• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method

    2014-04-06 12:48:36BAIJunqiangWANGBoSUNZhiwei
    關(guān)鍵詞:渦量流線界面

    BAI Jun-qiang,WANG Bo,SUN Zhi-wei

    0 Foreword

    In order to obtain good maneuverability and agility,modern aircraft always flies at high angle of attack,sometimes even larger than the stall angle.The aerodynamic efficiency of conventional aircraft is low at large angle of attack,and it is unable to provide the necessary lift and moment.In this case,the movement and flight control of aircraft become very difficult and it often leads to accident directly.In order to improve the maneuverability of aircraft at high angle of attack,separated flow at high angle of attack is researched in recent years,and its formation mechanism is also conducted in-depth exploration.

    For the calculation of separated flow,Reynolds averaged method often can not describe the details of the development and the change of different scale's eddy[1-2].Large Eddy Simulation (LES)and Direct Numerical Simulation(DNS)in complex geometries and high Reynolds number(more than 1.0×105)is difficult to bring into effect in engineering because of the huge problem in the computation with the level of the current computer.In Large Eddy Simulation[3]a large part of computation is used to simulate the small-scale,high-frequency motion in boundary layer.If this part can be eliminated from computation and only the movement of largescale eddy that mainly influence on the flow is computed,it will greatly reduce the computation.DES,DDES are produced as a mixture of Reynolds averaged and large eddy simulation method against this background.

    DES[4]uses Reynolds averaged N-S method in the boundary layer near the wall,and turbulence model is used to simulate the small-scale fluctuation motion in the flow;The turbulence scale parameter of the turbulence model dissipation term will be modified in the flow separation zone[5].If the grid scale can meet the requirements,it plays the role of subgrid scale stress model[6]in Smagorinski Large Eddy Simulation.DES method does not take a large number of small-scale fluctuation motion into account in the turbulent boundary layer,so the number of grid required is greatly reduced.The method not only takes advantage of the small computation amount using Reynolds averaged method in the boundary layer,but also well simulate large scale detached eddy in the flow separation.

    DDES method[7-8]solves the problem on mesh dependence of DES.In the mesh refinement process Modeled-Stress Depletion phenomenon and the grid induced separation problems may occur.Spalart,Strelets and others improved the original DES method:the Delay Control of the function of boundary layer is introduced to determine the parameters.The method ensures that the RANS method in boundary layer is used in calculation regardless of Large Eddy Simulation.

    Nowadays the simulation using DES and DDES around delta wing configurations with sharp leading edges has been well known,many experimental and numerical investigations[9-13]have been published to simulating the flow using high fidelity numerical methods.However,the flow around delta wing configurations with blunt leading edge is still not entirely understood.Therefore,several experimental data in the Second International Vortex Flow Experiment were provided and generated within the NATO RTO/AVT-113task group for a 65°swept delta wing with sharp and various blunt/rounded leading edges[14].

    The paper focuses on the flow around the delta wing with blunt leading edge using RANS and hybrid models such as DES and DDES methods.The overall goal is to simulate the flow more fully a-round these non-sharp leading edge delta wings and gain more about the mechanism.

    1 Governing equations

    In the paper,the unsteady three dimensional compressible Navier Stokes equation in integral form under inertial Cartesian coordinates is adopted.The equation can be written as:

    In order to close RANS equations,based on Boussinesq assumption,the Reynolds stress can be defined as:

    Here,ωiis the relative velocity in the xidirection.

    Finite volume method,Roe scheme in spatial discretization and pseudo-time method are used in the unsteady numerical simulation.

    2 Turbulence model and boundary condition

    S-A turbulence model is used in the paper.It can well simulate most of attached flow and the free movement of thin shear flow.Besides,it also has good robustness and numerical convergence.The Riemann invariants in normal direction is used in Far-field boundary condition in order to achieve nonreflective boundary condition;and the no-slip condition is adopted in wall boundary condition,that is,u=v=w=0The normal pressure gradient of wall?p/?n=0,this paper assumes?T/?n=0in which n is the normal direction of wall toward outside.

    3 DES,DDES method

    In the DES method,the length of the scale in S-A turbulence model and the distance from any point in the flow field to the nearest wall surface d,can be expressed as:

    In whichΔis the maximum distance from the center of the grid center to the adjacent cells,constant coefficient CDES=0.65.The scale of grid in normal direction is small near the wall,CDESΔ>d,~d=d,model here is the standard S-A model and the model works in the RANS mode;Far from boundary layer,When CDESΔ<d,~d=CDESΔ.The model works in Large Eddy Simulation mode.Then,the generation term SPand the dissipation term SDin the equations can be respectively expressed as:

    When the generation term is equal to the dissipation term (SP=SD),the eddy viscosity coefficient can be expressed as:

    Where C is constant.This expression and the Smagorinsky subgrid stress model are very similar.

