• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    棒狀CuFe4Ox的可控合成及其異戊醇脫氫反應(yīng)的催化性能

    2017-12-13 10:51:28馬宏彬馬令娟侯夢(mèng)寧岳明波
    關(guān)鍵詞:戊醇棒狀沉淀法

    馬宏彬 馬令娟 侯夢(mèng)寧 岳明波

    棒狀CuFe4Ox的可控合成及其異戊醇脫氫反應(yīng)的催化性能

    馬宏彬 馬令娟*侯夢(mèng)寧 岳明波

    (曲阜師范大學(xué)化學(xué)與化工學(xué)院,曲阜 273165)

    利用液相沉淀法可控合成了均勻的棒狀CuFe4Ox催化劑。通過原位X射線粉末衍射(XRD)、高分辨透射電子顯微鏡(TEM)及程序升溫還原(TPR)等手段表征其晶相結(jié)構(gòu)、形貌和還原性能。通過還原棒狀CuFe4Ox獲得Cu0/Fe3O4納米棒,原位X射線光電子能譜(XPS)用于確定Cu0/Fe3O4表面的相組成。通過液相沉淀法制備棒狀CuFe4Ox,在120℃保持3 h后加入Na2CO3溶液至pH等于9時(shí)所得棒狀形貌最為規(guī)整。以異戊醇脫氫反應(yīng)作為探針反應(yīng),比較了Cu0/Fe3O4納米棒和Cu0/Fe3O4納米顆粒的催化反應(yīng)性能,發(fā)現(xiàn)Cu0/Fe3O4納米棒比Cu0/Fe3O4納米粒子具有更好的活性和穩(wěn)定性,表明棒狀Fe3O4擔(dān)載的Cu納米粒子具有更好的結(jié)構(gòu)穩(wěn)定性。

    CuFe4Ox復(fù)合物;XPS;異戊醇脫氫

    0 Introduction

    Morphology-dependent nanocatalysts have been intensively explored over metal and metal oxides[1-3],but less attention has been paid to binary metal oxidesand oxide-supported metals.Copper-based catalysts are extensively studied due to their good catalytic performance in many industrial reactionssuch as methanol synthesis and water gas shift reactions[4-6].And,Cu/Fe3O4catalysts are one of the most effective catalysts and their catalytic properties strongly depended on the properties of Fe3O4particles[7].The major drawbacks of Cu-based catalyst are still the difficulties of homogeneous dispersion of Cu particles on supports and poor thermal stability[8].Yang et al.proposed a space-confined synthesis method to prepare rod-shaped CuFe2O4which was reduced to Cu/Fe3O4catalyst with fine Cu0nanoparticles supported on Fe3O4rod[9].Additionally,the precursors of copper are also very important for the stability and activity of copper species.Kameoka et al.[10]proposed that spinel CuFe2O4was an effective precursor for a high performance copper catalyst which showed high thermal stability and activity.However,Cu content in stoichiometric CuFe2O4is too high to be dispersed on the surface of Fe3O4support.As a result,controllable synthesized rod-shaped CuFe4Oxwas used as the precursor of Cu/Fe3O4and the composition of reduced product are well studied.

    It is also known that copper-based catalysts show high activity in the dehydrogenation of alcohols[11].Isovaleraldehyde is an important industrial intermediary in the manufacturing of synthetic resins,special chemicals and isovaleric acid which is widely used in the medical industry and Shiau et al.indicated that Cu-based catalysts have a good activity for isoamylic alcohol dehydrogenation[12].Crivello et al.[13]also studied the performance ofCr-Cu-Mg catalysts in the dehydrogenation of isoamylic alcohol.In this paper dehydrogenation of isoamylic alcohol was used to assess the catalytic performance of Cu/Fe3O4-nanorods and Cu/Fe3O4-nanoparticle was also prepared to compare the performance with Cu/Fe3O4-nanorods.

    1 Experimental details

    1.1 Catalyst preparation

    All the chemicals were analytical grade and were used without further purification.The synthesis of CuFe4Oxcomposite with rod-shape was prepared by an aqueous precipitation method which was in accordance with the preparation of α-Fe2O3nanorods[14].The typical synthesis procedure was described as follows.CuCl2·2H2O(0.68 g),FeCl3·6H2O(4.32 g),NaCl(11.60 g),and PEG(10 mL)were dissolved in 190 mL water and then the solution was gradually heated to 120℃at vigorous stirring and stay at 120℃for 3 h.A Na2CO3aqueous solution (0.2 mol·L-1)was added through a syringe pump at a rate of 1.0 mL·min-1.The mixture was then aged at 120℃for 1 h.The precipitate was washed with water and ethanol,and dried at 60℃for 6 h.Finally,the dried sample was calcined at different temperature.

    CuFe4Oxnanoparticles were prepared by coprecipitation method.An aqueous solution of Cu(NO3)2·3H2O(4 mmol)and Fe(NO3)3·9H2O(16 mmol)was rapidly added into 100 mL 0.5 mol·L-1Na2CO3aqueous solution at room temperature.The obtained reddish brown precipitate was collected by filtration,washed with deionized water and ethanol,dried at 80℃overnight and finally calcined at 500℃for 10 h in air condition.

    1.2 Characterization of samples

    X-ray diffraction(XRD)pattern was performed on aRigakuD/MAX-RB diffractometerwith Cu Kα radiation(λ=0.154 nm)at U=40 kV and I=200 mA.Powder patterns of uncalcined precursor and catalysts obtained by calcined at different conditions were recorded in the 2θ range of 15°~80°and the scan rate was 3°·min-1.In-situ XRD were carried out in the 2θ range of 15°~60°while a catalyst was in a reductive atmosphere(5%H2balanced with 95%He)with a scan rate of 5℃·min-1to track potential evolution of phase in the H2treatment.N2adsorption-desorption of sample was tested by Nova 4200e physicaladsorption instrument.

