• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance

    2017-12-18 03:28:18TIANAiHuaWEIWeiQUPengXIAQiuPingSHENQi
    物理化學學報 2017年8期
    關鍵詞:商丘負極復合物

    TIAN Ai-Hua WEI Wei QU Peng,* XIA Qiu-Ping SHEN Qi

    ?

    One-Step Synthesis of SnS2Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance

    TIAN Ai-Hua1,2WEI Wei1,2QU Peng1,2,*XIA Qiu-Ping2SHEN Qi1,*

    (1;2)

    SnS2is considered as an attractive anode material to substitute commercial graphite anodes of lithium-ion batteries due to its high speci?c capacity of 645 mAh·g?1as well as low cost. Nevertheless, it suffers poor large volume expansion during the lithiation/delithiation processes, leading to the loss of electrical contact and rapid capacity fading. Herein, by using a facile one-step solvothermal method, SnS2nanoflower/graphene nanocomposites (SnS2NF/GNs) were prepared, where flower-like SnS2hierarchical nanostructures consisting of ultrathin nanoplates, are tightly enwrapped in graphene nanosheets. As anode materials for lithium-ion batteries, the SnS2NF/GNs electrode exhibit superior electrochemical performance, with a reversible capacity of 523 mAh·g?1after 200 charge-discharge cycles. The enhanced Li storage performance was attributed to the synergistic effect of SnS2and graphene. The SnS2NF can effectively accommodate the volume change and shorten Li+diffusion distance, while graphene nanosheets can further alleviate the volume expansion of SnS2and improve the electronic conductivity.

    Lithium-ion battery; Anode; SnS2nanoflower; Graphene

    1 Introduction

    Rechargeable lithium-ion batteries (LIBs), as advanced energy-storage devices, have received tremendous attention due to their outstanding performance of long cycle lifetime, high specific energy density as well as environmental benignity and their wide applications ranging from consumer electronics to various electric vehicles1?7. Electrode materials, which are the most important component in LIBs, largely influence the performance of batteries. The commercial graphite anode has the advantages including low cost and high electrical conductivity8?11, while suffering low theoretical speci?c capacity (only 372 mAh·g?1at full lithiation)12,13, inferior reaction kinetics and potential safety problems14. Therefore, the development for alternative materials with high reversible capacity, excellent rate performance and safety aroused great interest.

    In recent years, Sn-based materials (Sn, SnO2, SnS2) have been considered as promising anode candidates for the next-generation LIBs because of their high theoretical speci?c capacities, low cost and suitable working potential12,15?18. Especially, CdI2-type tin sul?de (SnS2), attracts more interest due to its unique layered crystal con?guration15,16,19,20. Unfortunately, the practical application of SnS2in LIBs is restricted by the poor cycle stability, which is attributed to its huge volume expansion (> 300%) that accompanies the charge-discharge processes19,21,22, causing the increasing mechanical stress and pulverization and exfoliation of active material from the current collector and thus resulting in serious capacity fading and poor cyclability. To address this issue, extensive studies have been focused on the preparation of nanoscale SnS220,23?26, such as zero-dimension (0D) nanoparti- cles, one-dimensional (1D) nanostructures, and two-dimension- al (2D) nanomaterials, because of the advantages of decreasing huge volume changes, high electrolyte contact area and shortening diffusion pathways for electrons and ions27?30. Although having apparently improved the electrochemical performance of SnS2anode in LIBs, many questions still remain for low-dimensional nanostructured SnS2. For example, due to the high surface energy, 0D nanoparticles are likely to suffer from self-aggregation after long cycles, which lead to structural instability and poor capacity retention30?32. The fabrication procedures of 1D nanostructures generally involved template-based approach that are related to sophisticated processes and high cost33,34. While, 2D nanomaterials tend to stacking due to the weak van der Waals forces between layers, thus reducing the specific surface area24. One effective approach is to constructing two-dimensional (3D) hierarchical nanostructures, which not only retain the advantages of low-dimensional nanostructures, but also avoid the self-aggregation of active nanomaterials and provide high porosity that can effectively alleviate the stress induced during cycling process, thereby ensuring structural stability of the whole architecture29,35?39.

    To further optimize the electrochemistry, assembling SnS2nanosheets into 3D hierarchical porous nanostructures may be the best strategy. In such structures, the stacking of SnS2nanosheet could effectively be avoided. In addition, building porous structure could provide more buffer space and keep larger specific surface area. However, since SnS2has low electrical conductivity, 3D SnS2architectures are not sufficient to achieve high performance electrode materials. The hybridization between 3D hierarchical nanostructured SnS2and carbonaceous material perhaps is an ideal choice. Graphene, a two-dimensional (2D) sheet ofsp-hybridized carbonaceous materials, is considered as to be an ideal matrix because of its many good properties, such as large surface areas (2620 m2·g?1), superior mechanical strength and flexibility, excellent chemical stability and high intrinsic carrier mobility40?43. What's more, since similar to SnS2on the structure and morphology, graphene is more likely intercalate to sandwich structured SnS2than other carbonaceous materials, greatly reducing the stacking of SnS2, which could be favorable to faster Li ion and electron transport and provide high electrolyte contact area.

    Based on this concept, a novel nanocomposite of flower-like SnS2enwrapped in conductive graphene sheets was successfully prepareda simple one-step solvothermal method. In such a hybrid structure, flower-like SnS2was assembled by ultrathin nanoplates (about 2.4 nm), forming a porous 3D hierarchical structure. When used as the anode for LIBs, the nanocomposites exhibited enhanced lithium ions storage performance.

    2 Experimental section

    2.1 Synthesis of SnS2 NF/GNs

    Graphene oxide (GO) was fabricated from natural graphite powder by a modified Hummers method44. In a typical synthesis, the as-prepared GO (0.2000 g) was firstly ultrasonic dispersed in ethylene glycol (80 mL) (> 99%, GC) to form black homogeneous dispersion. Subsequently, 0.5211 g SnCl4(AR) and 0.1522 g thiourea (Tu) (AR) were added into the above solution. After 20 min, the mixed solution was transferred into a stainless Teflon-lined autoclave (100 mL) and maintained at 180 °C for 20 h. After cooling to room temperature naturally, the black SnS2NF/GNs powder was obtained by centrifugation, washed with deionized water for six times and freeze-dried at ?80 °C for 16 h. SnS2nanoflower (SnS2NF) powders were synthesized by the same process without GO.