    In the same flow problem two different grid division methods are adopted near the wall.The grid area corresponding to RANS and LES region are also different and the final results of the two sets of grids vary greatly,so that the solution of the mesh is sensitive to the results.Menter pointed out that under the situation of a closely continuous grid,the prediction of the separation will occur earlier,that is,the grid induced separation problem,then Spalart reconstruct the characteristic size d,the specific form is defined as the following:

    This is the DDES method,in which fdis the function of the eddy viscosity coefficient vt,velocity gradient Uijand so on:

    The effect of fdis to take the feedback of the characteristic size d for the results into consideration.

    4 Numerical simulation of the delta wing with blunt leading edge

    The computational model uses the 65°swept delta wing with medium-scale leading-edge radius and blunt edge in the second eddy flow experiment(Eddy Flow Experiment 2,VFE2)for study.It is shown in Figure 1.

    Fig.1 Model parameters圖1 模型參數(shù)

    Figure 2shows the distribution of the grid.Structured grid is used in this paper and space is divided into 133blocks and 5.93×106grid cells.

    Fig.2 Model grid圖2 模型網(wǎng)格

    Computation state:Ma=0.4,α=13.3°,Re=3×106.The number of iteration is about 10000.

    Test data shows that the main eddy on the leading edge induces the secondary eddy,there is also an inner eddy with the same direction in rotation(relative to the eddy on leading edge,it can be called outside eddy).The small difference of the start position of outside eddy will cause the change of pressure distribution significantly.The separation region on the front of wing is the place that the inner eddy occurs,and the position and the strength of the inner eddy will affect the distribution of another suction peak.

    Since the model is a delta wing with the blunt leading edge,the start position of primary eddy is not the vertices at zenith.It is a challenge in CFD simulation to accurately capture the primary eddy along the axial front position.The location of the main eddy and the capture of suction peak can further determine the precise location of inner eddy.

    Figure 3to Figure 5are the comparison of RANS,DES and DDES pressure distribution of numerical simulation and experimental data respectively.All three methods can well catch the main eddy,while the start position of the main eddy is more forward and the calculated intensity of inner eddy is all weaker than the experimental data.Because the all-turbulence computation is used and the results are greatly influenced by grid distribution,the accuracy of turbulence model and transition.eddy in the flow field experiences a very complex process,In the beginning the initial layer is near the boundary layer,and the boundary layer becomes thicker and thicker along the downstream flows,and develops to the edge side,and ultimately roll up to inner eddy,the eddy develops inward.Inner eddy develops from the pileup of boundary layer within the eddy and inducement of outside eddy,so that it is very sensitive to the upstream flow.As shown by the comparison of results,DES,DDES can describe the internal eddy better than RANS.Figure 6is the pressure distribution of the experimental data at different slices in X direction.The pressure coefficient of RANS,DES,DDES in different slices are shown from Figure 7to Figure 9,the results of all the suction peak of leading edge and the trend of the pressure on the surface of wing are in good agreement with the experimental results.The flow around the leading edge is attached over the whole span up to 45% chord length.The pressure coefficient predicted with the same grid by RANS is too high and the strength of the inner vortex simulated by RANS is too weak where the inner eddy even smaller.However,the surface pressure predicted by DES and DDES are in better agreement with the experiment than RANS simulation.The differences between the two results and the experiment are mainly on the trailing edge of the wing in that the flow is unsteady and complicated in the region and adequately high time averaging can solve the problem in the future.As is shown in Figure 9,DDES method has a better simulation of inner eddy than DES method,because DDES does not rely on the refinement of local grid in comparison to DES method.