    The HRTEM images were gotten from the JEM-2010 and TEM images were examined using Hitachi 7700 transmission electron microscope.The X-ray photoelectron spectroscopy(XPS)was performed in an ultrahigh-vacuum chamber that has attached a highpressure cell or batch reactor.The sample could be transferred between the reactor and vacuum chamber withoutexposure toair.Temperature-programmed reduction (TPR)experiments were performed in a quartz tube micro-reactor connected to an Auto Chem 2920 instrument.The experiments were performed on 40 mg of catalyst under the flowing 5%H2balanced with N2(30 mL·min-1)with a heating rate of 1℃·min-1.

    1.3 Catalytic activity

    Catalytic activities of the CuFe4Oxnanoparticles and nanorods were carried out in a continuous flow type reactor with a fixed catalyst bed operated at atmospheric pressure.Isoamylic alcohol serves as reagent was introduced through N2gas.The W/F0is controlled to 41.3 gcatalyst·h·mol-1.Only isoamylic alcohol,isovaleraldehyde and hydrogen were detected in the reaction,other products were found in trace amounts and will be neglected.Analysis of the feed and effluent gas were performed after water condensation by gas chromatograph(GC).

    2 Results and discussion

    2.1 Controllable synthesis of CuFe4Oxrod

    Rod-like CuFe4Oxsample was prepared by the aqueous precipitation method which described detailed in the experiments.It is well known that the shape and phase composition ofsamples were intimately correlated to the synthesis conditions,like pH value,reaction time,calcination temperature.In the process of synthesis of rod-like CuFe4Oxprecursor,Na2CO3precipitant was introduced when the temperature increase to 120℃.It was found that the stirring time at 120℃before Na2CO3was introduced also effect the shape of product.As a result,we focus on the effect of pH value,stirring time at 120℃,calcination temperature on the shape and phase composition of CuFe4Oxsample.

    Fig.1showstheTEM imagesofprecursors prepared under various pH values and stirring time at 120℃.In the experiment,yellow-brown precipitants were formed as Fe3+start to hydrolysis when temperature increased to 80~90℃.It is easy to understand the pH value of the system decreases with the hydrolysis of Fe3+.While when the temperature continued rising to 120℃,Fe3+ions were completely hydrolyzed and the pH value of the solution was about 1 which is too low for Cu2+to form precipitant.It is obviously that the pH value was one of the most important factors.The pH value can be easily adjusted by adding different amount of Na2CO3.Fig.1(a,b,c)show the TEM images of precursors prepared at pH=12,10 and 9,respectively.As pointed by the red arrow in Fig.1a and Fig.1b,that some nanoplates or spindle particles were formed besides rods when pH value is high to 10 or 12.While,when pH value was 9,only rod-shaped particles were detected in the products.

    Fig.1 TEM images of precursors prepared at different pH values and at 120℃before Na2CO3solution was introduced

    It has been reported that rod-shaped β-FeOOH was formed with the same aqueous precipitant method without Cu2+in the reaction system[14].As a result,particles with plate or spindle shape(as shown in Fig.1a and b)were attributed to the precipitant of Cu2+.While when pH value was low to 9,only rod can be detected which means it is suitable for the preparation of rod-shaped sample when the pH value is 9.But the diameter and length of rods are not very uniform.It was found that the stirring time at 120℃before Na2CO3solution was introduced can also affect the uniform of rod shape.In order to obtain a rod-shaped sample with uniform diameterand length timedependentexperiments were carried out.When prolonging the stirring time at 120℃before Na2CO3solution was introduced,the diameter and length of therod-shaped productbecomemoreand more uniform.When stirring time was extended to 3 h,more uniform rod-shaped precursors can be obtained as shown in Fig.1e and f.The average diameter and length of the rod-shape precursors are 30 and 285 nm,respectively.

    Calcination is necessary for the formation of CuFe4Oxoxide composite.Fig.2 showstheXRD patterns of CuFe4Oxprecursor before calcination and calcined at different temperatures for different time.It shows clearly that the uncalcined precursor was composedofβ-FeOOH andCuO phases.When calcined at 500 ℃ for 5 h β-FeOOH transformed to α-Fe2O3with that α-Fe2O3reacted with CuO to form CuFe2O4at the same time.While,CuO phase still can be detected by XRD which means CuO cannot completely reacted with Fe2O3by calcination at 500℃for 5 h.Prolong the calcination time to 10 h at 500℃,CuO phase was almost completely disappeared.However,when improved the calcination temperature to 600℃and calcined for 5 h,CuO phase still can be detected.So,500℃is suitable to form CuFe2O4.Fig.3 shows the TEM images of samples obtained at different calcination conditions.It can be seen clearly that calcined at 500℃for 5 h,sample can retain rod shape while when prolonged the time to 10 h at 500℃or risen the calcination temperature to 600℃,sample was seriously sintered together.In order to obtain uniform rod shape,sample was calcined at 500℃for 5 h.ICP results of CuFe4Oxshow that the ratio of Cu to Fe is consistent with the initial feed ratio which Cu versus Fe equal to 1∶4.The BET surface area of CuFe4Oxwhich was calcined at 500℃for 5 h was 36 m2·g-1.It is relatively high for metal oxide.From the TEM images (Fig.3a),it is clearly that a lot of pores are formed during the calcination.That is the reason why CuFe4Oxshows high BET surface areas.