    2.2 Characterization

    The microstructure and morphology of the as-prepared materials were studied using a scanning electron microscope (SEM) (Hitachi S-7500, Japan, 5 kV), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM) (JEM-2100F, JEOL Ltd., Japan, 20 kV). The crystal structure and phases of the samples were carried out with powder X-ray diffraction (XRD) measurements on a Rigaku D/max-2200 X-ray diffractometer (Japan) with CuKradiation (radiation wavelength= 0.154 nm) over the scattering angles range of 10°?80° at a scan rate of 6 (°)·min?1. Thermogravimetric analysis (TGA) was performed on a Netzsch instrument TG/STA 449F3 (Germany) in an air atmosphere at a heating rate of 10 °C·min?1.

    2.3 Electrochemical tests

    The fabrication process of LIBs was as follows. 80% (, mass fraction) SnS2NF/GNs (or SnS2NF), 10% () of conducting additive (carbon black), and 10% () polyvinyl- idene fluoride (PVDF) (AR) were added to 1-methyl-2-pyrrol- idene (NMP) (AR) solution to form a homogeneous slurry, which was then uniformly coated onto a copper foil current collector and dried in vacuum at 60 °C for 12 h to form working electrode. The mass loading of the active material for each current collector was about 2 mg·cm?2. The CR2016-type coin cells were assembled in an argon-filled glove box with lithium metal and Celgard 2400 membranes as the counter electrodes and the separator, respectively. The electrolyte was made of 1 mol·L?1LiPF6in ethylene carbonate (EC) and dimethyl carbonate (DMC) with the volume ratio 1:1. Galvanostatic charge-discharge tests were performed on a Land BT2013A battery testing system (Wuhan, China) at a voltage interval of 0?1.5 V (Li+/Li). Cyclic voltammetry (CV) curves (scan rate of 0.1 mV·s?1) and electrochemical impedance spectroscopy (EIS) (amplitude: 5 mV, frequency: 0.01?100 kHz) were recorded on a CHI-660D electrochemical workstation (Chenhua Co., Ltd., Shanghai, China). All electrochemical tests were conducted at room temperature.

    3 Results and discussion

    The preparation of SnS2NF/GNs is schematically illustrated in Scheme 1. When SnCl4was added to a GO suspension, Sn4+ions were firstly adhered onto the surface of GO sheets through electrostatic interaction, and then coordinated with the added thiourea (Tu), forming Sn-Tu complex, in which Tu was not only used as complexing agent, but also as sulfur sources. During the solvothermal process, SnS2nanoplates were formed and assembled into SnS2nanoflowers by the pyrolysis of Sn-Tu complex, simultaneously, GO was reduced to graphene. These SnS2nanoflowers were spontaneously and simultaneously encapsulated in the graphene networks. Thus, such a unique nanostructure, in which SnS2nanoflowers were encapsulated in the graphene networks, was formed.

    Scheme 1 Schematic illustration of synthesis processes of SnS2NF/GNs.

    The X-ray diffraction (XRD) pattern of as-fabricated SnS2NF/GNs sample is presented Fig.1(a). A diffraction peak located at 26.5° is observed, which is assigned to the characteristic (002) plane reflection of graphene, and the weak peak intensity may be related to the poor crystallinity and the lack of significant layer-to-layer stacking of graphene, which can be confirmed by TEM (Fig.1(g, h))42?45. All the other diffraction peaks are indexed to the (001), (100), (101), (102), (110) and (111) lattice planes of the rhombohedral phase of SnS2(JCPDS card No. 23-0677), and the sharp diffraction peaks imply that the achieved SnS2is well crystallized38. No other impurity peak can be observed in the patterns, indicating the pure phase of SnS2in the graphene matrix. These results indicate that the composite material comprises crystalline SnS2and disordered crystalline structures of graphene. The thermal gravimetric analysis (TGA) technique was performed to determine the graphene content in the SnS2NF/GNs nanocomposite (see Supporting Information Fig.S1?). The mass loss of 14.39% between 300 and 450 °C was due to the oxidation of SnS2to SnO221. At 450?700 °C, there is a mass loss of 20.83%, which was attributed to graphene combustion46.

    The morphology and structures of two samples are illuminated by scanning electron microscopy (SEM). Fig.1(b) is a typical low-magnification SEM image of SnS2NF material, and it can be seen that it consists of a large quantity of 3D flower-like nanostructures, which exhibit a uniform morphology and have no tendency to agglomeration. Additionally, the high-magnification SEM view of the material demonstrates that the flower-like SnS2, constructed from curved ultrathin nano?akes, has an average particle size of about 700 nm, as shown in the Fig.1c. It is noteworthy that there are some voids in the SnS2nanoflowers, which facilitate electrolyte diffusion and lithium ion transport44,47. When hybridized with graphene, the SnS2still maintains pristine flower-like morphology. Nevertheless, they are tightly wrapped by graphene, as revealed in Fig.1(d?f). TEM and HRTEM patterns are performed to further investigate the microstructureof the as-prepared SnS2NF/GNs. Fig.1(g, h) shows typical TEM images of the SnS2NF/GNs at different magnifications, which clearly indicate the SnS2nanoflowers are well encapsulated by transparent graphene nanosheets and have an average size about 700 nm, in accordance with SEM results. It is believed that the agglomeration of graphene between layers can be restrained on account of the anchoring of the SnS2particles, and thus, the high active surface area of graphene is well retained, which will be favorable for increasing the lithium storage capacity of graphene in the composites41,44,48. The ring-like SEAD pattern (inset in Fig.1(h)) is well indexed as a hexagonal SnS2phase, indicating the polycrystalline nature of the SnS2in the composites. The HRTEM image (Fig.1(i)) exhibits a characteristic lattice fringes with an interplanar spacing of 0.32 and 0.59 nm, which corresponds to (100) and (001) plane of hexagonal SnS2crystal, respectively19,49. This is consistent with the result obtained from the XRD. Furthermore, it is clear to see that nanoplates are composed of 4 sandwiched S-Sn-S, indicating that flower-like SnS2was assemble by ultrathin nanoplates46.

    The electrochemical reaction mechanisms of lithiation/ delithiation for SnS2NF/GNs were investigated using cyclic voltammogram (CV), as shown in Fig.2(a). Upon the initial cathodic sweep, two peaks appearing at higher voltage (1.84 and 1.6 V) are generally attributed to Li+intercalation into the SnS2layers (i.e.,Li++ SnS2+e-= LiSnS2) without phase decomposition, which completely disappear in the following cycles, suggesting that it is an irreversible process4,21. A remarkable cathodic peak located at around 1.18 V could be related to the decomposition of SnS2into metallic Sn and Li2S (i.e., SnS2+ 4Li++ 4e-= Sn + 2Li2S) as well as the formation of a solid electrolyte interface (SEI), which may lead to large irreversibility of anode materials in the 1st cycle38,50. Another intense peak observed at 0.01?0.5 V corresponds to reversible lithiation of metallic Sn that forms Li4.4Sn alloys (i.e., Sn + 4.4Li++ 4.4e?= Li4.4Sn)19. In the corresponding anodic scan, the broad oxidation peak between 0.3 to 0.9 V can be attributed to the dealloying reaction of Li4.4Sn to Sn and Li16. In the following CV scans, the positions and intensities of the redox peaks remain unchanged substantially. For SnS2NF electrode (Fig.S2), similar reactions are produced. However, the peak current tremendously decreases, indicating that serious capacity fading occurred during the alloying and dealloying processes. The result implies the nanocomposite has good stability and reversibility in the processes of cycles.

