爽人人夜夜 | 免费电影在线观看免费观看| 国产精品嫩草影院av在线观看| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 最近视频中文字幕2019在线8| 国产美女午夜福利| 亚洲精华国产精华液的使用体验| 91aial.com中文字幕在线观看| 免费观看性生交大片5| av线在线观看网站| 天天躁夜夜躁狠狠久久av| 国产精品爽爽va在线观看网站| 超碰97精品在线观看| kizo精华| 国产精品无大码| 欧美激情在线99| 国产在线一区二区三区精 | 观看美女的网站| 又爽又黄无遮挡网站| 看十八女毛片水多多多| 国产精品久久久久久精品电影| 中文字幕熟女人妻在线| 亚洲人与动物交配视频| 国产亚洲精品av在线| 婷婷色综合大香蕉| 午夜福利在线观看吧| 99热这里只有是精品50| 波多野结衣高清无吗| av视频在线观看入口| 日本一本二区三区精品| 国产av在哪里看| 我要搜黄色片| 丝袜喷水一区| 亚洲自拍偷在线| 精品久久久久久久末码| 成人一区二区视频在线观看| 哪个播放器可以免费观看大片| 亚洲高清免费不卡视频| 午夜免费男女啪啪视频观看| 亚洲欧洲国产日韩| 国产精品久久久久久精品电影小说 | 亚洲精品成人久久久久久| 一区二区三区免费毛片| 中文字幕av在线有码专区| 五月伊人婷婷丁香| 成人av在线播放网站| 欧美激情国产日韩精品一区| 亚洲欧洲国产日韩| 中文字幕精品亚洲无线码一区| 人妻制服诱惑在线中文字幕| 国产成人精品婷婷| 午夜激情欧美在线| 亚洲av二区三区四区| 成年女人永久免费观看视频| 99热这里只有精品一区| 国产一级毛片七仙女欲春2| 国产亚洲最大av| 成人二区视频| 老司机影院毛片| 国产一区二区亚洲精品在线观看| 婷婷色av中文字幕| 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级 | 亚洲综合色惰| 少妇熟女欧美另类| 在线观看66精品国产| 精品久久久久久久久av| 国产精品永久免费网站| 欧美日本亚洲视频在线播放| 一边摸一边抽搐一进一小说| 日韩国内少妇激情av| 国产欧美另类精品又又久久亚洲欧美| 三级国产精品片| 大香蕉久久网| 成年女人永久免费观看视频| 老司机福利观看| 夜夜看夜夜爽夜夜摸| 欧美一区二区亚洲| 日韩视频在线欧美| 村上凉子中文字幕在线| 欧美xxxx黑人xx丫x性爽| 联通29元200g的流量卡| 91av网一区二区| 国产老妇伦熟女老妇高清| 不卡视频在线观看欧美| 亚洲av成人av| 国产av一区在线观看免费| 国产亚洲5aaaaa淫片| 69av精品久久久久久| 一级毛片aaaaaa免费看小| 亚洲精品成人久久久久久| 99在线视频只有这里精品首页| 日韩在线高清观看一区二区三区| 亚洲18禁久久av| 亚洲欧美精品综合久久99| av.在线天堂| 国产高清有码在线观看视频| 看黄色毛片网站| www.色视频.com| 久久久国产成人免费| 搞女人的毛片| 九九热线精品视视频播放| 老师上课跳d突然被开到最大视频| 久久欧美精品欧美久久欧美| 在现免费观看毛片| 国产精品国产高清国产av| 色哟哟·www| 亚洲av不卡在线观看| 精品一区二区三区人妻视频| 成人无遮挡网站| 97超碰精品成人国产| 美女黄网站色视频| 内地一区二区视频在线| 亚洲欧美精品专区久久| 亚洲欧美中文字幕日韩二区| 国产白丝娇喘喷水9色精品| 变态另类丝袜制服| 日本熟妇午夜| 