    Fig.2 XRD patterns of uncalcined precursor and products obtained by calcined at different conditions

    Fig.3 TEM images of CuFe4Oxsamples obtained by calcination at different conditions:(a)500℃for 5 h;(b)500℃for 10 h;(c)600℃for 5 h

    2.2 Reducibility of the CuFe4Oxrod sample

    In order to elucidate the surface and bulk oxygen reducibility of CuFe4Oxnanorods calcined at 500℃for 5 h,H2-TPR measurement was carried out and the TPR profile was shown in Fig.4.It presented two obviously different reduction regions:the low-temperature regime at 50~353℃and the high-temperature regime at 353~650℃.As well studied that Fe2O3shows one small peak at 420℃for the reduction of Fe2O3to Fe3O4and one higher temperature peak above 650℃ for the reduction of Fe3O4to metal Fe[15-16].While CuFe2O4also presents two distinct reduction peaks with one lower temperature reduction attribute to the reduction of CuFe2O4to Cu and Fe3O4,and the other higher reduction peak assigned to the reduction of Fe3O4to metal Fe[9].It can be concluded that the reductions of Cu species and the reduction of Fe2O3to Fe3O4are much easier than the reduction of Fe3O4to Fe.As a result,the lower peaks below 353℃should be attributed to the reduction of CuFe2O4to Cu0and Fe3O4and the reduction of Fe2O3to Fe3O4.The broad reduction peak around 530℃should be assigned to the reduction of Fe3O4to Fe metal as reported by Kameoka et al.[17]and Faungnawakij et al.[18].It need to note that the small peak at 129℃must be the reduction of surface Cu2+species,as only surface CuO can be reduced at such low temperature.

    Fig.4 H2-TPR profile of CuFe4Oxnanorods obtained by calcined at 500℃for 5 h

    In order to get further insight about the phase transformation in the H2reduction process,the phases of CuFe4Oxwere analyzed via in-situ XRD under 5%H2(He balance).Fig.5 shows the in-situ XRD evolution of CuFe4Oxrods under 5%H2(He balance)at different temperature.As mentioned before,the freshly prepared sample calcined at 500℃for 5 h exhibits a phase mixture of Fe2O3(PDF No.86-0550),CuO(PDF No.80-0076)and CuFe2O4(PDF No.34-0425).It can be observed clearly that CuO and Fe2O3are almost disappeared at 250 and 350℃,respectively,which suggests the reduction of Fe2O3is more difficult than the reduction of CuO.The transformation of CuFe2O4should happened at about 300℃as the XRD reflection of Cu0suddenly increased.So,the spinel phase formed at temperature higher than 300℃should be ascribed to Fe3O4even though it is difficult to distinguish the XRD position of Fe3O4and CuFe2O4.as Cu0was isolated from CuFe2O4.These analysis results support the ascription of TPR peaks at 129℃to the reduction of CuO and the ascription of the following peak at 332℃to the reductions of CuFe2O4and Fe2O3.The broad reduction peak at 552℃should be assigned to the reduction of Fe3O4to Fe0as before.

    Fig.5 XRD patterns recorded in-situ during CuFe4Ox reduction under 5%H2(He balance)at different temperatures

    2.3 Cu species of reduced sample

    From the results ofin-situ XRD and TPR analysis,it can be deduced that CuFe4Oxcan be controllably reduced to Cu-Fe3O4.The TEM and HRTEM images of CuFe4Oxsample reduced at 300℃are shown in Fig.6.Fig.6a and b display that Fe3O4can inherit the rod shape of CuFe4Oxsample and a lot of nanoparticles are supported on the rod-particles.HRTEM results are shown in Fig.6c confirm the rodshaped supportsare Fe3O4and supported small nanoparticles are Cu2O.It is well known that freshly formed Cu nanoparticles are very active and can be oxidized when contact with air.As a result,the observed Cu2O nanoparticles must be the production of oxidation of Cu nanoparticles in air conditions.And the conclusion was further confirmed by the in-situ XPS results.

    Fig.7 illustrates the XPS profiles of Cu2p and CuL3VV of freshly prepared and in-situ reduced CuFe4Oxsample.For the freshly prepared CuFe4Oxsample,the kinetic energy of 917.5 eV in the spectra of CuL3VV Auger corresponded to Cu2+[19];the binding energy of Cu2p3/2at 932.9 eV,together with the relatively large satellite peak at 938~948 eV with a shake-up structure,further evidenced the presence of Cu2+[20-22].Upon hydrogen reduction at 300℃,the shake-up satellite peak vanished,indicating the reduction of Cu2+species.The kinetic energy of 918.7 eV in CuL3VV Auger spectra indicates the appearance of metallic copper species.Furthermore,the binding energy of Cu2p3/2in Cu2p spectra lowered to 931.9 eV representing metallic copperspecies.Thisresult suggests the presence of Cu0after reduction at 300℃in H2.The combination of the results of in-situ XRD and in-situ XPS and HRTEM confirm that the CuFe4Oxsamples are reduced to Cu0/Fe3O4rods composite by 5%H2at 300℃.

    Fig.6 TEM(a,b)and HRTEM(c)images of the reduced CuFe4Ox

    Fig.7 In-situ XPS profiles of reduced and fresh CuFe4Oxnanorods

    2.4 Dehydrogenation of isoamylic alcohol activity

    It is known that copper based catalyst is used widely in the dehydrogenation of alcohols and copper is indeed an essential component of the active phase of the catalyst for the dehydrogenation of isoamylic alcohol.So,the catalytic activity of CuFe4Oxcalcined at 500℃and hydrogen reduced at 300℃was assessed in the dehydrogenation of isoamylic alcohol to isovaleraldedyde.Co-precipitation method was used to prepare CuFe4Oxcatalyst with same copper contents and its catalytic performance was compared with CuFe4Oxnanorods.ICP results show the molar ratio of copper to iron in both nanorods and nanoparticles are inconsistent with the formula of CuFe4Ox.The TEM imagesand XRD patternsofreduced CuFe4Oxnanoparticles are shown in Fig.6a and 6b.The TEM image showsthe sample wasin the shape of nanoparticles and the XRD profile shows that nanoparticle is composed of well characterized α-Fe2O3and CuFe2O4which shows the similar composition with nanorod samples.