    Fig.1 (a) XRD pattern of the SnS2 NF/GNs; (b and c) SEM image of SnS2 NF under the different magnification; SEM (d, e and f),TEM images (g and h) and HRTEM micrograph (i) of the SnS2 NF/GNs. Inset of (h): SAED pattern.

    Fig.2(b, c) exhibits the typical charge-discharge profiles of SnS2NF and SnS2NF/GNs tested in the voltage range of 0?1.5 V at a current density of 100 mA·g?1. As displayed in Fig.2(b), the SnS2NF sample delivers an initial discharge-charge capacity of 600.0 mAh·g?1and 59.4 mAh·g?1, with a coulombic ef?ciency (CE) of only 9.9%. The large irreversible capacity can be related to the large volume expansion of the SnS2, the decomposition of the electrolyte, partially reversible transformation of Li+layer on the electrode surface during the first cycle21,51?54. In contrast, as shown in Fig.2(c), the SnS2NF/GNs delivered an initial discharge capacity of 1830.3 mAh·g?1and charge capacity of 782.8 mAh·g?1, corresponding to a CE of 42.8%. It is worth noting that the CE of SnS2is obviously improved after adding graphene. Furthermore, from the second cycle, the CE of the electrode is improved significantly and reaches approximately 96% after 5 cycles. This can be attributed to the unique nanostructure of SnS2NF/GNs, in which elastic graphene sheets not only serve as a highly electrically conductive continuous medium, but also buffer the volume change of SnS2during the Li+insertion/ extraction processes.

    Fig.2 (a) Cyclic voltammogram (CV) curves of the SnS2 NF/GNs at a scan rate of 0.1 mV s-1 of the first three cycles. Galvanostatic charge-discharge curves of (b) SnS2 NF and (c) SnS2 NF/GNs under the current density of 100 mA·g?1 in the voltage range of 0-1.5 V.(d) Cycling performance of two samples within a voltage range of 0-1.5 V (vs Li+/Li) at a current density of 100 mA·g?1.(e) Rate capability of the SnS2 NF/GNs electrode under different current densities. (f) Impedance Nyquist plots of the two electrodes after 200 cycles at the same current density in the fully charged state.

    The cycling performances for the two samples at a constant current density of 100 mA·g?1are plotted in Fig.2(d). Here, all capacities were calculated on the basis of the total weight of composite material including SnS2and graphene. It can be found that the capacity of SnS2NF displays a rapid capacity decaying from an initial 600 mAh·g?1to merely 63 mAh·g?1after 200 cycles, which most likely originates from the limited volume accommodation of the SnS2NF during the process of cycles, thus resulting in the pulverization and electronic detachment with the current collector. For the pure graphene electrode, the capacity of which was 178 mAh·g?1after 80 cycles with an initial charge capacity of 192 mAh·g?1(Fig.S3?). In contrast, the SnS2NF/GNs electrode, under the same conditions, can maintain a specific capacity of 523 mAh·g?1, which is ~1.5 times higher than the theoretical capacity of graphite. The improved cycling performance can be attributed to the synergistic effect of flower-like SnS2and graphene matrixes. The ultrathin nanosheet in flower-like SnS2can increase the contact area with the electrolyte and shorten the diffusion length of Li ions. While, graphene matrixes can not only improve the electrical conductivity, but also effectively accommodate the large volumetric change of SnS2during electrochemical reaction processes.

    The rate capabilities of SnS2NF/GNs were measured to further demonstrate the potential of SnS2NF/GNs as electrode for LIBs. As plotted in Fig.2(e), when the current density increases in stages from 136 to 680 and 1360 mA·g?1, the composite exhibits reversible capacities of 519, 362 and 211 mAh·g?1, respectively. Notably, the speci?c capacity is completely restored when the charge-discharge rate returns to the initial rate of 136 mA·g?1, implying that the SnS2NF/GNs electrode has good structural stability and high recovery ability. This result can be ascribed to the unique 3D conductive network structure, where each SnS2nanoflower is separated by nanosheets, manifesting that the aggregation and volumetric expansion during the cycling process of SnS2nanoflowers are effectively be avoided.

    The enhanced electrical conductivity of the SnS2NF/GNs composites in comparison with that of SnS2NF can be confirmed by electrochemical impedance spectroscopy (EIS) measurements, as shown in Fig.2(f). The EIS plots for the two electrodes are composed of a depressed semicircle in the high frequency range and a sloping straight line in the low frequency region. The semicircle is related to the contact resistance, the SEI layer resistance (f) as well as charge transfer resistance (ct) between the active material and the electrolyte, and the slope line represents the Warburg impedance (w) of the Li ion diffusion in the anode. Apparently, the resistance of the SnS2NF/GNs is much smaller than that of SnS2NF, indicating that the former has a faster charge transfer at the electrode/ electrolyte interface and faster Li ion migration through the SEI film, which results in higher reversible capacity of SnS2/graphene composites in comparison with the pure SnS2nanoflowers. The improved electrochemical performance of SnS2NF/GNs is closely related to the following reasons. First, the SnS2has a large interlayer spacing, which is favourable to the insertion/extraction of lithium ions. Second, ultrathin nanoflakes shorten the diffusion length of lithium ion and improve the interfacial contact area between electrode/ electrolyte. Furthermore, the conductive graphene nanosheets not only facilitate electron transport in composite materials, enhancing the electrical conductivity of the electrode, but also accommodate the volume expansion as well as avoid the agglomeration of SnS2during the lithiation/delithiation process.

    4 Conclusions

    In conclusion, SnS2NF/GNs nanocomposites have been successfully fabricated through a facile one-step solvothermal approach, in which the flower-like SnS2comprised of ultrathin SnS2nanoflakes with an average particle size of about 700 nm was tightly encapsulated in graphene sheets. Benefiting from the synergistic effects of nanostructured SnS2and conductive graphene nanosheets, the nanocomposites exhibit superior electrochemical performance, for instance, good cycling stability (523 mAh·g?1for 200 cycle) and high coulombic efficiency (approximately 96% after 5 cycles). Thus, the SnS2NF/GNs composite is expected to be a high capacity anodic material for LIBs.

