• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    2017-11-20 12:07:49GouYiyongLiHongboDongXinminLiuZongcheng
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Gou Yiyong,Li Hongbo,Dong Xinmin,Liu Zongcheng

    Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi’an 710038,China

    Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Gou Yiyong,Li Hongbo,Dong Xinmin*,Liu Zongcheng

    Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi’an 710038,China

    Aeroelastic system;Constrained control;Flutter suppression;Input nonlinearities;RBFNNs

    A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO)aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs)are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.

    1.Introduction

    In the past,aeroelasticity has attracted increasing concern in aircraft design.Aeroelastic systems exhibit a variety of unstable phenomena as a result of the mutual interaction of structural,inertia and aerodynamic forces.1Divergence,flutter,and limit-cycle oscillation are typical unstable phenomena which can degrade an aircraft’s flight performance,and even cause flight mission failure.1,2Thus,a reliable and effective control strategy becomes one of the key issues in aeroelastic system control design.In previous studies,researchers have analyzed the nonlinear responses of aeroelastic systems,and various control schemes have been extensively studied.Based on the l method,Lind and Brenner3have analyzed the unstable responses of aeroelastic systems and studied robust stability margins.To study different aeroelastic phenomena,the NASA Langley Research Center has developed a benchmark active control technology(BACT)wind-tunnel model.4For this BACT wind-tunnel model,several control laws for fluttersuppression have been developed.4–6Considering nonlinear structural stiffness,a model equipped with a single trailingedge(TE)control surface has been developed at Texas A&M University.7Based on this model,a wide variety of control schemes have been designed.8–11Inspired by the limited effectiveness of a single TE control surface,a wing section equipped with a leading-edge(LE)control surface and a TE control surface has been designed,and a large number of control schemes has been proposed.12–16For this wing section with uncertainties,adaptive control has been widely used to suppress flutter.13–15Neural network control and adaptive control have been developed in this filed and compared in control performance.13With respect to external disturbance and uncertainties,Wang et al.14designed an output feedback adaptive controller coupled with an SDU decomposition which avoids the singularity problem arising from estimation of the input matrix.Accounting on the input saturation problem,Lee and Singh15used an auxiliary dynamic system to compensate for the input saturation and proposed a novel control scheme.In addition,a sliding mode control method was also applied to flutter suppression,and Lee and Singh16have designed a higher-order sliding mode controller which accomplished the finite-time flutter suppression of the aeroelastic system.

    It is well known that input nonlinearities exist in a real control system,and an aeroelastic control system is no exception.Both input dead-zone and saturation are considered for the uncertain aeroelastic system in this paper.Input saturation and dead-zone may induce deterioration of the aeroelastic control system performance,and even make the aeroelastic control system fail.Consequently,input saturation and deadzone have attracted much attention.Input dead-zone could induce a zero input against a range of set values.17An adaptive dead-zone inverse approach was proposed to tackle a system with input dead-zone.18An adaptive fuzzy output feedback control law,which treats dead-zone inputs as system uncertainties,has been developed.19For the input saturation problem,Chen et al.20designed an auxiliary system,whose input was the error between the saturation input and the desired control input,to compensate for the impact of the input saturation.Li et al.21proposed an adaptive fuzzy output feedback control for output constrained nonlinear systems.In general,some researchers have also studied in integrating input deadzone with saturation.For uncertain multi-input and multioutput(MIMO)nonlinear systems with input nonlinearities,a robust adaptive neural network control was developed.17Yang and Chen22regarded input dead-zone and saturation nonlinearities as a new input saturation problem through a dead-zone inverse approach,and proposed an adaptive neural prescribed performance control law for near-space vehicles.

    Motivated by the above discussion,a constrained adaptive neural network control scheme is proposed for an MIMO aeroelastic system with wind gust,system uncertainties,and input nonlinearities.Different from the previous references,it is especially noted that uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered.Inspired by Ref.22,the right inverse function block of the dead-zone is added before the input nonlinearities,by which the input nonlinearities can be regarded as a new input saturation.22To handle the new input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Radial basis function neural networks(RBFNNs)are also applied to approximate the system uncertainties.A novel constrained adaptive control law is developed by using the backstepping control technique.The simulation results of the MIMO aeroelastic control system are presented to verify that the proposed control scheme can accomplish flutter suppression despite the effects of wind gust,system uncertainties,and input nonlinearities.

    2.Nonlinear aeroelastic model and preliminary

    2.1.Nonlinear aeroelastic model

    A two-degree-of-freedom(2-DOF)wing section equipped with LE and TE control surfaces is presented in Fig.1.15The second-order differential equations signifying the dynamic of this aeroelastic system are given by13,14

    In Eq.(1),MandLrepresent the aerodynamic moment and lift in a quasi-steady form expressed by13

    Fig.1 Aeroelastic system with LE and TE control surfaces.15

    whereCma,CmbandCmcare the moment derivatives due to a,b and c,respectively;andCmacan be approximately regarded to be zero.13The moment and lift arose by wind gust can be given by14

    wherets?Ut=b,and xgetsT denotes the disturbance velocity.

    wherevimaxandvimindenote the known saturation values of the control inputvi(i?1;2).