    Fig.8 shows the conversion versus time on stream using reduced CuFe4Oxcatalysts with different shapes.It is clear that the initial conversion was similar for both nanoparticlesand nanorodscatalystswhich illustrate that copper is the active phase for this reaction.However,there is a significant difference in their conversion profiles.The conversion of isoamylic alcohol over nanoparticles decreases rapidly to 0%in 500 min.While,the conversion over nanorods decreases to 40%at about 250 min and then the conversion can stable for more than 500 min.According to the catalytic analysis,it can be concluded that rodshaped samples show higher stability than particles.The formation ofthissignificantdifference was thought to be the sintering of Cu particles or the formation of coke.As a result,the rod shape may increase the interaction of Cu0and Fe3O4support and delay the growth of Cu0nanoparticles size.

    Fig.8 Conversion rate of isoamylic alcohol vs time on stream using reduced CuFe4Oxnanoparticles and nanorods

    3 Conclusions

    In summary,we have prepared rod-shaped CuFe4Oxcompound by one step liquid-phase precipitation method and the reaction conditionsare carefully controlled.The structuralanalysis and reduction properties of CuFe4Oxhave been performed.In-situ XRD and TPR analysis results show that Cu specie can be reduced at lower temperature than the reduction of Fe2O3phase.When reduced at 300℃by 5%H2,CuFe4Oxcan be reduced to Cu0/Fe3O4while Fe3O4can inherit rod shape.The in-situ XPS and HRTEM results show that Cu0nanoparticles are highly dispersed on the surface ofFe3O4rod.Comparing with Cu/Fe3O4nanoparticles,Cu/Fe3O4nanorods display higher stability in the dehydrogenation of isoamylic alcohol,suggesting that Cu0nanoparticles show better stability on rod-shaped Fe3O4supporter.

    Acknowledgements:This work is supported by the National Natural Science Foundation of China (Grant No.21403124)and Natural Science Foundations ofShandong Province(Grants No.ZR2014JL014,ZR2014BM012).

    [1]Li Y,Liu Q Y,Shen W J.Dalton Trans.,2011,40(22):5811-5826

    [2]CAO Xiao-Feng(曹霄峰),ZHANG Lei(張雷),LI Zhao-Qian(李兆乾),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2012,28(11):2373-2378

    [3]HU Han-Mei(胡寒梅),DENG Cong-Hai(鄧崇海),SUN Feng-Xia(孫鳳霞),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2012,28(2):405-410

    [4]Ratnasamy C,Wagner J P.Catal.Rev.Sci.Eng.,2009,51(3):325-440

    [5]Gawande M B,Goswami A,Felpin F,et al.Chem.Rev.,2016,116(6):3722-3811

    [6]DING Ying-Ru(丁瑩如),YAO Jian-Hua(姚建華),LIU Qi-Sheng(劉其盛),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),1989,5(1):119-121

    [7]Estrella M,Barrio L,Zhou G,et al.J.Phys.Chem.C,2009,113(32):14411-14417

    [8]Takeguchi T,Kani Y,Inoue M,et al.Catal.Lett.,2002,83(1/2):49-53

    [9]Yang S C,Su W N,Lin S D,et al.Appl.Catal.,B,2011,106(3/4):650-656

    [10]Kameoka S,Tanabe T,An P T.Catal.Lett.,2005,100(1/2):89-93

    [11]Carotenuto G,Tesser R,Serio M D,et al.Catal.Today,2013,203(203):202-210

    [12]Shiau C Y,Chen S,Tsai J C,et al.Appl.Catal.,A,2000,198(1/2):95-102

    [13]Crivello M,Pérez C,Fernández J,et al.Appl.Catal.,A,2007,317(1):11-19

    [14]Mou X L,Zhang B S,Li Y,et al.Angew.Chem.Int.Ed.,2012,51(12):2989-2993

    [15]Khan A,Smirniotis P G.J.Mol.Catal.A:Chem.,2008,280(1/2):43-51

    [16]Reddy G K,Gunasekera K,Boolchand P,et al.J.Phys.Chem.C,2011,115(15):7586-7595

    [17]Kameoka S,Tanabe T,An P T.Appl.Catal.,A,2010,375(1):163-171

    [18]Faungnawakij K,Kikuchi R,Fukunaga T,et al.Catal.Today,2008,138(3/4):157-161

    [19]Poulston S,Parlett P M,Stone P,et al.Surf.Interface Anal.,1996,24(12):811-820

    [20]Tang X,Zhang B,Yong L,et al.Appl.Catal.,A,2005,288(1/2):116-125

    [21]Zeng S H,Liu K W,Zhang L,et al.J.Power Sources,2014,261(5):46-54

    [22]Qi L,Yu Q,Dai Y,et al.Appl.Catal.,B,2012,119-120(21):308-320

    Rod-like CuFe4OxComposite:Controllable Synthesis and Catalytic Performance in Isoamylic Alcohol Dehydrogenation

    MA Hong-Bin MA Ling-Juan*HOU Meng-Ning YUE Ming-Bo
    (School of Chemistry and Chemical Engineering,Qufu Normal University,Qufu,Shandong 273165,China)