    Supporting Information:available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Liu, X. J.; Zai, J. T.; Li, B.; Zhou, J.; Ma, Z. F.; Qian, X. F.2016,, 10552.doi: 10.1039/C6TA03085H

    (2) Mei, L.; Mao, M. L.; Chou, S. L.; Liu, H. K.; Dou, S. X.; Ng, D. H. L.; Ma, J. M.2015,, 21699. doi: 110.1039/C5TA03911H

    (3) Liang, J.; Yu, X. T.; Zhou, H.; Wu, H. B.; Ding, S. J.; Wen, X.. 2014,, 12803.doi: 10.1002/anie.201407917

    (4) Zhou, J.; Zheng, C. H.; Wang, H.; Yang, J.; Hu, P. F.; Guo, L.2016,, 17131. doi: 10.1039/c6nr06454j

    (5) Liu, J.; Song, K. P.; Zhu, C. B.; Chen, C. C.; Aken, P. A. V.; Maier, J.; Yu, Y.2014,, 7051. doi: 10.1021/nn501945f

    (6) Wang, H. K.; Lu, X.; Li, L. C.; Li, B. B.; Cao, D. X.; Wu, Q. Z.; Li, Z. H.; Yang, G.; Guo, B. L.; Niu, C. M.2016,, 7595. doi: 10.1039/C5NR09305H

    (7) Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H.2010,, 21770. doi: 10.1021/jp1050047

    (8) Ngo, D. T.; Le, H. T. T.; Kalubarme, R. S.; Lee, J. Y.; Park, C. N.; Park, C. J.2015,, 21722. doi: 10.1039/c5ta05145b

    (9) Ngo, D. T.; Kalubarme, R. S.; Le, H. T. T.; Park, C. N.; Park, C. J.2015,, 2552. doi: doi: 10.1039/c4nr05541a

    (10) Yin, H. B.; Luo, J. M.; Yang, P. H.; Yin, P. H.2013,, 422. doi: 10.1186/1556-276X-8-422

    (11) Sun, W. W.; Wang, Y.2014,, 11528. doi: 10.1039/c4nr02999b

    (12) Xia, L.; Wang, S. Q.; Liu, G. X.; Ding, L. X.; Li, D. D.; Wang, H. H.; Qiao, S. Z.2016,, 853. doi: 10.1002/smll.201503315

    (13) Wang, H.; Feng, H. B.; Li, J. H.2014,, 2165. doi: 10.1002/smll.201303711

    (14) Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H.2013,, 376. doi: 10.1016/j.jpowsour.2013.03.173

    (15) Liu, Z. X.; Deng, H. Q.; Mukherjee, P. P.. 2015,, 4000. doi: 10.1021/am5068707

    (16) Du, N.; Wu, X. L.; Zhai, C. X.; Zhang, H.; Yang, D. R.. 2013,, 457. doi: 10.1016/j.jallcom.2013.06.079

    (17) Wen, Z. H.; Wang, Q.; Zhang, Q.; Li, J. H.. 2007,, 2772. doi: 10.1002/adfm.200600739

    (18) Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B.. 2007,, 2336. doi: 10.1002/adma.200700748

    (19) Zhang, L. S.; Huang, Y. P.; Zhang, Y. F.; Fan, W.; Liu, T. X.r. 2015,, 27823. doi: 10.1021/acsami.5b09115

    (20) Kim, T. J.; Kim, C. J.; Son, D. Y.; Choi, M.; Park, B. W.2007,, 529. doi: 10.1016/j.jpowsour.2007.02.040

    (21) Huang, Z. X.; Wang, Y.; Wong, J. I.; Yang, H. Y.2015,, 024010. doi: 10.1088/2053-1583/2/2/024010

    (22) Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S.. 2013,, 470. doi: 10.1021/nl303823k

    (23) Song, L. X.; Yang, S. J.; Wei, W.; Qu, P.; Xu, M. T.; Liu, Y.2015,, 892. doi: 10.1007/s11434-015-0767-2

    (24) Seo, J. W.; Jang, J. T.; Park, S. W.; Kim, C. J.; Park, B. W.; Cheon, J.. 2008,, 4269. doi : 10.1002/adma.200703122

    (25) Cakan, R. D.; Hu, Y. S.; Antonietti, M.; Maier, J.; Titirici, M. M.. 2008,, 1227. doi: 10.1021/cm7031288

    (26) Deng, D.; Lee, J. Y.. 2008,, 1841. doi: 10.1021/cm7030575

    (27) Chen, G.; Yan, L. T.; Luo, H. M.; Guo, S. J.. 2016,, 7580. doi: 10.1002/adma.201600164

    (28) Hu, S.; Chen, W.; Zhou, J.; Yin, F.; Uchaker, E.; Zhang, Q. F.; Cao, G. Z.2014,, 7862. doi: 10.1039/c4ta01247j

    (29) Ding, Y. L.; Wen, Y. R.; Wu, C.; Aken, P. A. V.; Maier, J.; Yu, Y.. 2015,, 1388. doi: 10.1021/nl504705z

    (30) Lee, S. H.; Yu, S. H.; Lee, J. E.; Jin, A. H.; Lee, D. J.; Lee, N.; Jo, H.; Shin, K.; Ahn, T. Y.; Kim, Y. W.; Choe, H.; Sung, Y. E.; Hyeon, T.. 2013,, 4249. doi. 10.1021/nl401952h

    (31) Wang, J.; Liu, J. L.; Chao, D. L.; Yan, J. X.; Lin, J. Y.; Shen, Z. X.. 2014,, 7162. doi: 10.1002/adma.201402728

    (32) Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q.. 2014,, 2873. doi: 10.1021/nl500915b

    (33) Lin, Y. T.; Shi, J. B.; Chen, Y. C.; Chen, C. J.; Wu, P. F.. 2009,, 694. doi: 10.1007/s11671-009-9299-5

    (34) Roy, P.; Srivastava, S. K.2015,, 2454. doi: 10.1039/c4ta04980b

    (35) Ge, D. H.; Geng, H. B.; Wang, J. Q.; Zheng, J. W.; Pan, Y.; Cao, X. Q.; Gu, H. W.2014,, 9689. doi: 10.1039/C4NR01978D

    (36) Lei, D. N.; Zhang, M.; Qu, B. H.; Ma, J. M.; Li, Q. H.; Chen, L. B.; Lu, B. G.; Wang, T. H.2013,, 386. doi: 10.1016/j.electacta.2013.05.099

