張 娜, 高廣勛
(空軍軍醫(yī)大學(xué) 第四軍醫(yī)大學(xué)西京醫(yī)院 血液內(nèi)科,陜西 西安 710032)
·專(zhuān)題·
復(fù)發(fā)/難治彌漫性大B細(xì)胞淋巴瘤治療進(jìn)展
張 娜, 高廣勛
(空軍軍醫(yī)大學(xué) 第四軍醫(yī)大學(xué)西京醫(yī)院 血液內(nèi)科,陜西 西安 710032)
彌漫性大B細(xì)胞淋巴瘤(DLBCL)是一類(lèi)異質(zhì)性明顯的淋巴系統(tǒng)惡性腫瘤,也是最常見(jiàn)的非霍奇金淋巴瘤(NHL)亞型,發(fā)病率日益增高,極大危害人類(lèi)健康。經(jīng)過(guò)標(biāo)準(zhǔn)利妥昔單抗聯(lián)合環(huán)磷酰胺、阿霉素、長(zhǎng)春新堿和潑尼松(R-CHOP)方案治療,超過(guò)60%患者的生存期顯著提高,然而仍有約30%患者出現(xiàn)疾病復(fù)發(fā)或難治,預(yù)后很差。通過(guò)對(duì)基因表達(dá)譜、耐藥分子機(jī)制等深入研究,新化療方案及新藥不斷探索,嵌合抗原受體T細(xì)胞治療等新手段引入,為個(gè)體化精準(zhǔn)治療復(fù)發(fā)/難治DLBCL帶來(lái)了希望。本文采用文獻(xiàn)回顧的方式,重點(diǎn)探討新藥及嵌合抗原受體T細(xì)胞(CART)治療技術(shù)在復(fù)發(fā)/難治DLBCL中的治療進(jìn)展。
淋巴瘤, B細(xì)胞;復(fù)發(fā);受體,抗原,T細(xì)胞; 治療
高廣勛,空軍軍醫(yī)大學(xué)(第四軍醫(yī)大學(xué))西京醫(yī)院血液內(nèi)科主任。醫(yī)學(xué)博士,副主任醫(yī)師,副教授,碩士研究生導(dǎo)師,美國(guó)紐約大學(xué)醫(yī)學(xué)院訪問(wèn)學(xué)者?,F(xiàn)任中華醫(yī)學(xué)會(huì)血液學(xué)分會(huì)青年委員會(huì)委員,中國(guó)老年協(xié)會(huì)血液學(xué)委員會(huì)常委兼副總干事,中國(guó)抗癌協(xié)會(huì)血液腫瘤委員會(huì)青年委員會(huì)委員,全軍血液學(xué)會(huì)青年委員會(huì)副主任委員,西安市醫(yī)學(xué)會(huì)血液學(xué)會(huì)副主任委員,陜西省血液學(xué)會(huì)青年委員會(huì)副主任委員,中國(guó)醫(yī)師協(xié)會(huì)整合血液學(xué)分會(huì)委員兼秘書(shū),陜西省抗癌協(xié)會(huì)白血病專(zhuān)業(yè)委員會(huì)常委,陜西省抗癌協(xié)會(huì)淋巴瘤專(zhuān)業(yè)委員會(huì)常委兼秘書(shū)。負(fù)責(zé)國(guó)科金、陜西省自然科學(xué)基金、吳階平醫(yī)學(xué)基金多項(xiàng),第四軍醫(yī)大學(xué)教學(xué)課題、新技術(shù)新業(yè)務(wù)項(xiàng)目多項(xiàng),主編(副主編)專(zhuān)著4部,第一或通訊作者發(fā)表論文30余篇,其中SCI收錄15篇。
非霍奇金淋巴瘤(NHL)是一類(lèi)異質(zhì)性明顯的惡性血液病,按照組織病理類(lèi)型分為B細(xì)胞NHL(B-NHL)和T/NK細(xì)胞NHL(T/NK-NHL)。在B-NHL中,最常見(jiàn)的亞型為彌漫性大B細(xì)胞淋巴瘤(DLBCL)。2016版世界衛(wèi)生組織(WHO)根據(jù)形態(tài)學(xué)、生物學(xué)行為、臨床表現(xiàn)等將DLBCL分為非特指型(NOS)、亞型和其他獨(dú)立型3大類(lèi)。其中DLBCL-NOS最為常見(jiàn),根據(jù)細(xì)胞起源和基因表達(dá)譜DLBCL-NOS又被分為:生發(fā)中心B細(xì)胞型(GCB)、活化B細(xì)胞型(ABC)和第3型,現(xiàn)將ABC型和第3型統(tǒng)稱(chēng)為Non-GCB型[1-5]。
利妥昔單抗(R)時(shí)代前,標(biāo)準(zhǔn)一線治療方案能使大約50%~60% DLBCL患者達(dá)到并維持完全緩解(CR);抗CD20單克隆抗體-R聯(lián)合環(huán)磷酰胺、阿霉素、長(zhǎng)春新堿和潑尼松(CHOP)應(yīng)用于臨床顯著提高治療反應(yīng)(CR率升至75%左右)[6-8]。然而,仍有部分患者出現(xiàn)治療無(wú)應(yīng)答[尚未達(dá)到部分緩解(PR)]或疾病復(fù)發(fā),被認(rèn)為是復(fù)發(fā)/難治性DLBCL(rr DLBCL)。rr DLBCL患者預(yù)后差[9-11],其中只有23%~29%對(duì)二線治療有應(yīng)答[12-13],中位總生存期(OS)僅為4個(gè)月,中位無(wú)進(jìn)展生存期(PFS)僅為3個(gè)月,而對(duì)三線化療的反應(yīng)率僅為14%[12, 14]。初次自體造血干細(xì)胞移植(ASCT)后復(fù)發(fā)患者的中位OS為10個(gè)月[10, 15]。如何有效控制疾病進(jìn)展,延長(zhǎng)生存仍是一項(xiàng)亟待解決的臨床難題。通過(guò)對(duì)耐藥分子機(jī)制研究,挽救性化療方案優(yōu)化,新藥物探索,新治療方法引入為攻克rr DLBCL帶來(lái)新希望。
PARMA[9]研究發(fā)現(xiàn)高劑量化療(HDC)聯(lián)合ASCT可以顯著改善rr DLBCL患者預(yù)后,因此,HDC-ASCT被建議作為rr DLBCL的標(biāo)準(zhǔn)治療。此外,荷蘭比利時(shí)血液腫瘤協(xié)作組進(jìn)行的一項(xiàng)前瞻性隨機(jī)對(duì)照研究(Hovon-44)證實(shí)R聯(lián)合HDC-ASCT能使患者明確獲益[16]。目前R-HDC-ASCT已成為對(duì)化療依舊敏感的rr-DLBCL的主要治療方法[17]。另一方面,R維持治療對(duì)于ASCT后復(fù)發(fā)的DLBCL似乎沒(méi)有明確意義[18]。
治療rr DLBCL常采用的化療方案包括利妥昔單抗聯(lián)合依托泊苷、類(lèi)固醇、阿糖胞苷、順鉑(R-ESHAP);利妥昔單抗聯(lián)合卡鉑、異環(huán)磷酰胺、依托泊苷(R-ICE);依托泊苷、阿霉素、環(huán)磷酰胺、長(zhǎng)春新堿、強(qiáng)的松和利妥昔單抗(DA-EPOCH-R);利妥昔單抗聯(lián)合吉西他濱、奧沙利鉑(R-GEMOX);利妥昔單抗聯(lián)合吉西他濱、順鉑和地塞米松(R-GDP)、利妥昔單抗聯(lián)合卡氮芥、依托泊苷、阿糖胞苷、美法侖(R-BEAM)等[16, 18-24]。研究發(fā)現(xiàn)高劑量(1 000 mg/m2)R與標(biāo)準(zhǔn)劑量(375 mg/m2)比較,聯(lián)合BEAM序貫ASCT治療復(fù)發(fā)侵襲性B-NHL并不使患者顯著受益[25]。此外,ORCHARRD[26]研究比較Ofatumumab(人源IgG1k抗CD20單克隆抗體,與R的靶抗原表位不同)和R分別聯(lián)合DHAP-ASCT治療rr DLBCL的療效,結(jié)果表明O-DHAP 和R-DHAP作為挽救性化療方案,療效差異無(wú)統(tǒng)計(jì)學(xué)意義[27]。CORAL[18]研究比較R-DHAP和 R-ICE分別聯(lián)合HDC-ASCT治療侵襲性rr B-NHL(包括rr DLBCL)的療效,發(fā)現(xiàn)R-ICE和R-DHAP的總緩解率(ORR)、3年無(wú)事件生存率(EFS)和OS差異均無(wú)統(tǒng)計(jì)學(xué)意義。隨后的研究進(jìn)行亞組分析發(fā)現(xiàn)R-DHAP優(yōu)于R-ICE可改善GCB-DLBCL患者的預(yù)后[28-29]。目前搶救性化療和移植預(yù)處理方案仍然不理想,最佳方案仍有待確定[9, 17]。