    Fig.3 RANS pressure distribution in comparison with experiment圖3 RANS壓力分布與實(shí)驗(yàn)結(jié)果的對(duì)比

    Fig.4 DES pressure distribution in comparison with experiment圖4 DES壓力分布與實(shí)驗(yàn)結(jié)果的對(duì)比

    Fig.5 DDES pressure distribution in comparison with experiment圖5 DDES壓力分布與實(shí)驗(yàn)結(jié)果的對(duì)比

    Fig.6 Pressure coefficient of experiment in different slices圖6 實(shí)驗(yàn)下的不同截面壓力分布

    Fig.7 Pressure coefficient of RANS in different slices圖7 RANS下的不同截面壓力分布

    Fig.8 Pressure coefficient of DES in different slices圖8 DES下的不同截面壓力分布

    Fig.9 Pressure coefficient of DDES in different slices圖9 DDES下的不同截面壓力分布

    Figure 10is the vorticity distribution of experiment,RANS,DES and DDES simulation results in different slices.What the Figure 10shows is helpful for us to understand the topology of the flow.The flow near the wing surface which corresponds to the higher vorticity forms the primary vortex in outer region.As is shown in Figure 11to 13,in comparison with the experiment data,DES and DDES show more details than RANS.

    Fig.10 The vorticity distribution of experiment in different slices圖10 實(shí)驗(yàn)下的不同截面渦量分布

    Fig.11 The vorticity distribution of RANS in different slices圖11 RANS下的不同截面渦量分布

    Fig.12 The vorticity distribution of DES in different slices圖12 DES下的不同截面渦量分布

    At high angle of attack,the boundary layer departs from the wall at the beginning of the separation line on the surface,and then the eddy rolls over on the leeward side.The eddy controls the aerodynamic characteristics of aircraft.Figure 14is the computational results of the spatial streamlines of DDES.It can be learned that the eddy can be well described from the beginning to the wake of the eddy.

    Fig.13 The vorticity distribution of DDES in different slices圖13 DDES下的不同界面渦量分布

    Fig.14 The streamlines of DDES圖14 DDES方法下的流線圖

    5 Conclusions

    In this paper,RANS,DES and DDES numerical simulation of eddy separation on the delta wing with blunt leading edge is bring into effect.The results of the numerical simulation are analyzed:

    (1)In terms of the separation eddy flow,the pressure distribution of RANS is consistent with the experimental data given,but it can not give satisfactory results on the strength of small eddy.

    (2)The pressure distribution of DES method is consistent with the experimental data,and more detail of the eddy topology can be given than RANS.DES method has obvious advantages in separated flow in comparison with RANS method.

    (3)DDES method reduces the dependence of mesh and has a outstanding performance in the numerical simulation,numerical results given are also more rational,more detail of the eddy topology can be given than DES.

    From the analysis of the mechanism of CFD,the flow around the wing experienced the process from the separation bubble on the leading edge,the instability of the flow to the rupture of the eddy.It is a complex process of change.The results of separated flow depend on the accurate simulation of boundary layer and detached eddy.While the DES uses RANS method near the wall and LES method in the area of detached eddy.The computational grid is saved near the wall and the boundary layer can also be well simulated,and LES method effectively solves the problem of numerical simulation of the separation zone.Through the study,the application of DES,DDES method leads to an increased understanding of the flow field of the delta wing with blunt leading edge at high angle of attack.

    [1]ANDREA A M,LIOU M S,LOUIS A.Povinelli integration of Navier-Stokes equations using dual time stepping and a multigrid method[J].AIAA Journal,1995,33(6):985-990.

    [2]SPALART P,ALLMARAS S.A one-equation turbulence model for aerodynamic flows[R].AIAA Paper 92-0439.

    [3]SPALART P,JOU W,STRELETS M,et al.Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach[M].Greyden Press,1997:137.

    [4]PHILIPPE R.SPALART.Trends in turbulence treament[R].AIAA 2000-2306,2000.

    [5]MENTER FR,KUNTZ M.Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M].McCALLEN R,BROWAND F,ROSS J,editors.The aerodynamics of heavy vehicles:trucks,buses,and trains.Springer,2004.

    [6]HANSEN R P,LONG L N.Large-eddy simulation of a circular cylinder on unstructured grids[R].AIAA 2002-0982,2002.

    [7]SPALART P R,DECK S,SHUR M L,et al.A new version of detached-eddy simulation,resistant to ambiguous grid densities[J].Theory of Computational Fluid Dynamics,2006,20:181-195.

    [8]ZHI X X,HAI X C,YU F Z,et al.Study of delayeddetached eddy simulation with weakly nonlinear turbu-lence model[J].Journal of Aircraft,2006,43(5):1377-1385.

    [9]DROUGGE G.The international vortex flow experiment for computer code validation[J].ICAS Proceedings,1:35-41.

    [10]ELSENAAR A,HJELEBERG L,BUTEFISCH K A,et al.The international vortex flow experiment[R].AGARD-CP-437,1:9-1,9-23.