    (37) Zai, J. T.; Wang, K. X.; Su, Y. Z.; Qian, X. F.; Chen, X. S.2011,, 3650. doi: 10.1016/j.jpowsour.2010.12.057

    (38) Zhu, W. B.; Yang, Y. W.; Ma, D. M.; Wang, H.; Zhang, Y.; Hu, H. Y.2014,, 19. doi: 10.1007/s11581-014-1163-7

    (39) Wang, W. J.; Zhao, H. B.; Yuan, A. B.; Fang, J. H.; Xu, J. Q., 2014,, 1113. [王文俊, 趙宏濱, 袁安保, 方建慧, 徐甲強. 物理化學學報, 2014,, 1113.] doi: 10.3866/PKU.WHXB201404182

    (40) Xue, D. J.; Xin, S.; Yan, Y.; Jiang, K. C.; Yin, Y. X.; Gao, Y. G.; Wan, L. J.. 2012,, 2512. doi: 10.1021/ja211266m

    (41) Fang, S.; Shen, L. F.; Zheng, H.; Zhang, X. G.2015,, 1498. doi: 10.1039/c4ta04350b

    (42) Liu, H. M.; Yang, W. S., 2011,, 4000. doi: 10.1039/c1ee01353j

    (43) Wu, S. P.; Wang, R.; Wang, Z. L.; Lin, Z. Q.2014,, 8350. doi: 10.1039/c4nr00921e

    (44) Wei, W.; Tian, A. H.; Jia, F. F.; Wang, K. F.; Qu, P.; Xu, M. T.., 2016,, 87440. doi: 10.1039/c6ra14819k

    (45) Ren, J. G.; Wu, Q. H.; Tang, H.; Hong, G.; Zhang, W. J.; Lee, S. T.2013,, 1821. doi: 10.1039/c2ta01286c

    (46) Sathish, M.; Mitani, S.; Tomai, T.; Honma, I.2012,, 12475. doi: 10.1039/C6TA03580A

    (47) Cui, G. L.; Gu, L.; Zhi, L. J.; Kaskhedikar, N.; Van Aken, P. A.; Mullen, K.; Maier, J.. 2008,, 3079. doi: 10.1002/adma.200800586

    (48) Shen, C. F.; Ma, L. Y.; Zheng, M. B.; Zhao, B.; Qiu, D. F.; Pan, L. J.; Cao, J. M.; Shi, Y.. 2011,, 1999. doi: 10.1007/s10008-011-1602-6

    (49) Wang, Q.; Nie, Y. X.; He, B.; Xing, L. L.; Xue, X. Y.2014,, 81. doi: 10.1016/j.solidstatesciences.2014.03.001

    (50) Mei, L.; Xu, C.; Yang, T.; Ma, J. M.; Chen, L. B.; Li, Q. H.; Wang, T. H.2013,, 8658. doi: 10.1039/c3ta11269a

    (51) Jiang, Z. F.; Wang, C.; Du, G. H.; Zhong, Y. J.; Jiang, J. Z. J. Mater. Chem. A 2012,, 9494. doi: 10.1039/c2jm30856h

    (52) Chang, K.; Wang, Z.; Huang, G. C.; Li, H.; Chen, W. X.; Lee, J. Y.2012,, 259. doi: 10.1016/j.jpowsour.2011.10.132

    (53) Yin, J. F.; Cao, H. Q.; Zhou, Z. F.; Zhang, J. X.; Qu, M. Z.2012,, 23963. doi: 10.1039/c2jm35137d

    (54) Jia, H. P.; Kloepsch, R.; He, X.; Badillo, J. P.; Winter, M.; Placke, T.2014,, 17545. doi: 10.1039/c4ta03933e

    SnS2納米花/石墨烯納米復合物的一步法合成及其增強的鋰離子存儲性能

    田愛華1,2魏 偉1,2瞿 鵬1,2,*夏修萍1,2申 琦1,*

    (1鄭州大學化學與分子工程學院,鄭州 450001;2商丘師范學院化學化工學院,河南省生物分子識別與傳感重點實驗室,河南 商丘 476000)

    SnS2由于具有較高的儲鋰容量(645 mAh·g?1)、價格低廉等優(yōu)點而受到研究者的廣泛關注。但純SnS2在脫嵌鋰過程中存在嚴重的體積膨脹效應,造成活性物質粉化和剝落,從而導致容量的迅速衰減。針對這一問題,本文采用簡單的一步溶劑熱法制備了SnS2納米花/石墨烯(SnS2NF/GNs)納米復合物。其中花狀SnS2由超薄納米片組裝而成,石墨烯納米片將SnS2包裹在其中。將該材料用作鋰離子電池負極時,SnS2NF/GNs表現(xiàn)出優(yōu)越的電化學性能,如:循環(huán)200圈后可逆容量仍可達523 mAh?g?1復合物材料提高的儲鋰性能得益于SnS2和石墨烯的協(xié)同效應。納米結構的SnS2可以有效的緩沖體積的膨脹,縮短鋰離子的擴散距離。石墨烯納米片不僅可以進一步緩沖SnS2體積的膨脹,而且可以提高納米復合物的導電性。

    鋰離子電池;負極;SnS2納米花;石墨烯

    O643

    10.3866/PKU.WHXB201704191

    February 17, 2017;

    April 12, 2017;

    April 19, 2017.

    Corresponding authors.QU Peng, Email: qupeng0212@163.com; Tel: +86-370-3112602; SHEN Qi, Email: shenqi@zzu.edu.cn.

    The project was supported by the National Natural Science Foundation of China (21575131) and the Key Scienti?c Research Project of High Schools in Henan Province (16A430025, 17A480009).