對(duì)R-CHOP等方案耐藥的rr DLBCL,后續(xù)使用前期化療方案極可能是無(wú)效的,甚至對(duì)多種化療藥物交叉耐藥[30-31]。盡管給予挽救性化療和ASCT等,許多患者最終仍死于惡性腫瘤,3年OS僅為30%[29,32]。此外,雖然異基因造血干細(xì)胞移植(allo-HSCT)為治愈淋巴瘤提供了可能,但由于移植相關(guān)死亡率高,這種治療策略可能對(duì)患者造成極大的負(fù)面影響。因此,rr DLBCL患者唯一可行的是參與臨床試驗(yàn),用新的試驗(yàn)性藥物或方法進(jìn)行治療[29, 32]。
rr DLBCL耐藥機(jī)制可分為以下3種:①先天性耐藥,腫瘤細(xì)胞遺傳學(xué)異質(zhì)性,耐藥與重現(xiàn)性基因突變和基因異常表達(dá)有關(guān)[33];②獲得性耐藥,經(jīng)過(guò)前期化療藥物篩選,腫瘤細(xì)胞遺傳學(xué)和表觀遺傳學(xué)不穩(wěn)定,耐藥腫瘤克隆亞群出現(xiàn),最終導(dǎo)致標(biāo)準(zhǔn)方案化療失敗[34-35];③腫瘤細(xì)胞微環(huán)境/細(xì)胞黏附介導(dǎo)耐藥,源于腫瘤細(xì)胞與正常基質(zhì)組織之間的相互作用[36-38]。由于DLBCL遺傳學(xué)異質(zhì)性,多重耐藥分子機(jī)制在rr DLBCL耐藥中發(fā)揮作用。研究者從分子機(jī)制、相關(guān)信號(hào)通路等出發(fā),試圖通過(guò)新藥干預(yù)腫瘤細(xì)胞代謝、增殖、生長(zhǎng)等,進(jìn)而達(dá)到治療目的。
2.1信號(hào)通路抑制劑
2.1.1B細(xì)胞抗原受體(BCR)信號(hào)通路抑制劑 慢性活化BCR介導(dǎo)信號(hào)被認(rèn)為在ABC-DLBCL發(fā)病機(jī)制中扮演重要角色[39-40],而其主要依賴于布魯頓酪氨酸激酶(BTK),脾酪氨酸激酶(SYK)和磷酸肌醇3-激酶(PI3K)[41]。研究發(fā)現(xiàn)在rr ABC-DLBCL中BTK,SYK和PI3K激酶異?;罨痆39-40]。SYK或BTK的siRNA和小分子抑制劑可以選擇性抑制BCR信號(hào),并誘導(dǎo)依賴于BCR信號(hào)的DLBCL細(xì)胞系凋亡[42-45]。 Ibrutinib是一種選擇性、不可逆的BTK抑制劑[46]。一項(xiàng)Ibrutinib(PCI-32765)治療80例rr DLBCL患者的Ⅰ/Ⅱ臨床試驗(yàn)表明:其在ABC亞型中ORR為37%,CR率為16%;而在GCB亞型中治療反應(yīng)較差[47-49]。因此,Ibrutinib作用局限于BCR信號(hào)持續(xù)活化ABC-DLBCL[47, 50-51]。值得注意的是,Ibrutinib并沒(méi)有抑制BCR野生型且具有MyD88和(或)CARD11突變的腫瘤細(xì)胞生長(zhǎng)和存活,表明Ibrutinib特異性靶向作用有賴于慢性活化的BCR信號(hào)[50-51]。
Fostamatinib(R406,F(xiàn)osD)為選擇性口服小分子SYK抑制劑,一項(xiàng)Ⅰ/Ⅱ研究中,超過(guò)20%的患者為多次rrDLBCL,使用fostamatinib治療后CR僅為5%[52]。一項(xiàng)Ⅱ期研究報(bào)告68例rr DLBCL患者接受fostamatinib治療,結(jié)果表明雙臂ORR為3%,13%患者臨床受益(≥疾病穩(wěn)定),而受益者主要集中在GCB亞型(4例),沒(méi)有1例是ABC亞型[53]。雖然患者對(duì)fostamatinib表現(xiàn)出良好的耐受性,但療效卻差強(qiáng)人意,與其他BCR通路抑制劑不同,在ABC亞型中沒(méi)有觀察到治療反應(yīng)[53]。
2.1.2蛋白激酶Cβ(PKCβ)抑制劑 PKCβ Ⅱ是一種絲氨酸/蘇氨酸激酶亞型,通過(guò)BCR信號(hào)通路擴(kuò)增在rr DLBCL中高表達(dá),而PKCβ Ⅱ過(guò)表達(dá)與同源性磷酸酶-張力蛋白(PTEN)缺失引起的不良預(yù)后相關(guān),被認(rèn)為是潛在治療靶點(diǎn)[54-56]。研究表明PKCβⅡ的兩種選擇性抑制劑-sotrastaurin(AEB071)和enzastaurin,在體內(nèi)外試驗(yàn)可以誘導(dǎo)ABC-DLBCL細(xì)胞凋亡和抑制增殖[57-58]。目前一項(xiàng)評(píng)估sotrastaurin治療具有CD79A或CD79B突變的rr DLBCL的國(guó)際多中心I期臨床研究正在進(jìn)行中[59]。一項(xiàng)納入55例rr DLBCL的Ⅱ期研究顯示,患者每日接受enzastaurin治療直至疾病進(jìn)展或出現(xiàn)不可耐受的毒性。其中12例經(jīng)過(guò)2周期治療獲得無(wú)進(jìn)展(FFP),4例實(shí)現(xiàn)超過(guò)20個(gè)月FFP[60-61]。另一項(xiàng)隨機(jī)Ⅱ期研究初步結(jié)果顯示在100例中高危DLBCL患者,enzastaurin聯(lián)合R-CHOP治療可有效提高PFS(聯(lián)合用藥與單用R-CHOP,1年P(guān)FS分別為71%,52%)[62],但enzastaurin單藥治療rr DLBCL的療效卻十分有限[60-61, 63]。
2.1.3Toll樣受體拮抗劑 在DLBCL中,MyD88是NF-κB信號(hào)通路中是一個(gè)適配轉(zhuǎn)導(dǎo)蛋白,可與 Toll樣受體(TLRs)7、8和9相互作用[64]。MyD88異??苫罨疶LRs, 激活信號(hào)通路促進(jìn)腫瘤細(xì)胞存活和增殖。TLR拮抗劑能直接抑制TLR/MyD88信號(hào)通路,克服MyD88突變的BCR野生型ABC-DLBCL對(duì)Ibrutinib耐藥[65]。IMO-8400是一個(gè)設(shè)計(jì)的拮抗寡核苷酸,在DLBCL細(xì)胞系中抑制MyD88-L265P配體活化,進(jìn)而抑制腫瘤細(xì)胞生存和增殖,為臨床評(píng)估提供科學(xué)依據(jù)[66]。
2.1.4蛋白酶體抑制劑 在ABC-DLBCL中,bortezomib、carfilzomib等蛋白酶體抑制劑可以阻滯細(xì)胞周期負(fù)性調(diào)控因子和NF-κB抑制蛋白IκBα的降解,從而誘導(dǎo)細(xì)胞周期阻滯和線粒體依賴性凋亡[67-68]。Bortezomib聯(lián)合(R)CHOP和DA-EPOCH化療,可以靶向抑制NF-κB通路并選擇性地對(duì)rr ABC-DLBCL有效,而對(duì)GCB亞型作用微乎其微[69]。Bortezomib單藥治療無(wú)明顯活性,但聯(lián)合其他藥物可顯著提高治療反應(yīng)(ABC型和GCB型分別為83%、13%)和延長(zhǎng)生存期(中位OS分別是10.8、3.4個(gè)月)[69-71]。并非所有的ABC-DLBCL都對(duì)bortezomib敏感,蛋白酶體抑制劑不僅觸發(fā)促凋亡蛋白積累,也可上調(diào)抗MCL1[72]、HSP90[73]等凋亡蛋白,導(dǎo)致bortezomib耐藥。
