• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-temperature tribological behaviors of a Cr-Si co-alloyed layer on TA15 alloy

    2017-11-20 12:08:08LuHaifengMiaoQiangLiangWenpingWangFangDingZhengXiaJinjiao
    CHINESE JOURNAL OF AERONAUTICS 2017年2期
    關(guān)鍵詞:異曲同工味道小朋友

    Lu Haifeng,Miao Qiang,Liang Wenping,Wang Fang,Ding Zheng,Xia Jinjiao

    College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    High-temperature tribological behaviors of a Cr-Si co-alloyed layer on TA15 alloy

    Lu Haifeng,Miao Qiang*,Liang Wenping,Wang Fang,Ding Zheng,Xia Jinjiao

    College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    Cr-Si layer;High temperature;TA15 alloy;Tribological behavior;Wear mechanism

    A Cr-Si co-alloyed layer was successfully deposited on TA15 alloy by the double glow plasma surface technology to improve its poor wear resistance at elevated temperature.The microstructure,composition,and phase structure of the layer were investigated by SEM,EDS,and XRD.The tribological behaviors of the Cr-Si co-alloyed layer at 20℃ and 500℃ were analyzed in details.The results indicated that the friction coefficient and wear rate of the Cr-Si coalloyed layer at 20℃ and 500℃ were much lower than those of the substrate,which was due to higher hardness and superior elastic modulus.This layer may become an approach to effectively improving the wear resistance of TA15 alloy at elevated temperature.

    1.Introduction

    TA15 alloy,a type of near-alpha titanium alloy,has been considered as a candidate material to manufacture airplane bulkheads and wallboards,due to its high specific strength,good corrosion resistance and creep resistance.1–3However,a further exploitation of this alloy is somewhat limited by some unsatisfactory characteristics,for example,poor wear resistance at elevated temperature(about 500℃)which is also the application temperature of the aforementioned components.4–6Numerous surface modification technologies have been applied in titanium alloys to improve the shortcomings in recent decades,such as laser cladding,magnetron sputtering,and so on.7–9The double glow plasma surface technology is also one kind of surface modification process for materials,which can form a high-quality layer with high hardness,excellent wear resistance,and strong bonding between a layer and a substrate.10–14

    The double glow plasma surface technology is a novel surface metallurgical technique in recent 30 years,and is also known as Xu-Tec in Western countries.A great deal of theoretical and practical achievements has confirmed that the doubleglow plasmasurfacetechnologyhasmanyunique advantages such as high deposition rate and large glow cover area.In addition,it is worth noting that the presence of hydrogen brittleness can be effectively avoided so as to improve greatly the quality of deposition layers.15–18

    However,very few papers have reported applying a layer on the surface of TA15 alloy as an effective way to improve wear resistance at elevated temperature.It is well known that transition metal silicides(Cr3Si,CrSi,Cr5Si2,etc.)have significant advantages,such as high melting points,high hardness,and excellent high-temperature mechanical properties.19–22Therefore,it is rational to deduce that a silicide layer can improve the poor wear resistance of titanium alloy.Thus,in this paper,a Cr-Si co-alloyed layer was prepared on the surface of TA15 alloy by the double glow plasma surface metallurgical technology in two steps consisting of chromizing and siliconing.Then its high-temperature tribological behavior was investigated in detail.

    2.Experimental

    2.1.Material preparation

    Specimens were cut into flakes with a size of 15 mm×15 mm×4 mm.Before the layer preparation process,all specimens were mechanically polished by a metallographic procedure.After that,the polished samples were ultrasonically cleaned with ethanol,and finally blow-dried.

    The sputtering target of a chromium plate(£100 mm×5 mm)with a purity of 99.9%was prepared by powder metallurgy,while a silicon crystal(£100 mm×5 mm)with a purity of 99.9%by casting,both of which were used as the source electrodes to supply alloying elements.

    2.2.Experimental methods

    An experiment was conducted by using the double glow plasma surface alloying technique,and the parameters are listed in Table 2.The micro-structure,composition distribution,and phase structure of the Cr-Si layer were analyzed by scanning electronic microscopy(SEM),energy dispersive spectroscopy(EDS),and X-ray diffraction(XRD).The microhardness of the layer was examined by a Vickers Indenter with an applied load of 100 g and time for 15 s.A nanoindentation test was carried out on the surface of the Cr-Si co-alloyed layer by a Shimadzu Dynamic Micro-hardness System(DUHW201/W201S,Japan)to measure the nanohardness and elastic modulus with 100 mN for the load and 10 s for the holding time during the test.A scratch test was used to determine the bonding strength between the layer and the substrate measured by a WS-2005 Scratch Tester.The parameters of the test were set as 100 N for the loading force,20 N/min for the loading rate,and 2 mm/min for the sliding speed.

    Table 2 Parameters of double glow plasma.

    Sliding friction and wear tests were carried out to investigate the tribological behaviors of the Cr-Si co-alloyed layer and the substrate by using an HT-500 ball-on-disk friction weartesting machinein airwith relativehumidity of(45±5)%under a dry sliding condition.The tests were conducted at 20℃ and 500℃.During the friction process,the specimens were sliding against a Si3N4ball of 5 mm in diameter and the normal load was 330 g with a turning radius of 2 mm.The sliding speed of the counterpart ball was 840 r/min lasting for 30 min.Variations in the coefficient of friction were recorded during the sliding process.The scar morphologies and chemical composition were examined by SEM and EDS.A super depth-of-field 3D system(Micro XAM,ADE Company)was used to measure the widths and depths of wear tracks.