    國家自然科學基金(21575131)和河南省高等學校重點科研項目(16A430025, 17A480009)資助

    猜你喜歡
    商丘負極復合物
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    商丘師范學院美術作品選登
    商丘師范學院美術作品選登
    BeXY、MgXY(X、Y=F、Cl、Br)與ClF3和ClOF3形成復合物的理論研究
    商丘之旅
    讓更多企業(yè)在商丘長得大、飛得高
    人大建設(2020年5期)2020-09-25 08:56:16
    柚皮素磷脂復合物的制備和表征
    中成藥(2018年7期)2018-08-04 06:04:18
    黃芩苷-小檗堿復合物的形成規(guī)律
    中成藥(2018年3期)2018-05-07 13:34:18
    負極材料LTO/G和LTO/Ag-G的合成及其電化學性能
    人人妻人人看人人澡| 国产精品福利在线免费观看| 国产成人91sexporn| 乱人视频在线观看| 人妻系列 视频| 国产色婷婷99| 国产一级毛片七仙女欲春2| 亚洲国产精品专区欧美| 久久99热这里只频精品6学生| 熟女人妻精品中文字幕| 中国美白少妇内射xxxbb| 久久热精品热| 91久久精品国产一区二区三区| 午夜免费激情av| 国产单亲对白刺激| 成人高潮视频无遮挡免费网站| 国产精品福利在线免费观看| 国产高清有码在线观看视频| av线在线观看网站| 色网站视频免费| 3wmmmm亚洲av在线观看| 91精品伊人久久大香线蕉| 国产视频内射| 麻豆成人av视频| 亚洲精品亚洲一区二区| 噜噜噜噜噜久久久久久91| 国产黄色视频一区二区在线观看| 日日摸夜夜添夜夜添av毛片| 精华霜和精华液先用哪个| 青青草视频在线视频观看| 在线免费观看不下载黄p国产| 国产日韩欧美在线精品| 国产精品综合久久久久久久免费| 少妇的逼好多水| 2021少妇久久久久久久久久久| 日日啪夜夜爽| 免费观看av网站的网址| 国产男人的电影天堂91| 男人爽女人下面视频在线观看| 天堂网av新在线| 国产一级毛片七仙女欲春2| 黑人高潮一二区| 一级毛片我不卡| 天堂影院成人在线观看| 国产精品1区2区在线观看.| 精品国产三级普通话版| 日韩欧美精品免费久久| 极品少妇高潮喷水抽搐| 欧美xxⅹ黑人| 亚洲国产欧美在线一区| 亚洲精品成人av观看孕妇| 免费观看精品视频网站| 蜜臀久久99精品久久宅男| 最近视频中文字幕2019在线8| 中文乱码字字幕精品一区二区三区 | 淫秽高清视频在线观看| 一本久久精品| 美女国产视频在线观看| 国产不卡一卡二| 国产免费福利视频在线观看| 久久久成人免费电影| 久久久久久久午夜电影| 国语对白做爰xxxⅹ性视频网站| 狂野欧美白嫩少妇大欣赏| 国产免费又黄又爽又色| 人人妻人人澡人人爽人人夜夜 | 国产午夜精品久久久久久一区二区三区| 亚洲精品亚洲一区二区| www.色视频.com| 亚洲欧洲日产国产| 18禁在线无遮挡免费观看视频| av卡一久久| 大片免费播放器 马上看| 简卡轻食公司| 麻豆成人午夜福利视频| 成年免费大片在线观看| 内地一区二区视频在线| 国产一区有黄有色的免费视频 | 哪个播放器可以免费观看大片| 国产欧美另类精品又又久久亚洲欧美| 少妇裸体淫交视频免费看高清| 婷婷色综合www| 午夜爱爱视频在线播放| 亚洲天堂国产精品一区在线| 18+在线观看网站| 国产精品.久久久| 亚洲av国产av综合av卡| 久久久久久久久大av| 午夜亚洲福利在线播放| 五月天丁香电影| 免费黄色在线免费观看| 国产午夜精品论理片| 哪个播放器可以免费观看大片| 69av精品久久久久久| 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av| 婷婷色综合www| 中文字幕久久专区| 深夜a级毛片| 欧美日韩视频高清一区二区三区二| 晚上一个人看的免费电影| 久久久久久久久久久免费av| 2018国产大陆天天弄谢| 91精品国产九色| 99久久九九国产精品国产免费| 国产精品av视频在线免费观看| 最近手机中文字幕大全| 赤兔流量卡办理| 国产亚洲5aaaaa淫片| 免费看美女性在线毛片视频| 丝瓜视频免费看黄片| 精品不卡国产一区二区三区| 淫秽高清视频在线观看| 亚洲不卡免费看| 欧美日韩综合久久久久久| 国产精品一区二区三区四区久久| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| 国产午夜精品久久久久久一区二区三区| 免费观看性生交大片5| 日本三级黄在线观看| 成人亚洲欧美一区二区av| 国产精品一区二区三区四区久久| 三级国产精品片| 国产午夜精品一二区理论片| 亚洲av免费高清在线观看| 嘟嘟电影网在线观看| 久久久久久久久中文| 欧美三级亚洲精品| 男女啪啪激烈高潮av片| 三级男女做爰猛烈吃奶摸视频| 美女脱内裤让男人舔精品视频| 午夜日本视频在线| 久久99热这里只有精品18| 精品久久久久久电影网| 欧美精品国产亚洲| or卡值多少钱| 久久久色成人| 熟妇人妻不卡中文字幕| 日韩国内少妇激情av| 国产爱豆传媒在线观看| 99久久中文字幕三级久久日本| 久久人人爽人人爽人人片va| 亚洲精品影视一区二区三区av| 女人被狂操c到高潮| 日韩一区二区视频免费看| 三级国产精品欧美在线观看| 亚洲伊人久久精品综合| 综合色丁香网| 99热6这里只有精品| 免费人成在线观看视频色| 高清午夜精品一区二区三区| 国产视频首页在线观看| av线在线观看网站| 国产av在哪里看| 一区二区三区四区激情视频| 老师上课跳d突然被开到最大视频| 我的老师免费观看完整版| 日本猛色少妇xxxxx猛交久久| 久久99热6这里只有精品| 亚洲成色77777| 亚洲18禁久久av| 国产中年淑女户外野战色| 日本熟妇午夜| 日韩av免费高清视频| 天堂俺去俺来也www色官网 | 日韩强制内射视频| 尤物成人国产欧美一区二区三区| 婷婷色麻豆天堂久久| 日日干狠狠操夜夜爽| 国产精品麻豆人妻色哟哟久久 | 欧美日韩亚洲高清精品| 午夜福利网站1000一区二区三区| 午夜福利视频精品| 国产伦精品一区二区三区四那| 亚洲熟女精品中文字幕| 午夜精品在线福利| www.av在线官网国产| 精品午夜福利在线看| 麻豆av噜噜一区二区三区| av天堂中文字幕网| 午夜亚洲福利在线播放| 黄色欧美视频在线观看| 