草草在线视频免费看| 亚洲精华国产精华液的使用体验| 亚洲精品aⅴ在线观看| 女人十人毛片免费观看3o分钟| 成年av动漫网址| 日本黄色视频三级网站网址| 久久久久久久久久黄片| 日韩亚洲欧美综合| 尾随美女入室| 少妇人妻一区二区三区视频| 狠狠狠狠99中文字幕| 特大巨黑吊av在线直播| 成年版毛片免费区| 久久久久久久久大av| 日韩高清综合在线| 国产 一区 欧美 日韩| 久久久久免费精品人妻一区二区| 中文字幕av成人在线电影| 综合色av麻豆| 欧美丝袜亚洲另类| 国产伦精品一区二区三区四那| 欧美又色又爽又黄视频| 国产精品爽爽va在线观看网站| 桃色一区二区三区在线观看| 国产成人一区二区在线| 黄片wwwwww| 一个人观看的视频www高清免费观看| av黄色大香蕉| 午夜福利在线观看免费完整高清在| 麻豆国产97在线/欧美| 久久精品国产亚洲网站| 欧美激情国产日韩精品一区| 国产精品爽爽va在线观看网站| 国产大屁股一区二区在线视频| 深夜a级毛片| 热99re8久久精品国产| 高清午夜精品一区二区三区| 男女视频在线观看网站免费| 亚洲国产精品合色在线| 观看美女的网站| 国产成人一区二区在线| 99在线人妻在线中文字幕| av线在线观看网站| 91av网一区二区| 1024手机看黄色片| 亚洲欧美精品自产自拍| 男插女下体视频免费在线播放| 不卡视频在线观看欧美| 午夜亚洲福利在线播放| 啦啦啦韩国在线观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 精品酒店卫生间| 国产视频首页在线观看| 免费人成在线观看视频色| 日日撸夜夜添| 久久精品国产亚洲av天美| 蜜臀久久99精品久久宅男| 精品欧美国产一区二区三| 欧美人与善性xxx| a级毛片免费高清观看在线播放| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 色视频www国产| 身体一侧抽搐| 国产淫片久久久久久久久| 插逼视频在线观看| 一个人观看的视频www高清免费观看| 国产成人一区二区在线| 久久精品影院6| 精品久久久久久久久久久久久| 欧美日韩精品成人综合77777| 啦啦啦啦在线视频资源| 神马国产精品三级电影在线观看| 2021少妇久久久久久久久久久| 波野结衣二区三区在线| 69av精品久久久久久| 亚洲,欧美,日韩| 国产国拍精品亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 五月伊人婷婷丁香| 亚洲人成网站在线播| 精品人妻视频免费看| 亚洲欧美一区二区三区国产| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 国产一级毛片七仙女欲春2| 一边摸一边抽搐一进一小说| 亚洲成人av在线免费| av卡一久久| 大香蕉久久网| 国产精品久久久久久av不卡| 国产精品一区二区在线观看99 | 禁无遮挡网站| 国产免费福利视频在线观看| 亚洲欧美日韩高清专用| 国产免费福利视频在线观看| 1024手机看黄色片| 91久久精品电影网| 99在线视频只有这里精品首页| 成年女人看的毛片在线观看| 国产精品熟女久久久久浪| 看十八女毛片水多多多| 天天躁日日操中文字幕| 亚洲av二区三区四区| 日韩成人av中文字幕在线观看| 尾随美女入室| 欧美一区二区亚洲| 天天一区二区日本电影三级| 日本爱情动作片www.