    [11]WAGNER B,HITZEL S,SCHMATZ M A,et al.Status of CFD validation on the vortex flow experiment[R].AGARD-CP-437.1:10-1,10-10.

    [12]HOEIJMAKERS H W M.Modelling and numerical simulation of vortex flow in aerodynamics[R].AGARD-CP-494,1991:1-1,1-46.

    [13]LUCKRING J M.Recent progress in computational vortexflow aerodynamics[R].AGARD-CP-494,1991:6-1,6-21.

    [14]HUMMEL D,REDEKER G.A new vortex flow experiment for computer code validation[A].RTO-AVT Symposium on “Vortex Flow and High Angle of Attack”[C].Loen Norway,2001.

    猜你喜歡
    渦量流線界面
    人工塑造生境條件下中華倒刺鲃的棲息偏好研究
    含沙空化對(duì)軸流泵內(nèi)渦量分布的影響
    國企黨委前置研究的“四個(gè)界面”
    幾何映射
    任意夾角交叉封閉邊界內(nèi)平面流線計(jì)算及應(yīng)用
    自由表面渦流動(dòng)現(xiàn)象的數(shù)值模擬
    基于FANUC PICTURE的虛擬軸坐標(biāo)顯示界面開發(fā)方法研究
    人機(jī)交互界面發(fā)展趨勢(shì)研究
    手機(jī)界面中圖形符號(hào)的發(fā)展趨向
    新聞傳播(2015年11期)2015-07-18 11:15:04
    航態(tài)對(duì)大型船舶甲板氣流場的影響
    黄色成人免费大全| 国产熟女午夜一区二区三区| 亚洲国产中文字幕在线视频| 亚洲国产精品合色在线| 国产男靠女视频免费网站| 亚洲精品粉嫩美女一区| 黄色片一级片一级黄色片| 高潮久久久久久久久久久不卡| 国产精品99久久99久久久不卡| 亚洲专区中文字幕在线| 欧美日本中文国产一区发布| 欧美乱妇无乱码| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产高清国产av | 欧美乱妇无乱码| 伦理电影免费视频| 亚洲欧美激情在线| 十八禁网站免费在线| 亚洲精华国产精华精| 色综合欧美亚洲国产小说| 成人永久免费在线观看视频| 99re在线观看精品视频| 欧美激情高清一区二区三区| 大码成人一级视频| 欧美性长视频在线观看| 午夜福利乱码中文字幕| 18在线观看网站| 法律面前人人平等表现在哪些方面| 一本大道久久a久久精品| 国产高清激情床上av| 中文字幕人妻丝袜制服| 国产亚洲欧美精品永久| 国产精品98久久久久久宅男小说| av欧美777| 久久久久久久精品吃奶| 久久ye,这里只有精品| 国产精品一区二区精品视频观看| 久久天堂一区二区三区四区| 欧美成狂野欧美在线观看| 国产aⅴ精品一区二区三区波| 黄色成人免费大全| 亚洲成av片中文字幕在线观看| 在线观看免费日韩欧美大片| 一级毛片女人18水好多| 国产精品综合久久久久久久免费 | 国产精品久久久久久精品古装| 精品人妻在线不人妻| 精品福利永久在线观看| 最新美女视频免费是黄的| 精品少妇一区二区三区视频日本电影| 美女高潮喷水抽搐中文字幕| 中文欧美无线码| 91大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲精品不卡| 中文欧美无线码| 黄色a级毛片大全视频| 不卡一级毛片| 国产一区二区三区在线臀色熟女 | 女人爽到高潮嗷嗷叫在线视频| 国产在线一区二区三区精| 人人妻人人澡人人爽人人夜夜| 视频区图区小说| 亚洲午夜理论影院| 日本欧美视频一区| 