精品久久久久久久久亚洲| 日本欧美国产在线视频| 国产一区二区三区综合在线观看 | 男人舔女人下体高潮全视频| 亚洲成人久久爱视频| 九草在线视频观看| 有码 亚洲区| 中文字幕亚洲精品专区| 中文字幕av成人在线电影| 欧美激情在线99| 极品少妇高潮喷水抽搐| av免费观看日本| 在现免费观看毛片| 国产成人freesex在线| 色吧在线观看| 一级av片app| 熟女电影av网| 国产免费视频播放在线视频 | 免费观看性生交大片5| 国产日韩欧美在线精品| 日本色播在线视频| 狂野欧美白嫩少妇大欣赏| 网址你懂的国产日韩在线| 日韩三级伦理在线观看| 99热这里只有精品一区| 黄片无遮挡物在线观看| 午夜福利在线观看吧| 免费看不卡的av| 久久这里只有精品中国| 一级av片app| 午夜福利网站1000一区二区三区| 亚洲国产最新在线播放| 小蜜桃在线观看免费完整版高清| 国产欧美另类精品又又久久亚洲欧美| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 听说在线观看完整版免费高清| av线在线观看网站| 2022亚洲国产成人精品| 日韩亚洲欧美综合| .国产精品久久| 一级毛片电影观看| 又黄又爽又刺激的免费视频.| 免费高清在线观看视频在线观看| 国产精品嫩草影院av在线观看| 欧美激情国产日韩精品一区| 777米奇影视久久| 99久国产av精品| 中文天堂在线官网| 99久久精品国产国产毛片| 久久精品国产亚洲av涩爱| 黑人高潮一二区| 欧美日韩亚洲高清精品| 国产三级在线视频| 三级毛片av免费| 波野结衣二区三区在线| 日韩成人av中文字幕在线观看| 黄色欧美视频在线观看| 色吧在线观看| 亚洲av在线观看美女高潮| 人人妻人人澡欧美一区二区| 国产美女午夜福利| 亚洲电影在线观看av| 免费观看性生交大片5| 日韩欧美一区视频在线观看 | 国产探花在线观看一区二区| 日韩大片免费观看网站| 成年av动漫网址| 久久精品人妻少妇| 免费观看的影片在线观看| 欧美激情久久久久久爽电影| 99九九线精品视频在线观看视频| 欧美潮喷喷水| 日日撸夜夜添| 蜜桃久久精品国产亚洲av| 午夜福利在线在线| 欧美xxxx性猛交bbbb| 夫妻性生交免费视频一级片| 91久久精品国产一区二区成人| 国产伦精品一区二区三区四那| 免费av毛片视频| 亚洲精品中文字幕在线视频 | 国产精品熟女久久久久浪| 少妇高潮的动态图| 99九九线精品视频在线观看视频| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 日韩精品青青久久久久久| 毛片女人毛片| 精品不卡国产一区二区三区| 大片免费播放器 马上看| 高清视频免费观看一区二区 | 内射极品少妇av片p| 97在线视频观看| av在线老鸭窝| 色吧在线观看| 午夜久久久久精精品| 精品久久久久久久久亚洲| 99热全是精品| 神马国产精品三级电影在线观看| 亚洲国产精品成人久久小说| 我的老师免费观看完整版| 欧美成人一区二区免费高清观看| 黄色配什么色好看| 国产综合精华液| 啦啦啦韩国在线观看视频| 久久久成人免费电影| 国产单亲对白刺激| 91aial.com中文字幕在线观看| 国产片特级美女逼逼视频| 欧美区成人在线视频| 久久99热这里只频精品6学生| 人人妻人人看人人澡| 国产男人的电影天堂91| 亚洲在线观看片| 在线观看一区二区三区| 中文字幕亚洲精品专区| 美女主播在线视频| 国产69精品久久久久777片| 亚洲电影在线观看av| 嫩草影院入口| 国产伦一二天堂av在线观看| 亚洲最大成人av| 国产日韩欧美在线精品| 国产一区亚洲一区在线观看| 99热这里只有是精品50| av又黄又爽大尺度在线免费看| 蜜桃久久精品国产亚洲av| 精品人妻视频免费看| 日韩一区二区三区影片| 久久精品人妻少妇| 在线免费观看不下载黄p国产| 永久免费av网站大全| 美女cb高潮喷水在线观看| .国产精品久久| 久久97久久精品| 久久久欧美国产精品| 亚洲内射少妇av| 国产日韩欧美在线精品| 国产男人的电影天堂91| 丝袜喷水一区| www.色视频.com| 精品久久久久久成人av| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| 久久精品国产自在天天线| 女人被狂操c到高潮| 午夜福利在线在线| 久久99热6这里只有精品| 亚洲精品日韩在线中文字幕| 国产精品一区www在线观看| 亚洲av日韩在线播放| 美女cb高潮喷水在线观看| 最近中文字幕2019免费版| 亚洲精品久久午夜乱码| 九草在线视频观看| 一个人观看的视频www高清免费观看| 国产成人一区二区在线| 最近视频中文字幕2019在线8| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 午夜免费男女啪啪视频观看| 欧美性猛交╳xxx乱大交人| 午夜免费男女啪啪视频观看| 听说在线观看完整版免费高清| 欧美高清成人免费视频www| 床上黄色一级片| 大又大粗又爽又黄少妇毛片口| 免费观看a级毛片全部| 一本久久精品| 亚洲电影在线观看av| 亚洲欧美日韩卡通动漫| 秋霞伦理黄片| 国产精品人妻久久久影院| 精品人妻一区二区三区麻豆| 久久久久久久久大av| 尤物成人国产欧美一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 极品少妇高潮喷水抽搐| 久久久久久久久久黄片| 大又大粗又爽又黄少妇毛片口| 中文精品一卡2卡3卡4更新| 天堂网av新在线| 国产亚洲91精品色在线| 国产淫语在线视频| 亚洲精品国产成人久久av| 亚洲人成网站在线观看播放| 偷拍熟女少妇极品色| 国产伦一二天堂av在线观看| 久久97久久精品| 大香蕉久久网| 毛片一级片免费看久久久久| h日本视频在线播放| 日日摸夜夜添夜夜爱| 女人久久www免费人成看片| 国产av国产精品国产| 国产毛片a区久久久久| 国产黄片视频在线免费观看| 久久久久久久久久久免费av| 一本久久精品| 国产高潮美女av| 精品一区二区三区视频在线| 亚洲av中文av极速乱| 日韩一区二区三区影片| 日本色播在线视频| 亚洲精品乱码久久久v下载方式| 九九久久精品国产亚洲av麻豆| 成年av动漫网址| 九九久久精品国产亚洲av麻豆| 国产乱人偷精品视频| 亚洲综合色惰| 免费观看精品视频网站| 狂野欧美激情性xxxx在线观看| 久久久久久久久中文| 