    Uniformly rod-shaped CuFe4Oxcatalysts were controllably fabricated through a liquid-phase precipitation method.The phase structure,morphology and reduction properties of the catalyst were characterized by in-situ powder X-ray diffraction (XRD),high resolution transmission electron microscope (HRTEM)and temperatureprogrammed reduction (TPR).Cu0/Fe3O4-nanorod obtained from the reduction of rod-shaped CuFe4Oxstructure and the surface phase composition of Cu0/Fe3O4was detailed studied by in-situ X-ray photoelectron spectroscopy(XPS).CuFe4Oxcomposites with rod-shape were prepared by an aqueous precipitation method that means after stirring time at 120℃for 3 h,Na2CO3solution was added until pH value equal to 9.In this case,the most uniform CuFe4Oxcomposites with rod-shape were obtained.Cu0/Fe3O4-nanorod catalyst presents higher activity and stability for the dehydrogenation of isoamylic alcohol than Cu/Fe3O4-nanoparticles,due to Cu0nanoparticles supported on the rod-shaped Fe3O4exhibits higher structure stability.

    CuFe4Oxcomposite;XPS;dehydrogenation of isoamylic alcohol

    O643.32;O614.121

    A

    1001-4861(2017)12-2193-08

    10.11862/CJIC.2017.275

    2017-07-12。收修改稿日期:2017-09-22。

    國家自然科學(xué)基金(No.21403124)和山東省自然科學(xué)基金(No.ZR2014JL014,ZR2014BM012)資助項(xiàng)目。