在线观看| 久久亚洲国产成人精品v| 国产精品爽爽va在线观看网站| 午夜视频国产福利| 最近视频中文字幕2019在线8| 国产午夜精品一二区理论片| 最近视频中文字幕2019在线8| 国产亚洲精品av在线| 亚洲最大成人av| 久久久欧美国产精品| 欧美性猛交黑人性爽| 免费人成在线观看视频色| 国产av不卡久久| 国产成人精品一,二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本av手机在线免费观看| 亚洲精华国产精华液的使用体验| 欧美性感艳星| 欧美激情国产日韩精品一区| 亚洲欧美日韩卡通动漫| 99久久九九国产精品国产免费| 亚洲aⅴ乱码一区二区在线播放| 天天一区二区日本电影三级| 少妇猛男粗大的猛烈进出视频 | 人人妻人人看人人澡| 久久久久久大精品| 日韩在线高清观看一区二区三区| 亚洲av电影在线观看一区二区三区 | 日本欧美国产在线视频| 中文天堂在线官网| 国产黄色视频一区二区在线观看 | 99热这里只有是精品在线观看| 国产精品国产三级专区第一集| 少妇人妻精品综合一区二区| 蜜臀久久99精品久久宅男| 少妇熟女欧美另类| 亚洲乱码一区二区免费版| 免费看av在线观看网站| 男人舔女人下体高潮全视频| 亚洲欧美精品综合久久99| 亚洲成人中文字幕在线播放| 久久久久久久国产电影| 亚洲综合色惰| 国产色婷婷99| 五月玫瑰六月丁香| 联通29元200g的流量卡| 国产亚洲最大av| 中国美白少妇内射xxxbb| 综合色av麻豆| 国产免费男女视频| videossex国产| 人人妻人人澡人人爽人人夜夜 | 日韩 亚洲 欧美在线| 国产三级中文精品| 久久精品夜色国产| 亚洲国产精品sss在线观看| 女的被弄到高潮叫床怎么办| 国内揄拍国产精品人妻在线| 舔av片在线| 久久久久久久久久久丰满| 日韩制服骚丝袜av| 男女那种视频在线观看| 国产成人91sexporn| 欧美一级a爱片免费观看看| 国产精品三级大全| 亚洲成av人片在线播放无| 精品免费久久久久久久清纯| .国产精品久久| 国产在视频线精品| 久久久久久九九精品二区国产| 青春草国产在线视频| 久久久午夜欧美精品| 国产一级毛片在线| 男女下面进入的视频免费午夜| 天堂影院成人在线观看| 国产精品人妻久久久影院| 如何舔出高潮| av播播在线观看一区| 大香蕉97超碰在线| 久久综合国产亚洲精品| 人人妻人人看人人澡| 亚洲伊人久久精品综合 | 久久精品国产亚洲av天美| 在线观看一区二区三区| 99热全是精品| 国产乱人视频| 一区二区三区乱码不卡18| 岛国毛片在线播放| 国产真实伦视频高清在线观看| av国产久精品久网站免费入址| 中文资源天堂在线| 久久人人爽人人爽人人片va| 一级av片app| 看十八女毛片水多多多| 国产精品爽爽va在线观看网站| 中文字幕免费在线视频6| 亚洲精品自拍成人| 亚洲av免费高清在线观看| 欧美日韩国产亚洲二区| 最新中文字幕久久久久| 麻豆精品久久久久久蜜桃| 国产极品精品免费视频能看的| 国产男人的电影天堂91| 欧美成人精品欧美一级黄| 国产亚洲5aaaaa淫片| 亚洲成人久久爱视频| 永久免费av网站大全| 18禁裸乳无遮挡免费网站照片| 久久久久国产网址| 狂野欧美激情性xxxx在线观看| 日韩视频在线欧美| 丰满人妻一区二区三区视频av| 亚洲美女搞黄在线观看| 日韩中字成人| 国产精品蜜桃在线观看| 少妇丰满av| 精品人妻一区二区三区麻豆| 日本猛色少妇xxxxx猛交久久| av在线亚洲专区| 