在线观看午夜福利视频| 久久青草综合色| 成人av一区二区三区在线看| 亚洲av日韩精品久久久久久密| 人人妻人人澡人人看| 一区二区三区国产精品乱码| 新久久久久国产一级毛片| 久久中文字幕人妻熟女| av一本久久久久| 精品少妇一区二区三区视频日本电影| 亚洲男人天堂网一区| 91国产中文字幕| 夜夜躁狠狠躁天天躁| 老汉色∧v一级毛片| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 日日爽夜夜爽网站| 国产成人系列免费观看| 视频在线观看一区二区三区| av国产精品久久久久影院| 老司机靠b影院| 美女高潮到喷水免费观看| 在线观看免费午夜福利视频| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| a在线观看视频网站| 91大片在线观看| 妹子高潮喷水视频| 亚洲精品美女久久久久99蜜臀| 欧美日韩福利视频一区二区| 又黄又粗又硬又大视频| a级片在线免费高清观看视频| 久久精品亚洲av国产电影网| 91精品国产国语对白视频| 乱人伦中国视频| 国产精品av久久久久免费| 国产单亲对白刺激| 日本黄色视频三级网站网址 | 亚洲自偷自拍图片 自拍| 男人舔女人的私密视频| 久久亚洲精品不卡| 最近最新中文字幕大全免费视频| 人人妻人人澡人人看| 国产成人av激情在线播放| 在线观看66精品国产| 久久狼人影院| 亚洲欧美一区二区三区黑人| 国产区一区二久久| 欧美大码av| 日韩中文字幕欧美一区二区| 热99久久久久精品小说推荐| 满18在线观看网站| 欧美黄色淫秽网站| 少妇猛男粗大的猛烈进出视频| 国产视频一区二区在线看| 丁香欧美五月| 99re6热这里在线精品视频| 免费女性裸体啪啪无遮挡网站| 免费看十八禁软件| 欧美日韩视频精品一区| 国产亚洲欧美98| 欧美一级毛片孕妇| 脱女人内裤的视频| 欧美 亚洲 国产 日韩一| 下体分泌物呈黄色| 国产99白浆流出| 新久久久久国产一级毛片| 精品一品国产午夜福利视频| 天堂中文最新版在线下载| 亚洲avbb在线观看| 999久久久国产精品视频| 叶爱在线成人免费视频播放| 久久ye,这里只有精品| 少妇粗大呻吟视频| 大型av网站在线播放| 最近最新中文字幕大全电影3 | 午夜福利在线观看吧| 人人澡人人妻人| 亚洲 国产 在线| 中文字幕人妻丝袜制服| 夜夜躁狠狠躁天天躁| 亚洲伊人色综图| 国产成人精品久久二区二区91| 欧美精品av麻豆av| 中文字幕制服av| 日韩欧美免费精品| 国产成人av激情在线播放| 一级a爱视频在线免费观看| 在线视频色国产色| 99国产精品一区二区蜜桃av | 国产精品久久久av美女十八| 国产色视频综合| 9191精品国产免费久久| 亚洲精品一二三| 欧美日韩一级在线毛片| 国产精品永久免费网站| 亚洲三区欧美一区| 午夜亚洲福利在线播放| 精品久久久久久久久久免费视频 | 波多野结衣av一区二区av| 老鸭窝网址在线观看| 精品少妇久久久久久888优播| 十八禁高潮呻吟视频| 大型av网站在线播放| 黄片播放在线免费| 在线观看一区二区三区激情| 久久久国产成人免费| av不卡在线播放| 国产一卡二卡三卡精品| 亚洲精品乱久久久久久| 久久久久久人人人人人| 亚洲精品中文字幕一二三四区| √禁漫天堂资源中文www| 亚洲精品国产区一区二| 精品福利永久在线观看| 真人做人爱边吃奶动态| 黄色女人牲交| 国产成人免费观看mmmm| 欧美 日韩 精品 国产| 久久精品国产亚洲av高清一级| 国产精品一区二区免费欧美| 99re在线观看精品视频| 国产麻豆69| 国产精品1区2区在线观看. | 免费一级毛片在线播放高清视频 | av天堂在线播放| av超薄肉色丝袜交足视频| 怎么达到女性高潮| 另类亚洲欧美激情| 国产区一区二久久| 日韩免费av在线播放| 天天操日日干夜夜撸| 日日夜夜操网爽| 99re在线观看精品视频| 日韩一卡2卡3卡4卡2021年| 国产精品1区2区在线观看. | 午夜日韩欧美国产| 99热只有精品国产| 成年女人毛片免费观看观看9 | 久久久久久久久久久久大奶| 