    *通信聯(lián)系人。 E-mail:malingjuan@qfnu.edu.cn

    猜你喜歡
    戊醇棒狀沉淀法
    雪花不只有六邊形片狀的
    大自然探索(2023年5期)2023-06-19 08:08:53
    一種環(huán)戊醇脫氫制環(huán)戊酮催化劑及其制備方法
    能源化工(2022年2期)2023-01-15 09:40:09
    糖耗速率對(duì)濃香型白酒發(fā)酵過程異戊醇合成的影響
    硝酸銀沉淀法去除高鹽工業(yè)廢水中鹵化物對(duì)COD測定的干擾
    廢棄食用油和正戊醇混合物的柴油機(jī)可持續(xù)環(huán)保燃燒方法
    汽車文摘(2017年7期)2017-12-08 16:05:33
    濕法磷酸化學(xué)沉淀法除鎂工藝
    混凝沉淀法處理含鉛礦坑涌水
    巰基-端烯/炔點(diǎn)擊反應(yīng)合成棒狀液晶化合物
    上海石化“間接水合法由環(huán)戊烯制備環(huán)戊醇的方法”專利獲授權(quán)
    采用碳化-沉淀法制備纖維狀納米Mg(OH)2的研究
    黄色视频在线播放观看不卡| 99热国产这里只有精品6| 色哟哟·www| 久久韩国三级中文字幕| 999精品在线视频| 亚洲精品一二三| 男女免费视频国产| 亚洲内射少妇av| 国产免费视频播放在线视频| 中文字幕制服av| 亚洲国产精品999| 一级,二级,三级黄色视频| 亚洲精品色激情综合| 9191精品国产免费久久| 日韩制服丝袜自拍偷拍| 人体艺术视频欧美日本| 亚洲成国产人片在线观看| 丝袜美足系列| 亚洲精品国产av蜜桃| 亚洲成av片中文字幕在线观看 | 1024视频免费在线观看| 国产片内射在线| 久久久久精品性色| 国产午夜精品一二区理论片| 大香蕉久久成人网| 看免费av毛片| 欧美成人午夜免费资源| 国产男女超爽视频在线观看| 成人国产av品久久久| 成人国产av品久久久| 中文字幕最新亚洲高清| 最近2019中文字幕mv第一页| 精品人妻在线不人妻| 精品国产一区二区三区久久久樱花| 国产欧美日韩综合在线一区二区| videossex国产| 高清毛片免费看| 亚洲中文av在线| 五月伊人婷婷丁香| 亚洲婷婷狠狠爱综合网| 又黄又爽又刺激的免费视频.| 精品国产一区二区三区久久久樱花| 亚洲国产av影院在线观看| 啦啦啦视频在线资源免费观看| 欧美亚洲日本最大视频资源| 久久久久久久久久久免费av| av免费在线看不卡| 男人爽女人下面视频在线观看| 国产精品麻豆人妻色哟哟久久| 日本免费在线观看一区| 少妇的逼好多水| a级毛片黄视频| 夜夜爽夜夜爽视频| 亚洲一区二区三区欧美精品| 黄片播放在线免费| 在线亚洲精品国产二区图片欧美| 波野结衣二区三区在线| 亚洲成国产人片在线观看| 高清欧美精品videossex| 自线自在国产av| 女性生殖器流出的白浆| 成人国产av品久久久| 天堂8中文在线网| 国产综合精华液| 久久青草综合色| 久久精品国产综合久久久 | 伦理电影大哥的女人| 亚洲第一区二区三区不卡| 成人毛片a级毛片在线播放| 亚洲色图 男人天堂 中文字幕 | 曰老女人黄片| 国内精品宾馆在线| 99热这里只有是精品在线观看| 中文字幕免费在线视频6| 精品视频人人做人人爽| 欧美日本中文国产一区发布| 亚洲av欧美aⅴ国产| 亚洲内射少妇av| 欧美xxxx性猛交bbbb| 亚洲人成网站在线观看播放| 美女主播在线视频| 99久久精品国产国产毛片| 欧美精品高潮呻吟av久久| 日本-黄色视频高清免费观看| 久久久久视频综合| 国产精品一区www在线观看| 午夜福利乱码中文字幕| 亚洲美女黄色视频免费看| 国产成人av激情在线播放| 婷婷色av中文字幕| 亚洲中文av在线| 国产一区二区在线观看av| 亚洲国产最新在线播放| 精品一品国产午夜福利视频| 成人手机av| 看免费av毛片| 久久久a久久爽久久v久久| 成年美女黄网站色视频大全免费| 亚洲欧洲精品一区二区精品久久久 | 蜜臀久久99精品久久宅男| 亚洲精品久久午夜乱码| 熟妇人妻不卡中文字幕| 久久99一区二区三区| 大码成人一级视频| 9热在线视频观看99| 久久精品熟女亚洲av麻豆精品| 男女啪啪激烈高潮av片| av国产精品久久久久影院| 久久精品国产a三级三级三级| 亚洲成人av在线免费| 女人精品久久久久毛片| 欧美精品亚洲一区二区| 97超碰精品成人国产| 91国产中文字幕| 亚洲色图综合在线观看| 日本欧美视频一区| 亚洲精品日韩在线中文字幕| 国产成人免费无遮挡视频| 日韩制服丝袜自拍偷拍| 大话2 男鬼变身卡| 男女高潮啪啪啪动态图| 久久人人97超碰香蕉20202| 免费高清在线观看日韩| 激情五月婷婷亚洲| 亚洲图色成人| 久久免费观看电影| 国产精品女同一区二区软件| 国产亚洲av片在线观看秒播厂| 亚洲国产精品一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 欧美3d第一页| 国产免费现黄频在线看| 免费av中文字幕在线| 黄网站色视频无遮挡免费观看| 十八禁网站网址无遮挡| 777米奇影视久久| 侵犯人妻中文字幕一二三四区| 熟女av电影| 99香蕉大伊视频| 一本久久精品| 国产午夜精品一二区理论片| 少妇人妻久久综合中文| 一边摸一边做爽爽视频免费| 90打野战视频偷拍视频| 日韩av免费高清视频| 国产精品一二三区在线看| 欧美日本中文国产一区发布| 日日撸夜夜添| 免费看av在线观看网站| 亚洲欧美一区二区三区黑人 | 免费黄色在线免费观看| 成年人免费黄色播放视频| 亚洲av.av天堂| 下体分泌物呈黄色| 久久亚洲国产成人精品v| 69精品国产乱码久久久| 啦啦啦中文免费视频观看日本| av电影中文网址| 街头女战士在线观看网站| 免费人妻精品一区二区三区视频| av播播在线观看一区| 男女高潮啪啪啪动态图| 丝袜脚勾引网站| 成年动漫av网址| 看免费成人av毛片| 亚洲精品,欧美精品| 国产亚洲午夜精品一区二区久久| 国产成人av激情在线播放| 下体分泌物呈黄色| 久久久a久久爽久久v久久| 免费看光身美女| 精品人妻偷拍中文字幕| 少妇的丰满在线观看| 丝袜美足系列| 九九爱精品视频在线观看| 国产成人午夜福利电影在线观看| 男女免费视频国产| 日韩大片免费观看网站| 美女福利国产在线| 亚洲成人一二三区av| 亚洲精华国产精华液的使用体验| 高清黄色对白视频在线免费看| 国产欧美日韩综合在线一区二区| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区蜜桃 | 国产国拍精品亚洲av在线观看| 9热在线视频观看99| 久久鲁丝午夜福利片| 一本色道久久久久久精品综合| 99热全是精品| 国产熟女欧美一区二区| 看免费av毛片| 久久久精品免费免费高清| 看非洲黑人一级黄片| 中文字幕精品免费在线观看视频 | 大片免费播放器 马上看| 久久精品aⅴ一区二区三区四区 | 九色成人免费人妻av| 蜜桃国产av成人99| 日本黄大片高清| 观看美女的网站| 国产精品久久久av美女十八| 日韩中字成人| 亚洲精品成人av观看孕妇| 国产精品.