18禁在线无遮挡免费观看视频| 日本免费在线观看一区| 非洲黑人性xxxx精品又粗又长| 中文欧美无线码| 久久精品国产鲁丝片午夜精品| 床上黄色一级片| 国产高清三级在线| 中文字幕熟女人妻在线| 久久久久久久久中文| 亚洲自偷自拍三级| 欧美3d第一页| 成年版毛片免费区| 亚洲精品亚洲一区二区| 狂野欧美白嫩少妇大欣赏| 日本与韩国留学比较| 欧美精品国产亚洲| 亚洲人与动物交配视频| 国产精华一区二区三区| 久久久久国产网址| 亚洲av免费在线观看| 久热久热在线精品观看| 黄色配什么色好看| 美女国产视频在线观看| 欧美激情在线99| 乱码一卡2卡4卡精品| 久久久久精品久久久久真实原创| 久久久国产成人免费| 亚洲国产高清在线一区二区三| 日韩制服骚丝袜av| 亚洲美女搞黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 美女内射精品一级片tv| 啦啦啦观看免费观看视频高清| 亚洲av成人av| 联通29元200g的流量卡| av播播在线观看一区| 久久精品久久久久久久性| 三级经典国产精品| 69av精品久久久久久| 国产亚洲av片在线观看秒播厂 | 可以在线观看毛片的网站| 自拍偷自拍亚洲精品老妇| 在线免费观看不下载黄p国产| 看非洲黑人一级黄片| 午夜精品国产一区二区电影 | 国产精品99久久久久久久久| 最后的刺客免费高清国语| 国产精品国产高清国产av| 亚洲欧美中文字幕日韩二区| 国产精品无大码| 欧美丝袜亚洲另类| 欧美日本亚洲视频在线播放| 99在线视频只有这里精品首页| 国产一区二区三区av在线| 亚洲av成人精品一区久久| 26uuu在线亚洲综合色| 美女被艹到高潮喷水动态| 欧美激情在线99| 亚洲国产精品合色在线| 成人午夜高清在线视频| 精品国内亚洲2022精品成人| 在线免费观看的www视频| 日韩成人伦理影院| 久久久久九九精品影院| 午夜福利在线在线| 又爽又黄无遮挡网站| 欧美精品国产亚洲| 少妇熟女aⅴ在线视频| 久久久久久大精品| 三级男女做爰猛烈吃奶摸视频| 久久久久性生活片| 欧美精品一区二区大全| 久久久国产成人精品二区| 国产精品一及| 亚洲无线观看免费| 在线观看美女被高潮喷水网站| 国产成人精品久久久久久| 国产乱来视频区| 亚洲精品亚洲一区二区| 高清在线视频一区二区三区 | 午夜激情福利司机影院| 精品国产三级普通话版| 成人欧美大片| av国产久精品久网站免费入址| 亚洲经典国产精华液单| 三级国产精品片| 亚洲自偷自拍三级| 日韩,欧美,国产一区二区三区 | 亚洲第一区二区三区不卡| 成年免费大片在线观看| 日韩精品青青久久久久久| 亚洲不卡免费看| 色综合站精品国产| 联通29元200g的流量卡| 一二三四中文在线观看免费高清| ponron亚洲| 亚洲欧美中文字幕日韩二区| 亚洲美女视频黄频| 色5月婷婷丁香| 亚洲va在线va天堂va国产| 精品熟女少妇av免费看| 成人二区视频| 亚洲国产欧美人成| av福利片在线观看| 国产精华一区二区三区| 国产不卡一卡二| 一级毛片aaaaaa免费看小| 高清av免费在线| 黄色一级大片看看| 最近的中文字幕免费完整| 亚洲精品亚洲一区二区| 国产 一区 欧美 日韩| 成人午夜高清在线视频| 亚洲激情五月婷婷啪啪| 秋霞在线观看毛片| 亚洲国产欧洲综合997久久,| 欧美不卡视频在线免费观看| 日韩 亚洲 欧美在线| 国产精品无大码| 精品久久久久久久人妻蜜臀av|