    3.Results and discussion

    3.1.Microstructures and phases

    Fig.1 shows the microstructure and EDS composition of the Cr-Si layer.From Fig.1(a),it can be seen that the compact and uniform Cr-Si co-alloyed layer was mainly composed of spherical particles of various sizes without obvious holes and cracks.Combined with Fig.1(b),the compositions of the deposited layer were a majority of Si and Cr with 52.23 and 29.45at.%as well as a minimal content of 16.27 at.%Ti.The presence of Ti atoms on the surface of the Cr-Si coalloyed layer was attributed to their outward diffusion from the substrate.

    The presented cross-sectional SEM image and composition distribution of the layer are showed in Fig.2.Fig.2(a)shows that there were three distinct zones from the surface layer(region A)to the substrate(region B),which were all homogenous and well bonded with adjacent zones.Combined with the elemental compositions shown in Fig.2(b),it is clearly concluded that the total depth of the layer is about 40 lm,consisted of a Si deposited layer(Zone I)with 10 lm in thickness,a Si-Cr diffused layer(Zone II)with 16 lm,and a Cr-Ti diffused layer(Zone III)with 14 lm.In addition,it should be mentioned that a distinctive interface was observed between the substrate and the Cr layer.The EDS result reflects that the main elements were Ti and Cr,which is shown in Fig.2(c).Therefore,we could deduce that the element Cr diffused inwardly,while the element Ti diffused outwardly in the preparation of the Cr-Si co-alloyed layer.With the extension of deposition time,Cr and Ti elements combined together and formed a Cr-Ti intermetallic compound transition layer,which could improve the hardness and enhance the bonding strength between the substrate and the layer.

    Table 1 Chemical composition of TA15 alloy.

    Fig.3 shows the XRD pattern of the Cr-Si layer.In the outer layer,intermetallic compounds Cr5Si3,Cr3Si,and TiSi2are identified.The XRD result represents that the Cr-Si co-alloyed layer deposited on the surface of TA15 alloy is a mixture of crystalline phases,which corresponds to the EDS analysis.

    本文在寫法上跟《童年的味道》有異曲同工之妙,小朋友們可以自行比較、學(xué)習(xí)。小朋友們還可以想一想:小作者的童年跟她爸爸的童年有什么不一樣?

    Fig.1 Surface microstructure and EDS results of the Cr-Si layer.

    Fig.2 Cross-sectional SEM morphology and EDS results.

    Fig.3 XRD pattern of the Cr-Si layer.

    3.2.Mechanical behaviors

    The distribution profile of micro-hardness is illustrated in Fig.4.It can be seen that Zone I possessed the maximum hardness of approximately 1020 HV0.1.The relatively higher hardness of the layer compared to the original hardness of TA15 alloy(400 HV0.1)may be attributed to the deposited Si and mixed intermetallic compounds.With the depth increasing,hardness decreases gradually in Zone II and rapidly in Zone III,which correspond to the EDS results mentioned above.Therefore,the difference between separate zones is dominated by the variation ofmicrostructure and concentration distribution.

    Fig.4 Micro-hardness along the cross-sectional surface of the Cr-Si layer.

    Fig.5(a)is the indentation force-depth curve of the substrate and the Cr-Si co-alloyed layer.This test method must ensure that the depth of indentation is much smaller than the thickness of the layer in order to reflect the actual hardness.As is known to all,the smaller an indentation depth is,the harder a layer is.It can be seen from the curve that a smaller indentation depth appears in the Cr-Si layer which indicates a higher hardness of the outmost Si deposited layer.The Cr-Si layer has a smaller indentation depth(0.35 mm)than that of the substrate(0.90 mm)due to the high hardness of the Si deposited layer.Bolshakov et al.have reported that the ratio of the final indentation depth to the depth at peak load,hf/hm,is a useful indicator of pile-up or sink-in deformation characteristics around the indenter.23The pile-up behavior at the indentation is the most important plastic phenomenon,and the pile-up is high ifhf/hmequals 1,and very low ifhf/hmis less than 0.7.As can be seen,thehf/hmvalue of the Cr-Si co-alloyed layer is less than 0.7 while that of the Cr layer is close to 1.0.Therefore,as the indentation continues,plastic deformation barely occurs on the surface of the Cr-Si co-alloyed layer.

    The nanoindentation hardness and elastic modulus of the Cr-Si co-alloyed layer and the substrate are shown in Fig.5(b).It can be seen that the hardness(H)and elastic modulus(E)of the Cr-Si co-alloyed layer reach 16,306 MPa and 519 GPa,respectively,much higher than those of TA15 alloy(3750 MPa and 216 GPa).The results are consistent with the above analysis.Besides,HigherH/EandH3/E2ratios mean greater resistance to plastic deformation and crack propagation under different loads.The ratios ofH/EandH3/E2of the Cr-Si co-alloyed layer are 0.031 and 16.1 MPa,respectively,while those of the TA15 alloy are 0.017 and 1.1 MPa,respectively.The results mean that the Cr-Si co-alloyed layer has a better wear resistance than that of the substrate.

    The bonding between the Cr-Si co-alloyed layer and the substrate was measured by a scratch test detector,as shown in Fig.6.WhenLc(the critical load)=52 N,a strong acoustic emission signal peak appears suddenly when the load reaches 52 N,reflecting that the layer begins to fracture and the load is so-called critical load.When the load exceeds 60 N,strong acoustic emission signal peaks appear continuously.In this process,the Cr-Si co-alloyed layer fractures completely and is worn out by diamond,producing deep furrows.The results show that the bonding strength between the Cr-Si co-alloyed layer and the substrate is about 52 N,reflecting the ideal metallurgical combination.24Fig.6(b)shows the integral scratch image.It can be seen from the morphology that the Cr-Si co-alloyed layer is slowly worn out and the scratch becomes wider and wider gradually,producing silvery furrows.Fig.6(c)shows the scratch image of the 40–60 N stage,and it can be seen that the furrows are very wide and deep.At the end of the scratch test,the peeling phenomenon has not taken place.The strong bonding strength provides a guarantee of good wear resistance.