2.1.5JAK2/STAT3抑制劑 在rr ABC-DLBCL中,JAK激酶/信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3(JAK/STAT3)信號(hào)通路是另一種潛在治療藥物靶點(diǎn),STAT3活化與R-CHOP治療后不良OS相關(guān)[74]。臨床級(jí)JAK1和JAK2口服抑制劑 fedratinib(SAR302503/TG101348)或ruxolitinib可以阻礙STAT1和STAT3磷酸化,被提議進(jìn)行臨床評(píng)估[75-77]。 此外,新型JAK2/JAK2(V617F)選擇性口服抑制劑-pacritinib(SB1518)阻斷STAT1、STAT3和STAT5磷酸化,建議在rr DLBCL患者中進(jìn)一步研究[77-78]。I期劑量與藥代動(dòng)力學(xué)/藥效學(xué)研究顯示pacritinib(SB1518)治療rr B-NHL的安全性和活性,為靶向治療淋巴瘤提供證據(jù)[77-79]。不幸的是,并未在5例rr DLBCL患者中觀察到治療反應(yīng),不除外是由于樣本量小造成的[77-79]。到目前為止,pacritinib(SB1518)是第一個(gè)也是唯一個(gè)在rr DLBCL患者中評(píng)估的JAK2抑制劑[77]。
2.1.6PI3K/AKT/mTORC1通路抑制劑 PI3K/AKT/mTORC1通路活化在GCB-DLBCL腫瘤細(xì)胞生存和化療耐藥中發(fā)揮核心作用,是治療rr GCB-DLBCL的潛在目標(biāo)[80]。Idelalisib(GS-1101 、CAL-101)是一種PI3K同型體p110δ的選擇性可逆口服抑制劑,目前開(kāi)展多項(xiàng)I期臨床試驗(yàn)用于評(píng)估單藥和聯(lián)合用藥治療rr DLBCL安全性和有效性[81]。
2.2免疫調(diào)節(jié)藥物 研究證明lenalidomide可以優(yōu)先抑制ABC-DLBCL細(xì)胞的增殖和存活,而對(duì)GCB亞型影響非常小[42, 82]。lenalidomide治療rr DLBCL患者,ABC亞型(ORR為52.9%)比GCB亞型(ORR為8.7%)治療反應(yīng)更好[83]。多個(gè)Ⅰ/Ⅱ臨床試驗(yàn)顯示lenalidomide單藥治療rr ABC-DLBCL反應(yīng)持久(ORR高達(dá)53%,CR高達(dá)23%)[83-87]。一項(xiàng)隨機(jī)多中心、開(kāi)放標(biāo)簽、2/3期臨床研究比較lenalidomide單藥與研究者選擇單藥(IC:吉西他濱、R、依托泊苷、奧沙利鉑)治療rr DLBCL的療效和安全性,結(jié)果表明lenalidomide單藥治療更安全有效(lenalidomide與IC的ORR分別為27.5%和11.8%;中位PFS分別為13.6周和7.9周),rr ABC-DLBCL顯著獲益(ABC亞型和GCB亞型的ORR分別為45.5%、21.4%,PFS分別為82周、13.2周;OS分別為108.4周、30周)[88]。
Hagner等[89]研究發(fā)現(xiàn)CC-122是一種類(lèi)似于沙利度胺的新型免疫調(diào)節(jié)藥物,能直接與E3泛素酶復(fù)合物受體蛋白cereblon(CRBN)結(jié)合,在體外、體內(nèi)實(shí)驗(yàn)和rr DLBCL患者中促進(jìn)泛素化和Aiolos及Ikaros降解,通過(guò)直接抑制干擾素刺激基因(ISGs)轉(zhuǎn)錄和誘導(dǎo)干擾素誘導(dǎo)蛋白,導(dǎo)致DLBCL細(xì)胞凋亡。CC-122區(qū)別于沙利度胺類(lèi)似物家族成員,不受細(xì)胞起源限制,對(duì)ABC亞型和GCB亞型均有抗瘤活性,與Len僅對(duì)ABC亞型具有選擇性作用形成鮮明對(duì)比[89]。因此,CC-122被認(rèn)為是一種多效性途徑修飾新型藥物,彌補(bǔ)Len不足,對(duì)GCB-DLBCL有潛在治療活性[89-90]。
2.3組蛋白去乙?;嚓P(guān)藥物 研究發(fā)現(xiàn)組蛋白去乙?;?HDAC)小分子抑制劑可作為潛在的藥物治療rr DLBCL[91]。HDAC抑制劑(HDACi)通過(guò)多個(gè)機(jī)制作用于GCB和ABC-DLBCL[91-92],部分HDACi已經(jīng)批準(zhǔn)用于臨床或臨床試驗(yàn)[93]。去乙?;负头篐DACi可協(xié)同殺死DLBCL,尤其是GCB-DLBCL,其治療rr NHL的ORR為18%、CR為18%,46%患者達(dá)到疾病穩(wěn)定狀態(tài)[94];其他HDACi(vorinostatromidepsin, panobinostat, mgc0103等)單用或與聯(lián)合用藥治療rr DLBCL同樣取得令人鼓舞的效果[95]。
2.4單克隆抗體
2.4.1程序性死亡受體(PD) 抗體PD-1是表達(dá)于T細(xì)胞表面的抑制性受體,配體PD-L1和PD-L2表達(dá)于抗原呈遞細(xì)胞,受體配體結(jié)合后限制T細(xì)胞的活化和增殖[96]。PD-L1在10%~14%DLBCL-NOS中異常高表達(dá)提示預(yù)后更差[97-99]。一項(xiàng)Ⅱ期臨床研究使用抗PD-1抗體pidilizumab治療ASCT后rr DLBCL,結(jié)果顯示ORR為51%,ASCT后仍有殘留病的患者的CR率達(dá)34%;16個(gè)月的PFS為72%,高危患者PFS為70%[100]。這些數(shù)據(jù)表明PD-1是一個(gè)治療rr DLBCL的理想靶標(biāo)。一項(xiàng)評(píng)估抗PD-1抗體單藥治療rr DLBCL的Ⅱ期臨床試驗(yàn)正在進(jìn)行中,此外,抗PD-1抗體聯(lián)合其他藥物治療的臨床試驗(yàn)也在開(kāi)展[98]。
2.4.2抗體化學(xué)毒素偶聯(lián)物(ADCs) ADCs將細(xì)胞毒性藥物與腫瘤抗原的特異性抗體結(jié)合,是治療侵襲性B-NHL的新藥物,目前主要分子目標(biāo)是CD19、CD22、CD30等[101-102]。SAR3419是抗CD19抗體與細(xì)胞毒美登素DM4偶聯(lián)ADC,1個(gè)潛在的微管蛋白聚合和微管組裝抑制劑[101-102]。兩個(gè)Ⅰ期臨床研究評(píng)估SAR3419治療rr DLBCL的安全性和藥代動(dòng)力學(xué),發(fā)現(xiàn)SAR3419可以安全地用于治療rr DLBCL[103-104]。SGN-CD19A是另一個(gè)抗CD19特異性ADC,I期研究中期分析顯示其對(duì)rr DLBCL具有良好的治療反應(yīng)(ORR為35%,CR為20%,PR為16%),在rr DLBCL中更高(ORR為55%,CR為32%,PR為23%)[105-106]。
Inotuzumab-ozogamicin是一個(gè)親和優(yōu)化單克隆抗CD22抗體與DNA損傷的毒素N-乙酰-γ-卡奇霉素-二酰肼(CalichDMH)偶聯(lián)ADC[107],其治療反應(yīng)ORR可達(dá)40%~74%,CR可達(dá)21%~50%[108]。Brentuximab-vedotin是一種人類(lèi)CD30特異性ADC[101],大約20%~30% DLBCL表達(dá)CD30,而在ABC-DLBCL中表達(dá)頻率更高[109-110]。Brentuximab-vedotin單藥治療CD30+ rr DLBCL,ORR為44%,CR為17%,截止報(bào)道時(shí)中位OS為16.6個(gè)月[111]。Polatuzumab-vedotin是一個(gè)抗CD79B的ADC[101]。Polatuzumab-vedotin治療rr DLBCL,ORR為56%和CR為14.8%[112-113]。