久久久| 国产亚洲欧美精品永久| 纯流量卡能插随身wifi吗| 日本黄大片高清| 91在线精品国自产拍蜜月| 一级爰片在线观看| 免费播放大片免费观看视频在线观看| 人妻少妇偷人精品九色| 熟女电影av网| 午夜福利视频精品| 欧美激情 高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 侵犯人妻中文字幕一二三四区| av有码第一页| 伦理电影免费视频| 日日啪夜夜爽| 久久精品国产自在天天线| 男人爽女人下面视频在线观看| 黄色配什么色好看| 久久久久人妻精品一区果冻| 亚洲国产看品久久| 成人国语在线视频| 国产爽快片一区二区三区| 国产女主播在线喷水免费视频网站| 高清不卡的av网站| 日韩欧美一区视频在线观看| 搡女人真爽免费视频火全软件| 国产黄色视频一区二区在线观看| 大陆偷拍与自拍| 一级毛片电影观看| av黄色大香蕉| 中文字幕人妻熟女乱码| 国产69精品久久久久777片| 亚洲中文av在线| 1024视频免费在线观看| 精品人妻熟女毛片av久久网站| 男女下面插进去视频免费观看 | 黑丝袜美女国产一区| 寂寞人妻少妇视频99o| 国产欧美另类精品又又久久亚洲欧美| 午夜老司机福利剧场| 精品亚洲乱码少妇综合久久| 大香蕉久久网| 免费人妻精品一区二区三区视频| 激情五月婷婷亚洲| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 国产黄色免费在线视频| 亚洲欧洲精品一区二区精品久久久 | 国产色爽女视频免费观看| 免费高清在线观看日韩| 成人国产av品久久久| 卡戴珊不雅视频在线播放| 人妻 亚洲 视频| 亚洲国产av影院在线观看| 在线观看www视频免费| 日本黄大片高清| 男男h啪啪无遮挡| 尾随美女入室| 亚洲精品国产色婷婷电影| 免费黄频网站在线观看国产| 精品国产一区二区久久| 香蕉精品网在线| 久久免费观看电影| 国产精品久久久久久精品电影小说| videosex国产| 啦啦啦视频在线资源免费观看| 国产精品人妻久久久久久| 精品一区二区免费观看| 日韩 亚洲 欧美在线| 在线天堂中文资源库| 天天躁夜夜躁狠狠久久av| 日本av免费视频播放| 亚洲天堂av无毛| 一级毛片我不卡| 日韩视频在线欧美| 香蕉国产在线看| 日本av手机在线免费观看| 中文天堂在线官网| 91精品伊人久久大香线蕉| 欧美97在线视频| 国产精品一国产av| 亚洲精品国产av成人精品| 一区二区日韩欧美中文字幕 | 国产精品国产三级国产av玫瑰| 男人爽女人下面视频在线观看| 亚洲,欧美精品.| 99热国产这里只有精品6| 国产亚洲精品久久久com| 热99久久久久精品小说推荐| 国产一区二区在线观看日韩| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 久久这里只有精品19| 男男h啪啪无遮挡| 精品一品国产午夜福利视频| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 日韩欧美一区视频在线观看| 2022亚洲国产成人精品| 久久精品久久精品一区二区三区| 18禁动态无遮挡网站| 99国产综合亚洲精品| 搡女人真爽免费视频火全软件| 热re99久久国产66热| 国产日韩欧美亚洲二区| 一级毛片黄色毛片免费观看视频| 大片电影免费在线观看免费| 99热这里只有是精品在线观看| 女人久久www免费人成看片| 亚洲av.av天堂| 婷婷色综合www| 久久毛片免费看一区二区三区| 蜜臀久久99精品久久宅男| 高清不卡的av网站| 久久久久精品性色| 欧美激情 高清一区二区三区| 久久久国产一区二区| 国产日韩欧美亚洲二区| 成人国产av品久久久| 精品卡一卡二卡四卡免费| 蜜桃在线观看..| 男的添女的下面高潮视频| 天堂中文最新版在线下载| 国产欧美另类精品又又久久亚洲欧美| 久久久久网色| 99国产精品免费福利视频| 久久人人爽人人爽人人片va| 久久久久久久大尺度免费视频| 日本免费在线观看一区| 日本爱情动作片www.在线观看| 亚洲图色成人| 一级片免费观看大全| 在线观看美女被高潮喷水网站| 9热在线视频观看99| 欧美人与善性xxx| 香蕉国产在线看| 亚洲国产最新在线播放| 午夜免费观看性视频| 99热国产这里只有精品6| 99九九在线精品视频| 国产日韩欧美在线精品| 国产极品天堂在线| 人人妻人人添人人爽欧美一区卜| 久久久久国产精品人妻一区二区| 亚洲精品美女久久久久99蜜臀 | 七月丁香在线播放| 男人爽女人下面视频在线观看| 日韩在线高清观看一区二区三区| 免费播放大片免费观看视频在线观看| 美国免费a级毛片| 高清视频免费观看一区二区| 最黄视频免费看| 在线 av 中文字幕| 色5月婷婷丁香| 十分钟在线观看高清视频www| 热re99久久精品国产66热6| 欧美xxⅹ黑人| 一级a做视频免费观看| 欧美丝袜亚洲另类| 亚洲在久久综合| 又大又黄又爽视频免费| 亚洲国产精品成人久久小说| 五月开心婷婷网| 一本色道久久久久久精品综合| 水蜜桃什么品种好| 考比视频在线观看| av片东京热男人的天堂| 女的被弄到高潮叫床怎么办| 制服丝袜香蕉在线| 高清不卡的av网站| 久久狼人影院| 午夜av观看不卡| 日日爽夜夜爽网站| 免费在线观看完整版高清| 极品人妻少妇av视频| a级毛色黄片| 男的添女的下面高潮视频| 午夜福利影视在线免费观看| 亚洲在久久综合| 成人国语在线视频| 国产精品久久久久久久久免| 免费高清在线观看视频在线观看| 亚洲欧美中文字幕日韩二区| 久久人妻熟女aⅴ| 丰满少妇做爰视频| 欧美老熟妇乱子伦牲交| 国产国拍精品亚洲av在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲国产av影院在线观看| 精品99又大又爽又粗少妇毛片| 国产精品一国产av| a级毛色黄片| 22中文网久久字幕| 亚洲国产最新在线播放| 欧美激情 