    Fig.5 Indentation force-depth curve and elastic modulus of TA15 and the Cr-Si layer.

    Fig.6 Scratch morphology of the Cr-Si layer.

    3.3.Tribological behavior

    3.3.1.Friction coefficient profiles

    3.3.2.Friction mechanisms

    Fig.7 Friction coefficient profiles of TA15 and the Cr-Si layer at different temperatures.

    Fig.8 Wear morphology and EDS pro files of the wear tracks at

    Fig.9 shows the wear morphology and EDS results of the wear track developed at 500℃.It can be seen from the morphology in Fig.9(a)that there are plenty of wear debris and broad furrows on the surface of the substrate.The phenomenon reflects that abrasion wear has taken place.In comparison,it can be seen from Fig.9(c)that many scratches and a small amount of particles are observed on the wear scratch.The high hardness and strong bonding force make it difficult for the Cr-Si co-alloyed layer to deform and be peeled off the substrate.In addition,one general characteristic of metal silicides is superior hardness stability regardless of application temperature like intermetallic compounds. Therefore,although the friction process generates a lot of friction heat,softening would never happen,which provides protection for the substrate from wearing.29In Fig.9(b),it can be seen that the grinding crack of the substrate contains O and Ti,and oxidation wear has taken place seriously.In contrast,the layer mainly contains O,Si,Cr,and Ti,as shown in Fig.9(d).The existence of Ti shows that the layer has been worn through at high temperature.The results show that the main wear mechanisms of the substrate and the Cr-Si co-alloyed layer at 500℃ are both abrasion and oxidation wear.30–32Compared to the substrate,the wear of the layer is mild.In conclusion,the Cr-Si co-alloyed layer has good anti-wear and antifriction performances when it is exposed at elevated wear environments.

    Fig.9 Wear morphology and EDS pro files of the wear tracks a

    Fig.11 shows the worn surface of the Si3N4ball.Fig.11(a)is the SEM morphology of the ball when it slides against the substrate in different magnifications.It can be seen that lots of tiny particles are dispersed unevenly among the friction surface of the Si3N4ball with a few circle-like defects.The hackly and rough friction surface is mainly caused by the lack of oxides peeled off during the wear process.As shown in Fig.11(b),the worn surface of the counterpart is smooth after it slides against the Cr-Si layer.Because metal silicides have unique atomic bonding,consisting of covalent bond and metallic bond,the layer has high strength to resist plowing and scratching of the Si3N4ball.The much higher hardness of the layer degrades the plastic deformation so that a very small contact area could be maintained during the sliding process.

    Fig.10 XRD patterns of the wear tracks of TA15 and the Cr-Si co-alloyed layer at

    3.3.3.Friction and wear performance

    To measure the friction and wear performances,the wear volume can be calculated as follows33:

    whereVis the wear volume,mm3;bis the width of the wear track,mm;his the depth of the wear track,mm;ris the radium of the grinding ball,mm.

    The wear rate is a true measure of wear resistance performance,which can be calculated as below34:

    Fig.11 SEM morphology of the worn surfaces of Si3N4.

    Fig.12 SEM image and 3D surface pro filometry of the wear tracks at

    Fig.13 SEM image and 3D surface pro filometry of the wear tracks at

    Table 3 Wear results of the Cr-Si layer and the substrate at

    Table 3 Wear results of the Cr-Si layer and the substrate at

    Sample Width b/mm Depth h/lm Volume loss V/mm3 Specific wear rate K/(10×5×mm3×N?1?m?1) Weight loss m/mg 20℃ Substrate 1.4 20 0.293 28.72 3.49 Cr-Si 0.7 12 0.088 21.21 0.79 500℃ Substrate 1.2 30 0.377 95.17 6.22 Cr-Si 0.8 14 0.117 28.29 0.91

    4.Conclusions

    (1)A Cr-Si co-alloyed layer was prepared on TA15 alloy by using the double glow plasma surface alloying technique.The layer is homogeneous and dense,and the total thickness is 40 lm.The layer system was composed of a Si deposited layer with 10 lm in thickness,a Si-Cr diffused layer with 16 lm,and a Cr-Ti diffused layer with 14 lm.

    (2)The surface hardness of the layer reached 1020 HV0.1,which was much higher than that of the substrate.With the depth increasing,hardness decreased in gradient.In addition,the layer had a higher value of elastic modulus.The bonding strength between the layer and the substrate was about 52 N,representing the ideal metallurgical combination.

    (3)The results of wear tests indicated that the friction coefficient of the Cr-Si co-alloyed layer was lower than that of the substrate at different temperatures.In addition,the wear amount and wear ratio of the substrate were much larger than those of the layer.At room temperature,the major wear mechanisms of the Cr-Si co-alloyed layer are oxidation and delamination wear,while abrasion and adhesion wear for the substrate.At high temperature,the main wear mechanisms of the substrate and the layer are both abrasion and oxidation wear.

    (4)The metal silicides with high hardness and strong bonding force between atoms protect the layer from deforming during a wear process.Therefore,the Cr-Si coalloyed layershowsexcellentanti-wearand antifriction performances.

    Acknowledgements

    This project was supported by the National Natural Science Foundation of China(No.51474131)and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j.cja.2016.10.020.