此外,EZH2抑制劑GSK-126[114]、CPI-360[115]等,BRD4(和BRD2)抑制劑OTX015[116]等, BCL6抑制劑PU-H71[117]等,靶向作用于BCL2、BFL-1和MCL1等凋亡蛋白的小分子BH3類(lèi)似物ABT-737, ABT-199[118-119]等,涌現(xiàn)的新藥在rr DLBCL體內(nèi)外實(shí)驗(yàn)中具有潛在抗腫瘤活性,仍需在臨床實(shí)驗(yàn)中進(jìn)一步驗(yàn)證。
CART細(xì)胞治療最早用于2例復(fù)發(fā)/難治性急性淋巴細(xì)胞白血病患者,治療后獲得持久CR[120]。CART細(xì)胞治療是通過(guò)基因工程T細(xì)胞識(shí)別并結(jié)合特異性腫瘤相關(guān)抗原,經(jīng)信號(hào)轉(zhuǎn)導(dǎo)途徑激活T細(xì)胞,釋放顆粒酶、穿孔素及多種細(xì)胞因子引發(fā)腫瘤細(xì)胞凋亡,從而發(fā)揮抗腫瘤效應(yīng),目前最常見(jiàn)的靶標(biāo)為CD19、CD20等。
2015年美國(guó)國(guó)家癌癥研究所(NCI)第一次在DLBCL中證實(shí)抗CD19 CART的抗瘤活性,該研究中11例rr B-NHL患者進(jìn)行FC方案預(yù)處理后輸注MC63-28Z CART細(xì)胞[121]。其中4例rr DLBCL患者2例達(dá)到CR[121]。賓夕法尼亞大學(xué)的數(shù)據(jù)證實(shí)抗CD19 CART(CTL019)對(duì)多種rr NHL(包括DLBCL)具有顯著的抗瘤活性,12個(gè)月的ORR為68%和PFS為62%[122]。Turtle等[123]報(bào)道了32例B-NHL患者接受抗CD19 CART細(xì)胞治療,在所有亞型中都觀察到治療反應(yīng),ORR是63%,CR率是33%。 2017年NCI報(bào)道了22例rr B-NHL患者接受低劑量FC方案預(yù)處理之后輸注抗CD19 CART細(xì)胞治療[124]。研究發(fā)現(xiàn)在GCB和ABC亞型中均觀察到抗瘤活性,總體ORR為73%,CR為55%;rr DLBCL患者ORR為68%,CR為47%[124]。對(duì)于化療耐藥DLBCL,低劑量化療藥物不會(huì)產(chǎn)生明顯抗癌作用,據(jù)此,治療反應(yīng)可以肯定是由CART療法所致。更重要的是在這項(xiàng)研究中,CART細(xì)胞治療產(chǎn)生持久的緩解,在12例CR患者中11例持續(xù)緩解7~24個(gè)月;所有受試者12個(gè)月的PFS為63%[124]。CART治療主要的不良反應(yīng)是細(xì)胞因子釋放綜合征(CRS)和神經(jīng)系統(tǒng)毒性,55%的患者經(jīng)歷了3/4級(jí)的神經(jīng)系統(tǒng)疾病毒性,需要給予支持治療和重癥護(hù)理[124]。一種FMC63-28Z表達(dá)的CART細(xì)胞產(chǎn)品(和KTE-C19)指定為axicabtage neciloleucel,目前正在進(jìn)行商業(yè)化推廣[121, 124]。Locke等[125]評(píng)估了KTE-C19,自體CD3zζ/CD28-CAR T細(xì)胞治療難治性DLBCL?;颊呓邮艿蛣┝縁C方案預(yù)處理,隨后輸注KTE-C19(2×106CART/kg目標(biāo)劑量)[125]。研究結(jié)果顯示總體ORR為71%,CR率為57%,3例持續(xù)CR(12個(gè)月以上);7例接受治療的患者,1例出現(xiàn)4級(jí)CRS和神經(jīng)毒性,分別有1例和4例出現(xiàn)3級(jí)CRS和神經(jīng)毒性[125]。在隨后Ⅱ期多中心臨床研究中,101例侵襲性rr B-NHL接受axicabtage neciloleucel治療,初步結(jié)果顯示ORR是82%,CR率是54%;中位隨訪時(shí)間為8.7個(gè)月,ORR是44%,仍有39%患者持續(xù)CR[126-127]。
一個(gè)多中心試驗(yàn)的JCAR017 抗CD19 CART產(chǎn)品治療rr B-NHL,研究表明在20例可評(píng)價(jià)的患者中,ORR為80%,CR率為60%[128]。Abramson等[129]報(bào)道了1例rr GCB-DLBCL老年女性,具有BCL2重排和MYC和BCL6多拷貝,經(jīng)過(guò)前期治療出現(xiàn)系統(tǒng)性和大腦右顳葉疾病復(fù)發(fā),接受JCAR017治療,藥代動(dòng)力學(xué)試驗(yàn)顯示CART細(xì)胞擴(kuò)增與腫瘤消退是一致的。對(duì)于系統(tǒng)性和中樞系統(tǒng)同步復(fù)發(fā)的患者來(lái)說(shuō),傳統(tǒng)治療的CR率很低(16%到22%),持久緩解十分罕見(jiàn)[130-131],該累及腦實(shí)質(zhì)的rr DLBCL患者通過(guò)JCAR017達(dá)到CR[129]。
R成功治療B-NHL,突顯CD20是CART細(xì)胞治療的理想目標(biāo)。在一項(xiàng)研究中,2例DLBCL患者輸注第一代抗CD20 CART作為輔助治療,之后立即行ASCT,截止相關(guān)文章發(fā)表時(shí),1例患者獲得持續(xù)9年的CR,這是僅行ASCT難以實(shí)現(xiàn)的,另1例患者CR持續(xù)19 個(gè)月[132]。另一個(gè)臨床試驗(yàn)通過(guò)質(zhì)粒電穿孔轉(zhuǎn)染使T細(xì)胞表達(dá)第三代抗CD20 CART,預(yù)處理方案為環(huán)磷酰胺,后續(xù)3次CART細(xì)胞輸注,14天皮下注射白細(xì)胞介素2[133]。在細(xì)胞注入之前未評(píng)估的2例患者仍持續(xù)CR,1例達(dá)到客觀PR[133]。第3項(xiàng)研究通過(guò)慢病毒載體轉(zhuǎn)導(dǎo)使T細(xì)胞表達(dá)抗CD20的CAR和4-1BB共刺激域[134],該試驗(yàn)包括7例高強(qiáng)度預(yù)處理的DLBCL,隨后輸注逐漸增加細(xì)胞量的CART治療超過(guò)3~4天,5例患者有客觀反應(yīng),大多為PR,1例患者入組時(shí)為PR,之后獲得持續(xù)14個(gè)月的CR,不良事件包括CRS,延遲的腫瘤溶解,淋巴瘤侵及胃腸道導(dǎo)致消化道出血等[134]。雖然目前只獲得初步研究結(jié)果,但這些數(shù)據(jù)提示抗CD20 CART對(duì)B-NHL具有治療潛力。
CART治療是一種快速發(fā)展的新興治療方式,能夠讓相當(dāng)比例rr B-NHL患者獲得持久CR。鑒于目前rr DLBCL治療方法非常有限,在沒(méi)有其他可行方法的時(shí)候,抗CD19 CART細(xì)胞治療誘導(dǎo)緩解能力可持續(xù)2~4年,因此CART治療rr DLBCL是淋巴瘤治療領(lǐng)域最重要發(fā)現(xiàn)。盡管目前該項(xiàng)治療仍有許多不足,但隨著CAR設(shè)計(jì)優(yōu)化、毒性改良、聯(lián)合用藥等會(huì)使CART細(xì)胞治療更加安全,使更多患者受益。
綜上所述,盡管大多數(shù)DLBCL患者通過(guò)標(biāo)準(zhǔn)一線方案治療可達(dá)到并維持CR,但約30%患者可能經(jīng)歷疾病復(fù)發(fā)/難治,由于目前仍缺乏行之有效的治療手段,并且治療過(guò)程異常艱辛,rr DLBCL患者預(yù)后很差。隨著對(duì)疾病機(jī)制地進(jìn)一步研究,bortezomib, lenalidomide, CC122等新藥的合理干預(yù),CART治療方式引入等等,為改善此類(lèi)患者的不良預(yù)后提供了新思路和新方向。