亚洲av电影在线观看一区二区三区 | 日日摸夜夜添夜夜添av毛片| 日日干狠狠操夜夜爽| 成人高潮视频无遮挡免费网站| 日韩av在线大香蕉| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久精品电影小说 | 亚洲精品乱码久久久v下载方式| 精品久久久久久电影网| 成人美女网站在线观看视频| 男女国产视频网站| 一个人看视频在线观看www免费| 成人午夜高清在线视频| 一个人看的www免费观看视频| av卡一久久| 熟女电影av网| 国产精品美女特级片免费视频播放器| 中文字幕av成人在线电影| 国产乱来视频区| 哪个播放器可以免费观看大片| 亚洲久久久久久中文字幕| 搡女人真爽免费视频火全软件| 乱码一卡2卡4卡精品| 国产男人的电影天堂91| 免费看不卡的av| 亚洲av电影在线观看一区二区三区 | 三级经典国产精品| 一个人观看的视频www高清免费观看| 岛国毛片在线播放| 亚洲aⅴ乱码一区二区在线播放| 国产男女超爽视频在线观看| 国产在视频线精品| 男女啪啪激烈高潮av片| 超碰97精品在线观看| 亚洲成人中文字幕在线播放| 欧美高清性xxxxhd video| 看十八女毛片水多多多| 69av精品久久久久久| 大陆偷拍与自拍| 五月天丁香电影| 午夜日本视频在线| 亚洲国产成人一精品久久久| 国产精品国产三级国产av玫瑰| 成人一区二区视频在线观看| 乱人视频在线观看| 一个人看的www免费观看视频| 99久久精品国产国产毛片| 国内少妇人妻偷人精品xxx网站| 建设人人有责人人尽责人人享有的 | 久久久久久国产a免费观看| 成人午夜精彩视频在线观看| 搡老妇女老女人老熟妇| 欧美区成人在线视频| 麻豆成人午夜福利视频| 亚洲成人精品中文字幕电影| 亚洲不卡免费看| 亚洲18禁久久av| 国产又色又爽无遮挡免| 一二三四中文在线观看免费高清| 亚洲在久久综合| 青春草亚洲视频在线观看| 午夜免费观看性视频| 国产亚洲91精品色在线| 日韩欧美国产在线观看| 日韩不卡一区二区三区视频在线| 成年av动漫网址| 亚洲美女视频黄频| 色尼玛亚洲综合影院| 美女国产视频在线观看| 极品教师在线视频| 亚洲真实伦在线观看| 一本一本综合久久| 99久久九九国产精品国产免费| 国产成人福利小说| videos熟女内射| 欧美日韩精品成人综合77777| 女人被狂操c到高潮| 人人妻人人澡欧美一区二区| 久久久久网色| 成人毛片60女人毛片免费| videossex国产| 久久久久免费精品人妻一区二区| 丰满乱子伦码专区| 久久久精品免费免费高清| 日韩三级伦理在线观看| 欧美日韩亚洲高清精品| 亚洲精品,欧美精品| 免费看日本二区| av播播在线观看一区| 亚洲精品日本国产第一区| av.在线天堂| 嫩草影院精品99| 大又大粗又爽又黄少妇毛片口| 国产av在哪里看| 麻豆成人午夜福利视频| 伦理电影大哥的女人| 欧美另类一区| 国产色爽女视频免费观看| 91av网一区二区| 亚洲va在线va天堂va国产| 高清午夜精品一区二区三区| 亚洲最大成人手机在线| 岛国毛片在线播放| 深爱激情五月婷婷| 亚洲人成网站高清观看| 我的女老师完整版在线观看| 内地一区二区视频在线| 亚洲欧美精品专区久久| 国产麻豆成人av免费视频| 亚洲欧美精品自产自拍| 日本一二三区视频观看| 国产精品.久久久| 免费观看无遮挡的男女| 特级一级黄色大片| 乱人视频在线观看| 久久久精品免费免费高清| 高清av免费在线| 国产探花在线观看一区二区| 床上黄色一级片| 天堂av国产一区二区熟女人妻| 久久久精品欧美日韩精品| 久久这里有精品视频免费| 亚洲一级一片aⅴ在线观看| 色尼玛亚洲综合影院| www.色视频.com| 精品久久久久久成人av| 国内揄拍国产精品人妻在线| 免费看av在线观看网站| eeuss影院久久| 在线免费观看不下载黄p国产| 久久99精品国语久久久| 久久精品国产亚洲网站| 成年女人看的毛片在线观看| 日日摸夜夜添夜夜爱| 白带黄色成豆腐渣| 青青草视频在线视频观看| 免费av观看视频| 亚洲国产av新网站| 精品久久久久久久久久久久久| 国产成人91sexporn| 久久精品国产亚洲av天美| 美女大奶头视频| 国产精品一二三区在线看| 国产午夜精品久久久久久一区二区三区| 精品欧美国产一区二区三| 亚洲激情五月婷婷啪啪| 国产成人aa在线观看| 久久热精品热| 国产精品美女特级片免费视频播放器| 国内少妇人妻偷人精品xxx网站| 毛片一级片免费看久久久久| 熟女电影av网| 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| av国产久精品久网站免费入址| 亚洲性久久影院| 一区二区三区四区激情视频| 三级经典国产精品| 搡老妇女老女人老熟妇| 国产成人午夜福利电影在线观看| 一边亲一边摸免费视频| 最近最新中文字幕大全电影3| 亚洲内射少妇av| 久久精品国产亚洲av天美| 国产伦精品一区二区三区视频9| 国产精品蜜桃在线观看| 亚洲av男天堂| av在线老鸭窝| 国产国拍精品亚洲av在线观看| 国产精品人妻久久久久久| 91在线精品国自产拍蜜月| 欧美97在线视频| 舔av片在线| 天天一区二区日本电影三级| 成人午夜高清在线视频| 人体艺术视频欧美日本| videossex国产| 在线天堂最新版资源| 久久久色成人| 亚洲av国产av综合av卡| 久久精品久久久久久久性| freevideosex欧美| 免费黄色在线免费观看| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 午夜福利在线在线| 成人鲁丝片一二三区免费| 少妇被粗大猛烈的视频| 欧美高清性xxxxhd video| 有码 亚洲区| 久久久久久久久中文| 亚洲精品久久午夜乱码| 白带黄色成豆腐渣| 在现免费观看毛片| 久久精品人妻少妇| 建设人人有责人人尽责人人享有的 | 九色成人免费人妻av| 亚洲性久久影院| 在线观看免费高清a一片| 高清午夜精品一区二区三区| 国内精品宾馆在线| 寂寞人妻少妇视频99o| 国产在视频线精品| 免费观看在线日韩| 国产片特级美女逼逼视频| 永久免费av网站大全| 97精品久久久久久久久久精品| 2022亚洲国产成人精品| 天堂俺去俺来也www色官网 | 色播亚洲综合网| 白带黄色成豆腐渣| 久久久色成人| 亚洲av中文av极速乱| 91精品国产九色| 日韩三级伦理在线观看| 成人午夜精彩视频在线观看| 啦啦啦中文免费视频观看日本|