    1.Liu P,Zhao B,Zhang Y,Li Y.Research on microstructures and performance of Ni60-TiC-Mo composite coating on TA15 titanium alloy.Mater Technol2012;27(5):393–6.

    2.Baran O¨,Bidev F,C?ic?ek H,Kara L,Efeog?lu_I,Ku¨c?u¨ko¨merog?lu T.Investigation of the friction and wear properties of Ti/TiB2/MoS2graded-composite coatings deposited by CFUBMS under air and vacuum conditions.Surf Coat Technol2014;260:310–5.

    3.Lu D,Liu S,Zhang X,Zhang W.Effect of Y2O3on microstructural characteristics and wear resistance of cobalt-based composite coatings produced on TA15 titanium alloy surface by laser cladding.Surf Interf Anal2015;47(2):239–44.

    4.Zhang X,Zou J,Weber S,Hao S,Dong C,Grosdidier T.Microstructure and property modifications in a near a Ti alloy induced by pulsed electron beam surface treatment.Surf Coat Technol2011;206(2):295–304.

    5.Wu X.Review of alloy and process development of TiAl alloys.Intermetallics2006;14(10):1114–22.

    6.Rastkar AR,Parseh P,Darvishnia N,Hadavi SMM.Microstructural evolution and hardness of TiAl3and TiAl2phases on Ti-45Al-2Nb-2Mn-1B by plasma pack aluminizing.Appl Surf Sci2013;276:112–9.

    7.Qiu ZK,Zhang PZ,Wei DB,Duan BZ,Zhou P.Tribological behavior of CrCoNiAlTiY coating synthesized by double-glow plasma surface alloying technique.Tribol Int2015;92:512–8.

    8.Liu X-B,Wang H-M.Modification of tribology and hightemperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding.Appl Surf Sci2006;252(16):5735–44.

    9.Xu Y,Miao Q,Liang W,Yu X,Jiang Q,Zhang Z,et al.Tribological behavior of Al2O3/Al composite coating on c-TiAl at elevated temperature.Mater Charact2015;101:122–9.

    10.Ren B,Miao Q,Liang W,Yao Z,Zhang P.Characteristics of Mo–Cr duplex-alloyed layer on Ti6Al4V by double glow plasma surface metallurgy.Surf Coat Technol2013;228:S206–9.

    11.Xing Y,Deng J,Tan Y,Zhou H.Effect of surface textures on friction properties of Al2O3/TiC ceramics.Surf Eng2012;28(8):605–11.

    12.Cong X,Chen Z,Wu W,Xu J,Boafo FE.A novel Ir–Zr gradient coating prepared on Mo substrate by double glow plasma.Appl Surf Sci2012;258(12):5135–40.

    13.Liu H,Tao J,Xu J,Chen Z,Gao Q.Corrosion and tribological behaviors of chromium oxide coatings prepared by the glowdischarge plasma technique.Surf Coat Technol2009;204(1):28–36.

    14.Xing Y,Deng J,Wu Z,Cheng H.Effect of regular surface textures generated by laser on tribological behavior of Si3N4/TiC ceramic.Appl Surf Sci2013;265:823–32.

    15.Zhong X.Development of plasma surface metallurgy technology.Eng Sci2002;2:36–41.

    16.Liang WP,Miao Q,Ben NJ,Ren BL.Tribological behaviors of Ti-6Al-4V alloy with surface plasma molybdenized layer.Surf Coat Technol2013;228:S249–53.

    17.Wu W,Chen Z,Cheng H,Wang L,Zhang Y.Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite.Appl Surf Sci2011;257(16):7295–304.

    18.Wu W,Chen Z,Lin X,Li B,Cong X.Effects of bias voltage and gas pressure on orientation and microstructure of iridium coating by double glow plasma.Vacuum2011;86(4):429–37.

    19.Kiryukhantsev-Korneev PV,Pierson J-F,Kuptsov K,Shtansky D.Hard Cr-Al-Si-B-(N)coatings deposited by reactive and nonreactive magnetron sputtering of CrAlSiB target.Appl Surf Sci2014;314:104–11.

    20.Zairi A,Nouveau C,Larbi ABC,Iost A,Martin N,Besnard A.Effect of RGPP process on properties of Cr-Si-N coatings.Surf Eng2014;30(8):606–11.

    21.Jia L,Weng J,Li Z,Hong Z,Su L,Zhang H.Room temperature mechanical properties and high temperature oxidation resistance of a high Cr containing Nb–Si based alloy.Mater Sci Eng:A2015;623:32–7.

    22.Zhang Y-L,Li H-J,Wang P-Y,Li K-Z,Zeng X-R.Si-Mo-Cr coating for C/SiC coated carbon/carbon composites against oxidation.Surf Eng2013.

    23.Bolshakov A,Pharr G.Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques.J Mater Res1998;13(04):1049–58.

    24.Valli J.A review of adhesion test methods for thin hard coatings.J Vac Sci Technol A1986;4(6):3007–14.

    25.Cheng J,Yu Y,Fu L,Li F,Qiao Z,Li J,et al.Effect of TiB2on dry-sliding tribological properties of TiAl intermetallics.Tribol Int2013;62:91–9.

    26.Musil J,Kunc F,Zeman H,Polakova H.Relationships between hardness,Young’s modulus and elastic recovery in hard nanocomposite coatings.Surf Coat Technol2002;154(2):304–13.

    27.Prem Ananth M,Ramesh R.Tribological improvement of titanium alloy surfaces through texturing and TiAlN coating.Surf Eng2014;30(10):758–62.