[1] Staudt LM, Dave S. The biology of human lymphoid malignancies revealed by gene expression profiling[J]. Adv Immunol, 2005,87:163-208.
[2] Rosenwald A, Staudt LM. Gene expression profiling of diffuse large B-cell lymphoma[J]. Leuk Lymphoma, 2003,44(Suppl 3):S41-47.
[4] Boudova L, Torlakovic E, Delabie J, et al. Nodular lymphocyte-predominant Hodgkin lymphoma with nodules resembling T-cell/histiocyte-rich B-cell lymphoma: differential diagnosis between nodular lymphocyte-predominant Hodgkin lymphoma and T-cell/histiocyte-rich B-cell lymphoma[J]. Blood, 2003,102(10):3753-3758.
[5] Wright G, Tan B, Rosenwald A, et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma[J]. Proc Natl Acad Sci U S A, 2003,100(17):9991-9996.
[6] Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma[J]. N Engl J Med, 2002,346(4):235-242.
[7] Marcus R, Imrie K, Solal-Celigny P, et al. Phase Ⅲ study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma[J]. J Clin Oncol, 2008,26(28):4579-4586.
[8] Coiffier B, Thieblemont C, Van Den Neste E, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte[J]. Blood, 2010,116(12):2040-2045.
[9] Martelli M, Ferreri AJ, Agostinelli C, et al. Diffuse large B-cell lymphoma[J]. Crit Rev Oncol Hematol, 2013,87(2):146-171.
[10] Van Den Neste E, Schmitz N, Mounier N, et al. Outcomes of diffuse large B-cell lymphoma patients relapsing after autologous stem cell transplantation: an analysis of patients included in the CORAL study[J]. Bone Marrow Transplant, 2017,52(2):216-221.
[11] Jurinovic V, Kridel R, Staiger AM, et al. Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy[J]. Blood, 2016,128(8):1112-1120.
[12] Telio D, Fernandes K, Ma C, et al. Salvage chemotherapy and autologous stem cell transplant in primary refractory diffuse large B-cell lymphoma: outcomes and prognostic factors[J]. Leuk Lymphoma, 2012,53(5):836-841.
[13] Elstrom RL, Martin P, Ostrow K, et al. Response to second-line therapy defines the potential for cure in patients with recurrent diffuse large B-cell lymphoma: implications for the development of novel therapeutic strategies[J]. Clin Lymphoma Myeloma Leuk, 2010,10(3):192-196.
[14] Seshadri T, Stakiw J, Pintilie M, et al. Utility of subsequent conventional dose chemotherapy in relapsed/refractory transplant-eligible patients with diffuse large B-cell lymphoma failing platinum-based salvage chemotherapy[J]. Hematology, 2008,13(5):261-266.
[15] Nagle SJ, Woo K, Schuster SJ, et al. Outcomes of patients with relapsed/refractory diffuse large B-cell lymphoma with progression of lymphoma after autologous stem cell transplantation in the rituximab era[J]. Am J Hematol, 2013,88(10):890-894.
[16] Vellenga E, van Putten WL, van 't Veer MB, et al. Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: a prospective randomized HOVON trial[J]. Blood, 2008,111(2):537-543.
[17] Lukenbill J, Hill B. Relapsed/refractory diffuse large B-cell lymphoma: review of the management of transplant-eligible patients[J]. Leuk Lymphoma, 2015,56(2):293-300.
[18] Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era[J]. J Clin Oncol, 2010,28(27):4184-4190.
[19] Vose JM, Carter S, Burns LJ, et al. Phase Ⅲ randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan(BEAM) compared with iodine-131 tositumomab/BEAM with autologous hematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial[J]. J Clin Oncol, 2013,31(13):1662-1668.