高清一区二区三区| 97在线视频观看| 国产日韩欧美亚洲二区| 最黄视频免费看| 美女视频免费永久观看网站| freevideosex欧美| 又黄又粗又硬又大视频| 免费看光身美女| 伦理电影免费视频| 日韩一区二区视频免费看| 午夜激情久久久久久久| 午夜福利视频在线观看免费| 亚洲美女视频黄频| 久久久久久久大尺度免费视频| 精品人妻偷拍中文字幕| 精品久久久精品久久久| 亚洲,欧美,日韩| 五月玫瑰六月丁香| 午夜影院在线不卡| 免费在线观看黄色视频的| 国产精品国产三级国产专区5o| 亚洲精品自拍成人| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 好男人视频免费观看在线| 伦精品一区二区三区| 一级毛片电影观看| av视频免费观看在线观看| 男女边吃奶边做爰视频| 国产免费又黄又爽又色| 久久久久精品久久久久真实原创| 国产精品一区www在线观看| 人人妻人人澡人人爽人人夜夜| 久久久久精品久久久久真实原创| 少妇 在线观看| 交换朋友夫妻互换小说| 高清欧美精品videossex| 国产免费现黄频在线看| 高清不卡的av网站| 久久鲁丝午夜福利片| 国产av国产精品国产| 在线精品无人区一区二区三| 午夜久久久在线观看| 18禁观看日本| 亚洲精品自拍成人| 国产精品久久久久久精品电影小说| 人人妻人人澡人人爽人人夜夜| 少妇的丰满在线观看| 久久久久久久大尺度免费视频| 亚洲精品视频女| 91精品国产国语对白视频| 免费人成在线观看视频色| 精品久久久久久电影网| 婷婷成人精品国产| 老司机影院毛片| 亚洲av中文av极速乱| 精品少妇内射三级| 人妻 亚洲 视频| 国产男人的电影天堂91| 丝袜喷水一区| 国产麻豆69| 中文字幕制服av| 婷婷色综合大香蕉| 女人被躁到高潮嗷嗷叫费观| 欧美人与性动交α欧美精品济南到 | 免费看av在线观看网站| 欧美精品一区二区大全| 欧美人与性动交α欧美软件 | 最后的刺客免费高清国语| 亚洲成色77777| 日日摸夜夜添夜夜爱| 99re6热这里在线精品视频| 伦理电影免费视频| 久久这里有精品视频免费| 啦啦啦在线观看免费高清www| 久久久久久久亚洲中文字幕| 精品一区二区三区四区五区乱码 | 国产一区有黄有色的免费视频| 亚洲国产av新网站| 久久人人97超碰香蕉20202| 婷婷色综合大香蕉| 妹子高潮喷水视频| 蜜臀久久99精品久久宅男| 免费黄色在线免费观看| 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| 香蕉丝袜av| av国产久精品久网站免费入址| videosex国产| av卡一久久| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| www.av在线官网国产| 综合色丁香网| 在线精品无人区一区二区三| 视频中文字幕在线观看| 人人妻人人爽人人添夜夜欢视频| 成人18禁高潮啪啪吃奶动态图| 国产不卡av网站在线观看| 伦理电影免费视频| 国产成人午夜福利电影在线观看| www.熟女人妻精品国产 | 国产高清国产精品国产三级| 两个人免费观看高清视频| 精品久久国产蜜桃| 久久精品熟女亚洲av麻豆精品| 午夜激情久久久久久久| 青春草视频在线免费观看| 有码 亚洲区| 久久久精品免费免费高清| 国国产精品蜜臀av免费| 午夜免费观看性视频| 国国产精品蜜臀av免费| 考比视频在线观看| 欧美精品av麻豆av| 国产一区二区在线观看日韩| 飞空精品影院首页| 日韩伦理黄色片| 9热在线视频观看99| 22中文网久久字幕| av女优亚洲男人天堂| 纵有疾风起免费观看全集完整版| 国产片特级美女逼逼视频| 亚洲欧美精品自产自拍| 2021少妇久久久久久久久久久| 制服丝袜香蕉在线| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 午夜激情av网站| 男女啪啪激烈高潮av片| 亚洲五月色婷婷综合| av在线观看视频网站免费| 国产69精品久久久久777片| 如日韩欧美国产精品一区二区三区| 97精品久久久久久久久久精品| 最新的欧美精品一区二区| 国产亚洲一区二区精品| 久久99蜜桃精品久久| 黄色 视频免费看| 欧美人与性动交α欧美精品济南到 | 亚洲av福利一区| 精品一品国产午夜福利视频| 欧美另类一区| 国产成人午夜福利电影在线观看| 久久午夜综合久久蜜桃| 欧美+日韩+精品| av卡一久久| 大话2 男鬼变身卡| 亚洲精品成人av观看孕妇| 成人黄色视频免费在线看| 在线亚洲精品国产二区图片欧美| 亚洲欧洲国产日韩| 亚洲国产精品国产精品| 成人国产av品久久久| 香蕉国产在线看| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频| 国产精品久久久av美女十八| 一级a做视频免费观看| 欧美老熟妇乱子伦牲交| 久久99热这里只频精品6学生| 女性生殖器流出的白浆| 亚洲精品国产av成人精品| 人成视频在线观看免费观看| 日韩一区二区三区影片| 日韩中字成人| videos熟女内射| 日韩av免费高清视频| 熟女av电影| 久久韩国三级中文字幕| 中文字幕人妻丝袜制服| 亚洲人与动物交配视频| 国产 一区精品| 高清毛片免费看| 成人黄色视频免费在线看| 各种免费的搞黄视频| 国产色婷婷99| 自拍欧美九色日韩亚洲蝌蚪91| 性色av一级| 伦理电影大哥的女人| 人妻人人澡人人爽人人| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 国产国语露脸激情在线看| 久久久久久久亚洲中文字幕| www.熟女人妻精品国产 | 国产亚洲欧美精品永久| 18禁国产床啪视频网站| 91精品国产国语对白视频| 精品熟女少妇av免费看| 最近的中文字幕免费完整| 免费观看a级毛片全部| 涩涩av久久男人的天堂| √禁漫天堂资源中文www| 91精品三级在线观看| av国产久精品久网站免费入址| 边亲边吃奶的免费视频| 另类精品久久| 极品人妻少妇av视频| 成年动漫av网址| 精品少妇久久久久久888优播| 美女脱内裤让男人舔精品视频| 黄色视频在线播放观看不卡| 亚洲天堂av无毛| 老女人水多毛片| 亚洲欧洲精品一区二区精品久久久 | av免费观看日本| 免费黄频网站在线观看国产| 国产片内射在线| 国产精品.久久久| 国产片特级美女逼逼视频| 中文欧美无线码| 乱码一卡2卡4卡精品| 91久久精品国产一区二区三区| 欧美日本中文国产一区发布| 高清欧美精品videossex|