    28.Mahdavi S,Allahkaram S.Composition,characteristics and tribological behavior of Cr,Co-Cr and Co-Cr/TiO2nano-composite coatings electrodeposited from trivalent chromium based baths.J Alloy Compd2015;635:150–7.

    29.Liu B,Deng B,Tao Y.Influence of niobium ion implantation on the microstructure,mechanical and tribological properties of TiAlN/CrN nano-multilayer coatings.SurfCoatTechnol2014;240:405–12.

    30.Singh V,Sil A,Jayaganthan R.Tribological behaviour of nanostructured Al2O3coatings.Surf Eng2012;28(4):277–84.

    31.Lomello F,Yazdi MAP,Sanchette F,Schuster F,Tabarant M,Billard A.Temperature dependence of the residual stresses and mechanical properties in TiN/CrN nanolayered coatings processed by cathodic arc deposition.Surf Coat Technol2014;238:216–22.

    32.Zhang H,Qin LG,Hua M,Dong GN,Chin K-S.A tribological study of the petaloid surface texturing for Co-Cr-Mo alloy artificial joints.Appl Surf Sci2015;332:557–64.

    33.Broszeit E,Matthes B,Herr W,Kloos K.Tribological properties of rf sputtered Ti-BN coatings under various pin-on-disc wear test conditions.Surf Coat Technol1993;58(1):29–35.

    34.Zhang Z,Miao Q,Liang W,Yu X,Xu Y,Ren B.High temperature tribological behaviour of Al/Al2O3composite coating on c-TiAl.Surf Eng2014;30(11):828–35.

    3 March 2016;revised 30 May 2016;accepted 4 July 2016

    Available online 21 December 2016

    *Corresponding author.

    E-mail address:miaoqiang@nuaa.edu.cn(Q.Miao).

    Peer review under responsibility of Editorial Committee of CJA.