[20] Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12[J]. J Clin Oncol, 2014,32(31):3490-3496.
[21] Harting R, Venugopal P, Gregory SA, et al. Efficacy and safety of rituximab combined with ESHAP chemotherapy for the treatment of relapsed/refractory aggressive B-cell non-Hodgkin lymphoma[J]. Clin Lymphoma Myeloma, 2007,7(6):406-412.
[22] Kewalramani T, Zelenetz AD, Nimer SD, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma[J]. Blood, 2004,103(10):3684-3688.
[23] Martin A, Conde E, Arnan M, et al. R-ESHAP as salvage therapy for patients with relapsed or refractory diffuse large B-cell lymphoma: the influence of prior exposure to rituximab on outcome. A GEL/TAMO study[J]. Haematologica, 2008,93(12):1829-1836.
[24] Gopal AK, Press OW, Shustov AR, et al. Efficacy and safety of gemcitabine, carboplatin, dexamethasone, and rituximab in patients with relapsed/refractory lymphoma: a prospective multi-center phase Ⅱ study by the Puget Sound Oncology Consortium[J]. Leuk Lymphoma, 2010,51(8):1523-1529.
[25] Srour SA, Li S, Popat UR, et al. A randomized phase Ⅱ study of standard-dose versus high-dose rituximab with BEAM in autologous stem cell transplantation for relapsed aggressive B-cell non-hodgkin lymphomas: long term results[J]. Br J Haematol, 2017,178(4):561-570.
[26] Barth MJ, Hernandez-Ilizaliturri FJ, Mavis C, et al. Ofatumumab demonstrates activity against rituximab-sensitive and-resistant cell lines, lymphoma xenografts and primary tumour cells from patients with B-cell lymphoma[J]. Br J Haematol, 2012,156(4):490-498.
[27] van Imhoff GW, McMillan A, Matasar MJ, et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma: the ORCHARRD study[J]. J Clin Oncol, 2016:JCO2016690198.
[28] Thieblemont C, Briere J, Mounier N, et al. The germinal center/activated B-cell subclassification has a prognostic impact for response to salvage therapy in relapsed/refractory diffuse large B-cell lymphoma: a bio-CORAL study[J]. J Clin Oncol, 2011,29(31):4079-4087.
[29] Mounier N, Gisselbrecht C. Relapses, treatments and new drugs[J]. Best Pract Res Clin Haematol, 2012,25(1):49-60.
[30] Jazirehi AR, Vega MI, Bonavida B. Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy[J]. Cancer Res, 2007,67(3):1270-1281.
[31] Laursen MB, Falgreen S, Bodker JS, et al. Human B-cell cancer cell lines as a preclinical model for studies of drug effect in diffuse large B-cell lymphoma and multiple myeloma[J]. Exp Hematol, 2014,42(11):927-938.
[32] Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma[J]. Hematology Am Soc Hematol Educ Program, 2011,2011:498-505.
[33] Tan DE, Foo JN, Bei JX, et al. Genome-wide association study of B cell non-Hodgkin lymphoma identifies 3q27 as a susceptibility locus in the Chinese population[J]. Nat Genet, 2013,45(7):804-807.
[34] Morin RD, Gascoyne RD. Newly identified mechanisms in B-cell non-Hodgkin lymphomas uncovered by next-generation sequencing[J]. Semin Hematol, 2013,50(4):303-313.
[35] Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene[J]. N Engl J Med, 1993,329(18):1318-1327.
[36] Shain KH, Dalton WS, Tao J. The tumor microenvironment shapes hallmarks of mature B-cell malignancies[J]. Oncogene, 2015,34(36):4673-4682.
[37] Shain KH, Tao J. The B-cell receptor orchestrates environment-mediated lymphoma survival and drug resistance in B-cell malignancies[J]. Oncogene, 2014,33(32):4107-4113.
[38] Bjorklund CC, Baladandayuthapani V, Lin HY, et al. Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: therapeutic implications[J]. Leukemia, 2014,28(2):373-383.
[39] Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma[J]. Nature, 2010,463(7277):88-92.
[40] Ruminy P, Etancelin P, Couronne L, et al. The isotype of the BCR as a surrogate for the GCB and ABC molecular subtypes in diffuse large B-cell lymphoma[J]. Leukemia, 2011,25(4):681-688.
[41] Niemann CU, Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution[J]. Semin Cancer Biol, 2013,23(6):410-421.
[42] Yang Y, Shaffer AL, 3rd, Emre NC, et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma[J]. Cancer Cell, 2012,21(6):723-737.
[43] Chen L, Monti S, Juszczynski P, et al. SYK inhibition modulates distinct PI3K/AKT-dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas[J]. Cancer Cell, 2013,23(6):826-838.
[44] Ezell SA, Mayo M, Bihani T, et al. Synergistic induction of apoptosis by combination of BTK and dual mTORC1/2 inhibitors in diffuse large B cell lymphoma[J]. Oncotarget, 2014,5(13):4990-5001.
[45] Mathews Griner LA, Guha R, Shinn P, et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells[J]. Proc Natl Acad Sci U S A, 2014,111(6):2349-2354.
[46] Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy[J]. Proc Natl Acad Sci U S A, 2010,107(29):13075-13080.
[47] Wilson WH, Young RM, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma[J]. Nat Med, 2015,21(8):922-926.
[48] Cai Q, Westin J, Fu K, et al. Accelerated therapeutic progress in diffuse large B cell lymphoma[J]. Ann Hematol, 2014,93(4):541-556.
[49] Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib(PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies[J]. J Clin Oncol, 2013,31(1):88-94.
[50] Ceribelli M, Kelly PN, Shaffer AL, et al. Blockade of oncogenic IkappaB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors[J]. Proc Natl Acad Sci U S A, 2014,111(31):11365-11370.
[51] Grisafi D, Maestro A, Grumi C, et al. Ibrutinib: from bench side to clinical implications[J]. Med Oncol, 2015,32(9):225.
[52] Friedberg JW, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia[J]. Blood, 2010,115(13):2578-2585.
[53] Flinn IW, Bartlett NL, Blum KA, et al. A phase Ⅱ trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma(DLBCL)[J]. Eur J Cancer, 2016,54:11-17.
[54] Chaiwatanatorn K, Stamaratis G, Opeskin K, et al. Protein kinase C-beta Ⅱ expression in diffuse large B-cell lymphoma predicts for inferior outcome of anthracycline-based chemotherapy with and without rituximab[J]. Leuk Lymphoma, 2009,50(10):1666-1675.
[55] Espinosa I, Briones J, Bordes R, et al. Membrane PKC-beta 2 protein expression predicts for poor response to chemotherapy and survival in patients with diffuse large B-cell lymphoma[J]. Ann Hematol, 2006,85(9):597-603.
[56] Riihijarvi S, Koivula S, Nyman H, et al. Prognostic impact of protein kinase C beta Ⅱ expression in R-CHOP-treated diffuse large B-cell lymphoma patients[J]. Mod Pathol, 2010,23(5):686-693.
[57] Bodo J, Sedlak J, Maciejewski JP, et al. HDAC inhibitors potentiate the apoptotic effect of enzastaurin in lymphoma cells[J]. Apoptosis, 2011,16(9):914-923.
[58] Naylor TL, Tang H, Ratsch BA, et al. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas[J]. Cancer Res, 2011,71(7):2643-2653.
[59] Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma-treatment approaches in the molecular era[J]. Nat Rev Clin Oncol, 2014,11(1):12-23.