搡老熟女国产l中国老女人| 国产精品国产av在线观看| 国产成人av教育| 黄色成人免费大全| 大陆偷拍与自拍| 搡老乐熟女国产| 国产亚洲精品第一综合不卡| 中文字幕人妻熟女乱码| 亚洲五月色婷婷综合| 天天添夜夜摸| 亚洲 欧美一区二区三区| 亚洲国产毛片av蜜桃av| 黄色片一级片一级黄色片| 国产精品免费视频内射| 亚洲av日韩在线播放| 怎么达到女性高潮| av欧美777| 人人妻人人澡人人看| 黄色成人免费大全| 俄罗斯特黄特色一大片| 夜夜躁狠狠躁天天躁| 一级a爱片免费观看的视频| 欧美日韩视频精品一区| 欧美成人午夜精品| cao死你这个sao货| 亚洲自偷自拍图片 自拍| 99在线人妻在线中文字幕 | 日本黄色日本黄色录像| 国产精品一区二区在线不卡| 一a级毛片在线观看| 在线观看免费午夜福利视频| 激情视频va一区二区三区| 免费观看人在逋| 精品一区二区三区av网在线观看| 美女午夜性视频免费| 国产国语露脸激情在线看| 久热爱精品视频在线9| 99国产精品免费福利视频| 一级作爱视频免费观看| 9191精品国产免费久久| 一区福利在线观看| 亚洲五月天丁香| 国产成人啪精品午夜网站| 国产99白浆流出| 满18在线观看网站| 亚洲专区字幕在线| 国产一区二区三区在线臀色熟女 | 国产99白浆流出| 高清黄色对白视频在线免费看| 中文字幕av电影在线播放| 丰满的人妻完整版| 美女扒开内裤让男人捅视频| 亚洲成人免费av在线播放| 午夜精品久久久久久毛片777| 曰老女人黄片| 免费观看人在逋| 啦啦啦在线免费观看视频4| 黄色女人牲交| 亚洲精品国产一区二区精华液| 国产在线一区二区三区精| 成人手机av| 亚洲色图av天堂| 极品教师在线免费播放| 一区二区三区国产精品乱码| 19禁男女啪啪无遮挡网站| 国内久久婷婷六月综合欲色啪| 久久久国产欧美日韩av| 亚洲成a人片在线一区二区| 免费在线观看影片大全网站| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一出视频| 视频区欧美日本亚洲| 欧美久久黑人一区二区| 丰满的人妻完整版| 国产精品永久免费网站| 欧美黑人精品巨大| 校园春色视频在线观看| 巨乳人妻的诱惑在线观看| 国产成人av教育| 777久久人妻少妇嫩草av网站| 黄色女人牲交| 中文字幕人妻丝袜制服| 国产激情久久老熟女| 丰满饥渴人妻一区二区三| 精品人妻熟女毛片av久久网站| 很黄的视频免费| 亚洲熟女毛片儿| 在线看a的网站| 看黄色毛片网站| 天堂动漫精品| 人人澡人人妻人| 国产免费av片在线观看野外av| 老司机午夜福利在线观看视频| 老熟女久久久| 国产极品粉嫩免费观看在线| 久久久久久人人人人人| 欧美日韩一级在线毛片| 中文字幕制服av| 成人手机av| 一级a爱视频在线免费观看| 久久人妻福利社区极品人妻图片| 啦啦啦视频在线资源免费观看| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 亚洲精品一二三| 亚洲国产中文字幕在线视频| 在线观看免费视频网站a站| 中文字幕色久视频| 免费少妇av软件| 夜夜夜夜夜久久久久| 三上悠亚av全集在线观看| 成年人黄色毛片网站| 在线观看免费视频日本深夜| 久久天躁狠狠躁夜夜2o2o| 欧美国产精品va在线观看不卡| aaaaa片日本免费| 国产高清视频在线播放一区| 日韩有码中文字幕| 午夜精品国产一区二区电影| 在线观看免费午夜福利视频| 天天躁夜夜躁狠狠躁躁| 99久久国产精品久久久| av线在线观看网站| 国产麻豆69| 91字幕亚洲| 欧美日韩视频精品一区| 成人av一区二区三区在线看| 亚洲人成电影免费在线| 男人舔女人的私密视频| 男人操女人黄网站| 美女视频免费永久观看网站| 69精品国产乱码久久久| 亚洲国产欧美日韩在线播放| 欧美日韩福利视频一区二区| 久久人人97超碰香蕉20202| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机靠b影院| 午夜精品在线福利| 激情视频va一区二区三区| 