    猜你喜歡
    異曲同工味道小朋友
    Promoting the International Dissemination of Chinese Culture Through International Chinese Language Education: A Case Study of Chinese-English Idiomatic Equivalence
    中秋的味道
    嶺南音樂(2022年4期)2022-09-15 14:03:12
    《異曲同工》新傳
    快樂的味道
    電學(xué)“搭臺(tái)” 力學(xué)“唱戲”——兩道異曲同工的力、電問題進(jìn)階式分析
    “半條被子”與“三張收據(jù)”的異曲同工之美
    夏天的味道
    小朋友們都哭了
    找茬兒
    海邊玩一夏
    孩子(2016年7期)2016-07-11 19:26:40
    成人亚洲精品av一区二区| 毛片一级片免费看久久久久| av女优亚洲男人天堂| 亚洲欧美精品综合久久99| 成人性生交大片免费视频hd| 中文字幕免费在线视频6| 亚洲人成网站在线观看播放| 欧美区成人在线视频| 黄色日韩在线| 亚洲av中文av极速乱| 免费观看在线日韩| 亚洲av熟女| 麻豆成人午夜福利视频| 日韩视频在线欧美| 亚洲成色77777| 日本与韩国留学比较| 国产成人精品婷婷| 美女内射精品一级片tv| 久久久国产成人精品二区| 国产在视频线在精品| 国产精品乱码一区二三区的特点| 亚洲欧美日韩无卡精品| 中国国产av一级| 国产精品嫩草影院av在线观看| 晚上一个人看的免费电影| 国产日韩欧美在线精品| 国产毛片a区久久久久| 亚洲激情五月婷婷啪啪| 精品久久国产蜜桃| 亚洲欧美一区二区三区国产| 国产色爽女视频免费观看| 欧美人与善性xxx| 国产高潮美女av| 看非洲黑人一级黄片| 欧美性猛交╳xxx乱大交人| 欧美zozozo另类| 青春草国产在线视频| 日本爱情动作片www.在线观看| 免费黄网站久久成人精品| 国产欧美日韩精品一区二区| 欧美精品一区二区大全| 日本猛色少妇xxxxx猛交久久| 亚洲国产最新在线播放| 国产大屁股一区二区在线视频| 精品国产露脸久久av麻豆 | 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品sss在线观看| 成人特级av手机在线观看| 国产精品嫩草影院av在线观看| 国产在视频线在精品| 网址你懂的国产日韩在线| 亚洲成人中文字幕在线播放| 午夜福利成人在线免费观看| 99久久九九国产精品国产免费| 国产真实伦视频高清在线观看| 欧美性猛交黑人性爽| 国产淫片久久久久久久久| 老师上课跳d突然被开到最大视频| 大香蕉久久网| 精品一区二区免费观看| 欧美成人一区二区免费高清观看| 国产大屁股一区二区在线视频| 亚洲av二区三区四区| 日韩中字成人| 男女那种视频在线观看| 永久网站在线| 色综合站精品国产| 国产伦理片在线播放av一区| 欧美日本亚洲视频在线播放| 校园人妻丝袜中文字幕| 精品久久久久久成人av| 国产老妇女一区| 亚洲伊人久久精品综合 | 97超碰精品成人国产| 男人舔奶头视频| 久久精品影院6| 亚洲欧美日韩高清专用| 国产午夜精品一二区理论片| 欧美又色又爽又黄视频| 搡老妇女老女人老熟妇| 国产久久久一区二区三区| 精品酒店卫生间| 黄片wwwwww| 狠狠狠狠99中文字幕| 成人二区视频| 波野结衣二区三区在线| 在线免费观看的www视频| 一级毛片我不卡| 国产综合懂色| 欧美三级亚洲精品| 久久久久久国产a免费观看| 久久久久精品久久久久真实原创| 免费av毛片视频| 99国产精品一区二区蜜桃av| 精品人妻一区二区三区麻豆| 三级国产精品欧美在线观看| 男女国产视频网站| 久热久热在线精品观看| 波野结衣二区三区在线| 在线免费观看的www视频| 午夜福利视频1000在线观看| 美女被艹到高潮喷水动态| 国产免费一级a男人的天堂| 又粗又硬又长又爽又黄的视频| 精品国内亚洲2022精品成人| 日韩av在线免费看完整版不卡| 久久久久久久午夜电影| 91精品国产九色| 国内精品一区二区在线观看| 国产精品一及| 亚洲综合精品二区| 国产淫语在线视频| 久久精品人妻少妇| 一级毛片久久久久久久久女| 国产91av在线免费观看| 亚洲经典国产精华液单| av免费在线看不卡| 日本欧美国产在线视频| 久久这里有精品视频免费| 两个人的视频大全免费| 欧美性猛交黑人性爽| 欧美不卡视频在线免费观看| 男人舔女人下体高潮全视频| 男插女下体视频免费在线播放| 国产综合懂色| 日本免费一区二区三区高清不卡| 淫秽高清视频在线观看| 99热这里只有是精品在线观看| 日韩视频在线欧美| 国产极品天堂在线| 免费看美女性在线毛片视频| 男人狂女人下面高潮的视频| .国产精品久久| 男女下面进入的视频免费午夜| 一区二区三区四区激情视频| 观看免费一级毛片| 国产乱人视频| 91久久精品国产一区二区三区| 乱系列少妇在线播放| 成人欧美大片| 2021天堂中文幕一二区在线观| 综合色av麻豆| 色视频www国产| 国产伦在线观看视频一区| av播播在线观看一区| 超碰av人人做人人爽久久| 国产乱来视频区| 久久久久免费精品人妻一区二区| eeuss影院久久| 91在线精品国自产拍蜜月| 成人二区视频| av福利片在线观看| 精品午夜福利在线看| 99久国产av精品国产电影| 国产成人精品一,二区| 欧美日韩一区二区视频在线观看视频在线 | 男女下面进入的视频免费午夜| 美女xxoo啪啪120秒动态图| 亚洲一区高清亚洲精品| www.av在线官网国产| 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| 国产精品三级大全| 久久99热6这里只有精品| 亚洲无线观看免费| 免费看美女性在线毛片视频| 18禁在线无遮挡免费观看视频| 久久久久久久国产电影| 日本黄大片高清| 久久精品综合一区二区三区| 精品酒店卫生间| 日韩欧美三级三区| 一级av片app| 免费av不卡在线播放| 日韩三级伦理在线观看| 国产单亲对白刺激| 永久网站在线| av在线天堂中文字幕| 中文字幕亚洲精品专区| 一区二区三区高清视频在线| 91在线精品国自产拍蜜月| 色尼玛亚洲综合影院| 两个人的视频大全免费| 日韩av在线大香蕉| 