[60] Robertson MJ, Kahl BS, Vose JM, et al. Phase Ⅱ study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory diffuse large B-cell lymphoma[J]. J Clin Oncol, 2007,25(13):1741-1746.
[61] Ysebaert L, Morschhauser F. Enzastaurin hydrochloride for lymphoma: reassessing the results of clinical trials in light of recent advances in the biology of B-cell malignancies[J]. Expert Opin Investig Drugs, 2011,20(8):1167-1174.
[62] Hainsworth JD, Arrowsmith E, McCleod M, et al. Randomized phase Ⅱ study of R-CHOP plus enzastaurin versus R-CHOP in the first-line treatment of patients with intermediate-and high-risk diffuse large B-cell lymphoma(DLBCL): Preliminary analysis[J]. J Clin Oncol, 2011,29(15 suppl):8016-8016.
[63] Carducci MA, Musib L, Kies MS, et al. Phase I dose escalation and pharmacokinetic study of enzastaurin, an oral protein kinase C beta inhibitor, in patients with advanced cancer[J]. J Clin Oncol, 2006,24(25):4092-4099.
[64] Wang JQ, Jeelall YS, Ferguson LL, et al. Toll-like receptors and cancer: MYD88 mutation and Inflammation[J].Front Immunol, 2014,5:367.
[65] Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA interference screen for molecular targets in cancer[J]. Nature, 2006,441(7089):106-110.
[66] Suarez-Farinas M, Arbeit R, Jiang W, et al. Suppression of molecular inflammatory pathways by Toll-like receptor 7, 8, and 9 antagonists in a model of IL-23-induced skin inflammation[J]. PLoS One, 2013,8(12):e84634.
[67] Strauss SJ, Higginbottom K, Juliger S, et al. The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines[J]. Cancer Res, 2007,67(6):2783-2790.
[68] Schenkein D. Proteasome inhibitors in the treatment of B-cell malignancies[J]. Clin Lymphoma, 2002,3(1):49-55.
[69] Dunleavy K, Pittaluga S, Czuczman MS, et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma[J]. Blood, 2009,113(24):6069-6076.
[70] Goy A, Younes A, McLaughlin P, et al. Phase Ⅱ study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma[J]. J Clin Oncol, 2005,23(4):667-675.
[71] Zinzani PL, Pellegrini C, Merla E, et al. Bortezomib as salvage treatment for heavily pretreated relapsed lymphoma patients: a multicenter retrospective study[J]. Hematol Oncol, 2013,31(4):179-182.
[72] Pei XY, Dai Y, Felthousen J, et al. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells[J]. PLoS One, 2014,9(3):e89064.
[73] Shringarpure R, Catley L, Bhole D, et al. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib[J]. Br J Haematol, 2006,134(2):145-156.
[74] Huang X, Meng B, Iqbal J, et al. Activation of the STAT3 signaling pathway is associated with poor survival in diffuse large B-cell lymphoma treated with R-CHOP[J]. J Clin Oncol, 2013,31(36):4520-4528.
[75] Hao Y, Chapuy B, Monti S, et al. Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo[J]. Clin Cancer Res, 2014,20(10):2674-2683.
[76] Hu G, Witzig TE, Gupta M. A novel missense(m206K) STAT3 mutation in diffuse large B cell lymphoma deregulates STAT3 signaling[J]. PLoS One, 2013,8(7):e67851.
[77] Derenzini E, Younes A. Targeting the JAK-STAT pathway in lymphoma: a focus on pacritinib[J]. Expert Opin Investig Drugs, 2013,22(6):775-785.
[78] William AD, Lee AC, Blanchard S, et al. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6). 1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene(SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3(JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma[J]. J Med Chem, 2011,54(13):4638-4658.
[79] Younes A, Romaguera J, Fanale M, et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes[J]. J Clin Oncol, 2012,30(33):4161-4167.
[80] Pfeifer M, Grau M, Lenze D, et al. PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma[J]. Proc Natl Acad Sci U S A, 2013,110(30):12420-12425.
[81] Siddiqi T, Rosen ST. Novel biologic agents for non-Hodgkin lymphoma and chronic lymphocytic leukemia-part 2: adoptive cellular immunotherapy, small-molecule inhibitors, and immunomodulation[J]. Oncology(Williston Park), 2015,29(4):299-308.
[82] Zhang LH, Kosek J, Wang M, et al. Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression[J]. Br J Haematol, 2013,160(4):487-502.
[83] Hernandez-Ilizaliturri FJ, Deeb G, Zinzani PL, et al. Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminal center B-cell-like than in germinal center B-cell-like phenotype[J]. Cancer, 2011,117(22):5058-5066.
[84] Feldman T, Mato AR, Chow KF, et al. Addition of lenalidomide to rituximab, ifosfamide, carboplatin, etoposide(RICER) in first-relapse/primary refractory diffuse large B-cell lymphoma[J]. Br J Haematol, 2014,166(1):77-83.
[85] Wang M, Fowler N, Wagner-Bartak N, et al. Oral lenalidomide with rituximab in relapsed or refractory diffuse large cell, follicular and transformed lymphoma: a phase Ⅱ clinical trial[J]. Leukemia, 2013,27(9):1902-1909.
[86] Nowakowski GS, LaPlant B, Habermann TM, et al. Lenalidomide can be safely combined with R-CHOP(R2CHOP) in the initial chemotherapy for aggressive B-cell lymphomas: phase I study[J]. Leukemia, 2011,25(12):1877-1881.
[87] Witzig TE, Vose JM, Zinzani PL, et al. An international phase Ⅱ trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma[J]. Ann Oncol, 2011,22(7):1622-1627.
[88] Czuczman MS, Trneny M, Davies A, et al. A phase 2/3 multicenter, randomized, open-label study to compare the efficacy and safety of lenalidomide versus investigator's choice in patients with relapsed or refractory diffuse large B-cell lymphoma[J]. Clin Cancer Res, 2017,23(15):4127-4137.
[89] Hagner PR, Man HW, Fontanillo C, et al. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL[J]. Blood, 2015,126(6):779-789.
[90] Nowakowski GS. Evolution: IMiDs to PPMs, revolution in DLBCL[J]? Blood, 2015,126(6):698-700.
[91] Cotto M, Cabanillas F, Tirado M, et al. Epigenetic therapy of lymphoma using histone deacetylase inhibitors[J]. Clin Transl Oncol, 2010,12(6):401-409.
[92] Gupta M, Han JJ, Stenson M, et al. Regulation of STAT3 by histone deacetylase-3 in diffuse large B-cell lymphoma: implications for therapy[J]. Leukemia, 2012,26(6):1356-1364.[93] West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment[J]. J Clin Invest, 2014,124(1):30-39.
[94] Amengual JE, Clark-Garvey S, Kalac M, et al. Sirtuin and pan-class Ⅰ/Ⅱ deacetylase(DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma[J]. Blood, 2013,122(12):2104-2113.
[95] Watanabe T. Investigational histone deacetylase inhibitors for non-Hodgkin lymphomas[J]. Expert Opin Investig Drugs, 2010,19(9):1113-1127.
[96] Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008,26:677-704.
[97] Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma[J]. Blood, 2015,126(19):2193-2201.
[98] Bryan LJ, Gordon LI. Pidilizumab in the treatment of diffuse large B-cell lymphoma[J]. Expert Opin Biol Ther, 2014,14(9):1361-1368.