国产成人影院久久av| av免费在线观看网站| 亚洲一码二码三码区别大吗| 激情在线观看视频在线高清 | 岛国在线观看网站| 最近最新中文字幕大全免费视频| 老熟妇乱子伦视频在线观看| 午夜福利在线观看吧| 国产精品99久久99久久久不卡| 69av精品久久久久久| 欧美国产精品va在线观看不卡| 午夜亚洲福利在线播放| 成年人午夜在线观看视频| 日本a在线网址| 不卡av一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕精品免费在线观看视频| 久久99一区二区三区| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| 国产精品国产高清国产av | 老司机靠b影院| 亚洲熟女精品中文字幕| 女人被躁到高潮嗷嗷叫费观| 三级毛片av免费| 乱人伦中国视频| 日本撒尿小便嘘嘘汇集6| www.自偷自拍.com| 亚洲欧美激情综合另类| 波多野结衣av一区二区av| 亚洲精品乱久久久久久| 一区福利在线观看| 久久午夜综合久久蜜桃| 亚洲精品美女久久久久99蜜臀| 黄色怎么调成土黄色| 99精品欧美一区二区三区四区| 黑人欧美特级aaaaaa片| 亚洲精品美女久久av网站| 啦啦啦在线免费观看视频4| 国产精品九九99| 国产1区2区3区精品| 成人亚洲精品一区在线观看| 久久精品亚洲精品国产色婷小说| 亚洲aⅴ乱码一区二区在线播放 | 人妻一区二区av| 久久热在线av| 国产三级黄色录像| 王馨瑶露胸无遮挡在线观看| 欧美日韩乱码在线| 亚洲色图av天堂| 1024视频免费在线观看| 亚洲精品国产区一区二| 三级毛片av免费| av中文乱码字幕在线| 国产成人欧美在线观看 | 精品国产乱子伦一区二区三区| 欧美黑人欧美精品刺激| 国产1区2区3区精品| 亚洲人成77777在线视频| 91九色精品人成在线观看| 叶爱在线成人免费视频播放| 国产精品国产高清国产av | 天天躁夜夜躁狠狠躁躁| 欧美黄色淫秽网站| 午夜福利乱码中文字幕| 国产精品一区二区免费欧美| 女性生殖器流出的白浆| 亚洲av片天天在线观看| 亚洲av日韩在线播放| 国产精品1区2区在线观看. | 亚洲色图av天堂| 久久久久国内视频| 老汉色∧v一级毛片| 操出白浆在线播放| 村上凉子中文字幕在线| 欧美中文综合在线视频| 午夜福利,免费看| 国精品久久久久久国模美| 亚洲人成77777在线视频| 高清欧美精品videossex| 国产成人精品久久二区二区91| 国产精品免费视频内射| 一区在线观看完整版| 天天躁夜夜躁狠狠躁躁| 可以免费在线观看a视频的电影网站| av在线播放免费不卡| 色尼玛亚洲综合影院| 亚洲男人天堂网一区| 国产精品电影一区二区三区 | 黄色成人免费大全| 一区在线观看完整版| 亚洲av成人不卡在线观看播放网| 91麻豆av在线| 亚洲,欧美精品.| 一级毛片女人18水好多| 亚洲九九香蕉| av免费在线观看网站| 午夜精品在线福利| 亚洲少妇的诱惑av| www.精华液| 国产精品免费一区二区三区在线 | 热99久久久久精品小说推荐| 夜夜躁狠狠躁天天躁| 91成年电影在线观看| 国产亚洲精品一区二区www | 好男人电影高清在线观看| 久久久久久亚洲精品国产蜜桃av| avwww免费| 9色porny在线观看| 久久国产精品大桥未久av| 欧美日韩瑟瑟在线播放| 又大又爽又粗| 成人国产一区最新在线观看| 精品欧美一区二区三区在线| 久久中文看片网| 少妇猛男粗大的猛烈进出视频| 欧美日韩乱码在线| 美女福利国产在线| 满18在线观看网站| 精品一区二区三区视频在线观看免费 | 18禁国产床啪视频网站| 啦啦啦在线免费观看视频4| 久久中文字幕一级| 久热爱精品视频在线9| 成人黄色视频免费在线看| 黑人巨大精品欧美一区二区蜜桃| 熟女少妇亚洲综合色aaa.