赤兔流量卡办理| 少妇人妻一区二区三区视频| 欧美成人一区二区免费高清观看| 尾随美女入室| 国产成年人精品一区二区| 熟女人妻精品中文字幕| 国产精品一区二区在线观看99 | 麻豆国产97在线/欧美| 色视频www国产| 国产精品一区二区在线观看99 | 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| 久久久久久九九精品二区国产| 校园人妻丝袜中文字幕| 日韩欧美国产在线观看| 久久99精品国语久久久| 禁无遮挡网站| 不卡视频在线观看欧美| 爱豆传媒免费全集在线观看| 99久国产av精品| 亚洲电影在线观看av| 丰满乱子伦码专区| 国产在视频线在精品| 日韩av不卡免费在线播放| 久久综合国产亚洲精品| 乱系列少妇在线播放| 国产又黄又爽又无遮挡在线| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 水蜜桃什么品种好| 国产白丝娇喘喷水9色精品| 亚洲国产欧洲综合997久久,| 欧美3d第一页| 亚洲av日韩在线播放| 青青草视频在线视频观看| 99久久成人亚洲精品观看| 久久久久久九九精品二区国产| 国产高清有码在线观看视频| 国产一区有黄有色的免费视频 | 亚洲aⅴ乱码一区二区在线播放| 老女人水多毛片| 亚洲精品日韩在线中文字幕| 日韩高清综合在线| 伊人久久精品亚洲午夜| 亚洲欧洲日产国产| 亚洲天堂国产精品一区在线| 亚洲国产精品sss在线观看| 日韩高清综合在线| 国产成人freesex在线| 五月玫瑰六月丁香| 成年免费大片在线观看| 一级黄色大片毛片| 久久久久久大精品| 九九爱精品视频在线观看| 天天躁夜夜躁狠狠久久av| 精品免费久久久久久久清纯| 国产日韩欧美在线精品| 少妇人妻一区二区三区视频| 在现免费观看毛片| 中国美白少妇内射xxxbb| 国产精品久久久久久精品电影| 国产精品嫩草影院av在线观看| 不卡视频在线观看欧美| 噜噜噜噜噜久久久久久91| 中文字幕亚洲精品专区| 日本黄色视频三级网站网址| 丝袜美腿在线中文| 中文资源天堂在线| 美女黄网站色视频| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 久久精品国产自在天天线| 久久久久网色| 少妇高潮的动态图| 久久99热这里只有精品18| 狠狠狠狠99中文字幕| 精品久久久噜噜| 成人亚洲欧美一区二区av| 亚洲18禁久久av| 国产精品一二三区在线看| 久久精品91蜜桃| 欧美一区二区亚洲| 联通29元200g的流量卡| 九九久久精品国产亚洲av麻豆| 国产片特级美女逼逼视频| 成人高潮视频无遮挡免费网站| 国产精品一区二区三区四区久久| 欧美成人午夜免费资源| 亚洲乱码一区二区免费版| 日本一二三区视频观看| www.av在线官网国产| 国产av不卡久久| 一卡2卡三卡四卡精品乱码亚洲| 日本-黄色视频高清免费观看| 在线观看美女被高潮喷水网站| 国产免费又黄又爽又色| 国产精品久久久久久精品电影| 日韩一区二区三区影片| 男女啪啪激烈高潮av片| 国内精品宾馆在线| 国产熟女欧美一区二区| 国产成人a∨麻豆精品| 中文字幕av在线有码专区| 欧美日韩精品成人综合77777| 国产淫片久久久久久久久| 国语自产精品视频在线第100页| 99热6这里只有精品| 网址你懂的国产日韩在线| 舔av片在线| 尤物成人国产欧美一区二区三区| 国产乱人视频| 国产精品精品国产色婷婷| 国产69精品久久久久777片| 久久久久久久久久成人| 男人舔女人下体高潮全视频| 午夜老司机福利剧场| 日日摸夜夜添夜夜添av毛片| 中文精品一卡2卡3卡4更新| 久热久热在线精品观看| 亚洲精品久久久久久婷婷小说 | 色5月婷婷丁香| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 汤姆久久久久久久影院中文字幕 | 少妇人妻精品综合一区二区| 永久网站在线| 国产精品一及| 日韩亚洲欧美综合| 免费无遮挡裸体视频| 舔av片在线| 成人一区二区视频在线观看| 亚洲自偷自拍三级| 中文在线观看免费www的网站| 欧美日韩在线观看h| 精品一区二区三区视频在线| 伦理电影大哥的女人| 激情 狠狠 欧美| 久久久精品大字幕| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 国产精品无大码| 日韩 亚洲 欧美在线| 大话2 男鬼变身卡| 亚洲四区av| 精品酒店卫生间| 欧美一区二区亚洲| 免费av观看视频| 国产国拍精品亚洲av在线观看| 中文字幕亚洲精品专区| 精品人妻偷拍中文字幕| www日本黄色视频网| 水蜜桃什么品种好| 国产毛片a区久久久久| 国产亚洲午夜精品一区二区久久 | 校园人妻丝袜中文字幕| 91精品一卡2卡3卡4卡| 国产成人精品婷婷| 色尼玛亚洲综合影院| av免费观看日本| 国产乱来视频区| 国产免费一级a男人的天堂| 最后的刺客免费高清国语| 精品人妻视频免费看| 久久久国产成人免费| 国产高清不卡午夜福利| 男女视频在线观看网站免费| www.av在线官网国产| 午夜亚洲福利在线播放| 内射极品少妇av片p| 日韩强制内射视频| 免费一级毛片在线播放高清视频| 少妇丰满av| 国产精品蜜桃在线观看| 2021天堂中文幕一二区在线观| 国产片特级美女逼逼视频| 日本-黄色视频高清免费观看| 精品久久久久久久末码| 国产精品一区二区三区四区免费观看| 亚洲av熟女| 熟妇人妻久久中文字幕3abv| 国产亚洲最大av| 99热这里只有是精品50| 精品午夜福利在线看| 国产在视频线在精品| 日韩制服骚丝袜av| av线在线观看网站| 精品久久久久久电影网 | 国产精品一及| 观看免费一级毛片| 最近最新中文字幕免费大全7| 99久久人妻综合| 在线观看一区二区三区| 国产v大片淫在线免费观看| 村上凉子中文字幕在线| 精品人妻熟女av久视频| 国产熟女欧美一区二区| 国产亚洲av嫩草精品影院| .