[99] Rossille D, Gressier M, Damotte D, et al. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-cell lymphoma: results from a French multicenter clinical trial[J]. Leukemia, 2014,28(12):2367-2375.
[100] Armand P, Nagler A, Weller EA, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase Ⅱ trial[J]. J Clin Oncol, 2013,31(33):4199-4206.
[101] Feld J, Barta SK, Schinke C, et al. Linked-in: design and efficacy of antibody drug conjugates in oncology[J]. Oncotarget, 2013,4(3):397-412.
[102] Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential[J]. Clin Cancer Res, 2011,17(20):6389-6397.
[103] Younes A, Kim S, Romaguera J, et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma[J]. J Clin Oncol, 2012,30(22):2776-2782.
[104] Ribrag V, Dupuis J, Tilly H, et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma[J]. Clin Cancer Res, 2014,20(1):213-220.
[105] Forero-Torres A, Moskowitz C, Advani RH, et al. Interim analysis of a phase 1, open-label, dose-escalation study of SGN-CD19A in patients with relapsed or refractory B-lineage non-Hodgkin lymphoma(NHL)[J]. Journal of Clinical Oncology, 2014,32(15 suppl):8505-8505.
[106] Albertson TM, Sandalic L, Zhao B, et al. Abstract DDT01-04: SGN-CD19A: a novel Anti-CD19 antibody drug conjugate[J]. Cancer Research, 2014,74(19 Suppl):DDT01-04-DDT01-04.
[107] Shor B, Gerber HP, Sapra P. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies[J]. Mol Immunol, 2015,67(2 Pt A):107-116.
[108] Fayad L, Offner F, Smith MR, et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/Ⅱ study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab[J]. J Clin Oncol, 2013,31(5):573-583.
[109] Hu S, Xu-Monette ZY, Balasubramanyam A, et al. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study[J]. Blood, 2013,121(14):2715-2724.
[110] Slack GW, Steidl C, Sehn LH, et al. CD30 expression in de novo diffuse large B-cell lymphoma: a population-based study from British Columbia[J]. Br J Haematol, 2014,167(5):608-617.
[111] Jacobsen ED, Sharman JP, Oki Y, et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression[J]. Blood, 2015,125(9):1394-1402.
[112] Pfeifer M, Zheng B, Erdmann T, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes[J]. Leukemia, 2015,29(7):1578-1586.
[113] Palanca-Wessels MC, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study[J]. Lancet Oncol, 2015,16(6):704-715.
[114] Harada K, Miyake H, Kumano M, et al. Acquired resistance to temsirolimus in human renal cell carcinoma cells is mediated by the constitutive activation of signal transduction pathways through mTORC2[J]. Br J Cancer, 2013,109(9):2389-2395.
[115] Bradley WD, Arora S, Busby J, et al. EZH2 inhibitor efficacy in non-Hodgkin's lymphoma does not require suppression of H3K27 monomethylation[J]. Chem Biol, 2014,21(11):1463-1475.
[116] Boi M, Gaudio E, Bonetti P, et al. The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs[J]. Clin Cancer Res, 2015,21(7):1628-1638.
[117] Cerchietti LC, Ghetu AF, Zhu X, et al. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo[J]. Cancer Cell, 2010,17(4):400-411.
[118] Billard C. BH3 mimetics: status of the field and new developments[J]. Mol Cancer Ther, 2013,12(9):1691-1700.
[119] Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours[J]. Nature, 2005,435(7042):677-681.
[120] Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia[J]. N Engl J Med, 2013,368(16):1509-1518.
[121] Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor[J]. J Clin Oncol, 2015,33(6):540-549.
[122] Schuster SJ, Svoboda J, Dwivedy Nasta S, et al. Sustained remissions following chimeric antigen receptor modified t cells directed against CD19(CTL019) in patients with relapsed or refractory CD19+ lymphomas[J]. Blood, 2015,126(23):183-183.
[123] Turtle CJ, Hanafi LA, Berger C, et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells[J]. Sci Transl Med, 2016,8(355):355ra116.
[124] Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by anti-cd19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels[J]. J Clin Oncol, 2017,35(16):1803-1813.
[125] Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma[J]. Mol Ther, 2017,25(1):285-295.
[126] Locke FL, Neelapu SS, Bartlett NL, et al. Clinical and biologic covariates of outcomes in ZUMA-1: a pivotal trial of axicabtagene ciloleucel(axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma(r-NHL)[J]. Journal of Clinical Oncology, 2017,35(15 Suppl):7512-7512.
[127] Locke FL, Neelapu SS, Bartlett NL, et al. Abstract CT019: Primary results from ZUMA-1: a pivotal trial of axicabtagene ciloleucel(axicel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma(NHL)[J]. Cancer Research, 2017,77(13 Suppl):CT019-CT019.
[128] Abramson JS, Palomba ML, Gordon LI, et al. CR rates in relapsed/refractory(R/R) aggressive B-NHL treated with the CD19-directed CAR T-cell product JCAR017(TRANSCEND NHL 001)[J]. J Clin Oncol, 2017,35(15 Suppl):7513-7513.
[129] Abramson JS, McGree B, Noyes S, et al. Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma[J]. N Engl J Med, 2017,377(8):783-784.
[130] Korfel A, Elter T, Thiel E, et al. Phase Ⅱ study of central nervous system(CNS)-directed chemotherapy including high-dose chemotherapy with autologous stem cell transplantation for CNS relapse of aggressive lymphomas[J]. Haematologica, 2013,98(3):364-370.
[131] Doorduijn JK, van Imhoff GW, van der Holt B, et al. Treatment of secondary central nervous system lymphoma with intrathecal rituximab, high-dose methotrexate, and R-DHAP followed by autologous stem cell transplantation: results of the HOVON 80 phase 2 study[J]. Hematol Oncol, 2016 Aug 17. [Epub ahead of print]
[132] Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans[J]. Biol Blood Marrow Transplant, 2010,16(9):1245-1256.
[133] Till BG, Jensen MC, Wang J, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results[J]. Blood, 2012,119(17):3940-3950.
[134] Wang Y, Zhang WY, Han QW, et al. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells[J]. Clin Immunol, 2014,155(2):160-175.
Therapeuticprogressinrelapse/refractorydiffuselarge-B-celllymphoma
Zhang Na, Gao Guangxun
DepartmentofHematopathology,XijingHospitaloftheAirForeMedicalUniversity(FourthMilitaryMedicalUniversity),Xi′an710032,China
GaoGuangxun,Email:gaoguangxun@fmmu.edu.cn
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous lymphoid malignancy and the most commonly occurring subtype of non-Hodgkin's lymphoma (NHL), with increasing incidence, which is great harmful to human health. More than 60% of DLBLC patients can be cured with standard R-CHOP regimens, however, approximately 30% of patients will develop relapsed/refractory disease that remains a major cause of mortality. With recent advances in gene expression profiling, the in-depth study of the molecular basis of chemotherapy resistance, optimization of salvage chemotherapy regimen, intervention of novel drugs and using chimeric antigen receptor T-cell therapy, and so on, these therapies might provide hope for individual accurate treatment of relapsed/refractory DLBCL. In this review, we focus on the progress of novel drugs and CART therapy in relapsed/refractory DLBCL.
lymphoma, B-cell; recurrence; receptors, antigen, T-cell; therapy
高廣勛,Email:gaoguangxun@fmmu.edu.cn
R733.4
A
1004-583X(2017)12-1027-10
10.3969/j.issn.1004-583X.2017.12.004
2017-11-23 編輯:王秋紅