| 日韩欧美三级三区| 在线国产一区二区在线| 亚洲av欧美aⅴ国产| 超碰97精品在线观看| aaaaa片日本免费| av欧美777| 亚洲欧美日韩高清在线视频| 久久久国产精品麻豆| 免费日韩欧美在线观看| 在线观看免费日韩欧美大片| 精品人妻1区二区| 日本一区二区免费在线视频| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久电影网| 欧美黑人精品巨大| 久久久久精品国产欧美久久久| 精品视频人人做人人爽| 欧美精品av麻豆av| 亚洲av电影在线进入| 色老头精品视频在线观看| 又大又爽又粗| 99国产极品粉嫩在线观看| 亚洲精品国产一区二区精华液| 激情视频va一区二区三区| 精品无人区乱码1区二区| 亚洲国产看品久久| 亚洲 欧美一区二区三区| 久久人妻熟女aⅴ| 亚洲欧美日韩另类电影网站| 国产成人av教育| 一a级毛片在线观看| 人妻丰满熟妇av一区二区三区 | 免费一级毛片在线播放高清视频 | 国产精品av久久久久免费| 一级a爱视频在线免费观看| 免费在线观看黄色视频的| 国产xxxxx性猛交| 淫妇啪啪啪对白视频| 精品国产乱码久久久久久男人| 一边摸一边抽搐一进一出视频| 亚洲色图 男人天堂 中文字幕| 涩涩av久久男人的天堂| 伦理电影免费视频| 午夜福利在线免费观看网站| 侵犯人妻中文字幕一二三四区| 视频区图区小说| 亚洲精品久久成人aⅴ小说| 国精品久久久久久国模美| 高清黄色对白视频在线免费看| 婷婷成人精品国产| 777米奇影视久久| 男女床上黄色一级片免费看| 欧美人与性动交α欧美软件| 欧美成狂野欧美在线观看| 久久久久久久国产电影| 熟女少妇亚洲综合色aaa.| 亚洲熟妇熟女久久| 又黄又爽又免费观看的视频| 一级作爱视频免费观看| 久久精品熟女亚洲av麻豆精品| 国产精品电影一区二区三区 | 老汉色∧v一级毛片| 成年女人毛片免费观看观看9 | 成人18禁在线播放| 一个人免费在线观看的高清视频| 侵犯人妻中文字幕一二三四区| 国产麻豆69| 国产欧美日韩一区二区三| 久久久久久久久免费视频了| 欧美黑人欧美精品刺激| 亚洲色图综合在线观看| 欧美激情极品国产一区二区三区| 搡老乐熟女国产| 国产91精品成人一区二区三区| 男女高潮啪啪啪动态图| 丰满的人妻完整版| xxx96com| 欧美激情极品国产一区二区三区| 在线观看免费高清a一片| 90打野战视频偷拍视频| 又黄又粗又硬又大视频| 高清黄色对白视频在线免费看| 欧美精品亚洲一区二区| 视频在线观看一区二区三区| 精品一区二区三区视频在线观看免费 | 亚洲成人免费av在线播放| 成熟少妇高潮喷水视频| 日韩欧美一区视频在线观看| 国产高清国产精品国产三级| 国产欧美日韩精品亚洲av| 91精品国产国语对白视频| 国产精品av久久久久免费| 成年人午夜在线观看视频| 又大又爽又粗| 飞空精品影院首页| 日本撒尿小便嘘嘘汇集6| 国产又爽黄色视频| 亚洲精品国产色婷婷电影| 国产欧美日韩精品亚洲av| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av高清一级| 黄网站色视频无遮挡免费观看| 狂野欧美激情性xxxx| 日韩三级视频一区二区三区| 欧美不卡视频在线免费观看 | 色播在线永久视频| 这个男人来自地球电影免费观看| 久久国产乱子伦精品免费另类| 夜夜躁狠狠躁天天躁| 精品福利永久在线观看| 午夜免费成人在线视频| 久久人妻av系列| 男女免费视频国产| 成人国产一区最新在线观看| 国产aⅴ精品一区二区三区波| 51午夜福利影视在线观看| 18禁观看日本| √禁漫天堂资源中文www| 国产av精品麻豆| 黄色 视频免费看| 免费av中文字幕在线| 国产有黄有色有爽视频| 欧美日韩精品网址| 国产熟女午夜一区二区三区| 亚洲成人免费av在线播放| 99精品在免费线老司机午夜| 麻豆av在线久日| 天天躁夜夜躁狠狠躁躁| 色综合欧美亚洲国产小说| 日韩欧美三级三区| 久久久久国产精品人妻aⅴ院 | 人妻 亚洲 视频| 午夜91福利影院| 69精品国产乱码久久久| 一进一出好大好爽视频| 久久精品亚洲熟妇少妇任你| 一进一出抽搐动态| 久久天堂一区二区三区四区| 在线十欧美十亚洲十日本专区| 国产国语露脸激情在线看| 欧美黄色片欧美黄色片| 老司机在亚洲福利影院| 国产成人免费观看mmmm| 亚洲精品国产精品久久久不卡|