国产精品久久| 少妇猛男粗大的猛烈进出视频 | 精品人妻一区二区三区麻豆| 免费电影在线观看免费观看| 国产乱人偷精品视频| 在线观看一区二区三区| 极品教师在线视频| 日日啪夜夜撸| 最近的中文字幕免费完整| 日韩一本色道免费dvd| 一本一本综合久久| 国产精品综合久久久久久久免费| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 99久久精品国产国产毛片| 熟女电影av网| 最后的刺客免费高清国语| 成人亚洲欧美一区二区av| 国产免费视频播放在线视频 | 国产真实伦视频高清在线观看| 秋霞在线观看毛片| 日韩人妻高清精品专区| 久久久国产成人免费| 亚洲第一区二区三区不卡| 国产精华一区二区三区| 我的老师免费观看完整版| 免费观看的影片在线观看| 美女脱内裤让男人舔精品视频| av国产久精品久网站免费入址| 夫妻性生交免费视频一级片| 午夜福利视频1000在线观看| 国内精品美女久久久久久| 1024手机看黄色片| 精品一区二区三区人妻视频| 国产精品美女特级片免费视频播放器| 蜜臀久久99精品久久宅男| 免费黄色在线免费观看| 深夜a级毛片| 亚洲精品456在线播放app| eeuss影院久久| 中文字幕制服av| 日本午夜av视频| 亚洲欧美精品综合久久99| 亚洲欧美清纯卡通| 在线观看66精品国产| 韩国av在线不卡| 日韩人妻高清精品专区| 欧美3d第一页| 久久精品国产自在天天线| 国产91av在线免费观看| 亚洲国产精品专区欧美| 秋霞在线观看毛片| www日本黄色视频网| 欧美极品一区二区三区四区| 99热网站在线观看| 乱码一卡2卡4卡精品| 亚洲一级一片aⅴ在线观看| 黄色欧美视频在线观看| 黑人高潮一二区| 大又大粗又爽又黄少妇毛片口| 成年女人永久免费观看视频| 国产精品不卡视频一区二区| 搡老妇女老女人老熟妇| 国内精品一区二区在线观看| 亚洲精品影视一区二区三区av| 三级男女做爰猛烈吃奶摸视频| 免费观看的影片在线观看| av在线蜜桃| 成人性生交大片免费视频hd| 日本五十路高清| 亚洲精品456在线播放app| 免费看光身美女| 久久精品久久精品一区二区三区| 免费av不卡在线播放| 99久久精品国产国产毛片| 午夜福利网站1000一区二区三区| 亚洲自偷自拍三级| 中文字幕制服av| 亚洲怡红院男人天堂| 观看免费一级毛片| 亚洲伊人久久精品综合 | 26uuu在线亚洲综合色| 成人av在线播放网站| 国产精品综合久久久久久久免费| 午夜激情福利司机影院| 免费看a级黄色片| 日本黄色片子视频| 午夜激情欧美在线| av在线蜜桃| 国产中年淑女户外野战色| 久久久久久九九精品二区国产| 能在线免费看毛片的网站| 天堂中文最新版在线下载 | 长腿黑丝高跟| 成人欧美大片| 99九九线精品视频在线观看视频| 免费无遮挡裸体视频| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美精品自产自拍| 热99re8久久精品国产| 只有这里有精品99| 欧美高清性xxxxhd video| 九九久久精品国产亚洲av麻豆| 日韩欧美国产在线观看| 亚洲欧洲日产国产| 特级一级黄色大片| 插阴视频在线观看视频| 亚洲第一区二区三区不卡| 国产黄色视频一区二区在线观看 | 欧美高清性xxxxhd video| 久久99热这里只有精品18| 国产免费又黄又爽又色| 变态另类丝袜制服| 亚洲性久久影院| 国产成人a∨麻豆精品| 日本-黄色视频高清免费观看| 免费黄色在线免费观看| 91av网一区二区| 国产久久久一区二区三区| 精品久久久噜噜| 国产一区二区亚洲精品在线观看| 日韩国内少妇激情av| 国产高清有码在线观看视频| 欧美区成人在线视频| 国产精品久久久久久精品电影小说 | 亚洲国产欧美在线一区| 亚洲人成网站在线观看播放| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看 | 国产一区二区在线观看日韩| 国产一区有黄有色的免费视频 | 综合色丁香网| 在线观看66精品国产| 国产成人aa在线观看| 少妇人妻一区二区三区视频| 精品人妻一区二区三区麻豆| 成年女人永久免费观看视频| 大香蕉久久网| 在现免费观看毛片| 亚洲欧美精品专区久久| 亚洲国产精品久久男人天堂| 高清av免费在线| 久久精品国产亚洲av涩爱| 亚洲精品国产av成人精品| 午夜福利高清视频| 如何舔出高潮| 五月玫瑰六月丁香| 国产午夜精品论理片| 欧美成人一区二区免费高清观看| 成人毛片60女人毛片免费| 久久99热6这里只有精品| 亚洲怡红院男人天堂| 精品国内亚洲2022精品成人| 日韩成人av中文字幕在线观看| 高清午夜精品一区二区三区| 午夜激情欧美在线| 26uuu在线亚洲综合色| 天堂网av新在线| 偷拍熟女少妇极品色| 夫妻性生交免费视频一级片| 最近2019中文字幕mv第一页| 亚洲欧美成人综合另类久久久 | 日韩强制内射视频| 女人久久www免费人成看片 | 亚洲欧美精品专区久久| 日韩欧美国产在线观看| 青春草亚洲视频在线观看| 波野结衣二区三区在线| 国产中年淑女户外野战色| 久久精品国产自在天天线| 成人一区二区视频在线观看| 日本爱情动作片www.在线观看| 精品熟女少妇av免费看| 美女高潮的动态| 国产精品一及| 在线播放无遮挡| 成人无遮挡网站| 熟女电影av网| 韩国高清视频一区二区三区| 乱系列少妇在线播放| 久久99精品国语久久久| 国产在线一区二区三区精 | 亚洲图色成人| 免费av毛片视频| 欧美潮喷喷水| 毛片一级片免费看久久久久| 午夜福利高清视频| 99久久人妻综合| 男女国产视频网站| 最近中文字幕2019免费版| 午夜激情福利司机影院| 搡女人真爽免费视频火全软件| 国产欧美日韩精品一区二区| av视频在线观看入口| 永久网站在线| 欧美成人精品欧美一级黄| 黑人高潮一二区| 国产精品乱码一区二三区的特点| 老司机影院成人| 日韩中字成人| 亚洲在线自拍视频| 日韩成人av中文字幕在线观看| 精品熟女少妇av免费看| 成人二区视频| 亚洲欧美日韩无卡精品| 免费观看精品视频网站| 69av精品久久久久久| 成人毛片60女人毛片免费| 亚洲国产成人一精品久久久| 床上黄色一级片| 成年版毛片免费区| 51国产日韩欧美| 亚洲美女视频黄频| 亚洲av中文字字幕乱码综合| 六月丁香七月| 亚洲精品,欧美精品| 男女那种视频在线观看| 岛国在线免费视频观看| 亚洲激情五月婷婷啪啪| 大话2 男鬼变身卡| 成人亚洲精品av一区二区| 欧美性猛交黑人性爽| 全区人妻精品视频| 婷婷色av中文字幕| 高清av免费在线| 免费av不卡在线播放| 国产亚洲一区二区精品| 亚洲av福利一区| 免费无遮挡裸体视频| 三级国产精品片| 国产一区亚洲一区在线观看| 亚洲欧美日韩东京热|