    Fig.2 Structural diagram of input nonlinearity

    Fig.3 Saturation function

    Fig.4 Dead-zone function

    whereluiandldiare the breakpoints of the dead-zone;kui>0 andkdi>0 are the right and left slope parameters,respectively.

    In this paper,the control objective is to design a constrained adaptive neural network controller for the MIMO aeroelastic system in Eq.(6)to ensure the output y can track the desired output signal ydby appropriately choosing design parameters.

    Lemma 320.No eigenvalue of matrixAexceeds any of its norm in its absolute value,that is,

    2.2.Analysis of input nonlinearity

    Base on the analysis of the characteristics of the new construction of input nonlinearity in Ref.26,uican be described as

    Fig.5 Right inverse function

    Fig.6 Structural diagram of input nonlinearity

    The above equation means that the input saturation and dead-zone coupled with the right inverse function block of the dead-zone can be regarded as an equivalent input saturation.

    2.3.RBF neural networks

    3.Design of a constrained adaptive control scheme based on RBFNNs

    3.1.Design of a constrained adaptive control scheme

    In this section,the backstepping method is used to construct a constrained adaptive neural network controller for the nonlinear system in Eq.(6).Define the error variables as

    During the constrained adaptive neural network controller design,the backstepping control technique is employed and the detailed design process is described as follows.

    Step 1.Considering the system in Eq.(6)and differentiating z1,we obtain

    To proceed with the design of the constrained adaptive neural network control scheme,we define

    Then,we obtain

    Consider the Lyapunov function candidate

    Step 2.Differentiating z2yields

    Consider the Lyapunov function candidate

    As shown in Section 2.3,the RBFNNs will be employed to approximate the system uncertainties DFexT,and the optimal approximation can be written as

    Substituting Eq.(29)into Eq.(28)yields

    Considering Assumptions 1 and 2,we obtain

    In view of Young’s inequality,20and invoking Lemma 1,Eq.(31)can be rewritten as

    From Eq.(13),the control inputs u can be regarded as an input saturation problem.To compensate for the impact of the input saturation,the auxiliary error system is presented as follows20

    Define20

    Invoking Lemma 2 and taking the input saturation into consideration,choose the control law as follows

    3.2.Stability analysis

    In this section,the main results will be stated,and the semiglobal boundedness of all the signals in the closed-loop system will be proven by two cases.

    Choose the Lyapunov function as follows

    Following from Eqs.(25)and(32)and invoking Lemma 3,the time derivative ofVis

    Invoking Eq.(36),we obtain

    Substituting Eq.(40)into Eq.(39)yields

    Substituting Eq.(42)into Eq.(41),we obtain

    The structure diagram of the whole control system can be seen in Fig.7.

    4.Example results and discussion

    Fig.7 Structural diagram of whole control system.

    For the purpose of examining the effectiveness of the proposed constrained adaptive neural network control scheme at different freestream velocities,simulations at three different freestream velocitiesUc,1:5Ucand 2Ucare undertaken.The results are presented in Fig.11,which shows that the closedloop system is stable despite different freestream velocities,and for a higher freestream velocity,the responses are quicker.To examine that the LCOs can be suppressed,the aeroelastic system at a freestream velocity of 12 m/s is held in an open loop for 10 s and then the loop is closed.In Fig.12,we can observe that the pitch LCO is suppressed in about 5 s and the plunge LCO is suppressed in about 1 s;in terms of control surface,the TE control surface deflection converges to zero in less than 6 s,and the LE control surface deflection converges to zero in about 2 s.

    Table 1 Model parameters.13–15

    Fig.8 Real part of eigenvalues in open-loop system.

    Fig.9 Aeroelastic system phase diagrams at different freestream velocities.

    Fig.10 Aeroelastic system LCO frequency spectra at different freestream velocities.

    To verify the applicability and robustness of the aeroelastic control system,based on four types of wind gust,four sets of simulations are done as follows.

    The mathematical model of sinusoidal gust is given by14

    Fig.11 Constrained control at different freestream velocities.

    Fig.12 Constrained control,controller active at t=10 s.

    Fig.13 Constrained control for sinusoidal gust,U?12 m=s.

    For the triangular gust,one has14

    For the exponential gust,the mathematical model can be described as15

    Figure 14 Constrained control for random gust,

    Fig.15 Constrained control for triangular gust,

    Fig.16 Constrained control for exponential gust,

    Fig.17 Constrained controlagainstsystem uncertainties,

    Fig.18 Constrained control with LE control surface failure,

    Fig.19 Constrained control with TE control surface failure,

    5.Conclusions

    (1)An effective constrained adaptive neural network control scheme has been developed for an MIMO aeroelastic system with wind gust,system uncertainties,and input nonlinearities.

    (2)In order to handle the system uncertainties,RBFNNs have been employed to approximate the system uncertainties effectively,and simulation results demonstrate the effectiveness of the proposed control scheme against the system uncertainties.

    (3)To deal with the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,and the input nonlinearities can be treated as a single input saturation nonlinearity.Moreover,an auxiliary error system is designed to compensate for the impact of the input saturation.

    (4)By using the Lyapunov stability theory and the backstepping control technique,all signals of the closedloop system based on the proposed constrained adaptive neural network control scheme are semi-globally uniformly bounded.

    (5)Digital simulation results illustrate the effectiveness of the proposed control scheme which can accomplish flutter suppression quickly at different freestream velocities.Moreover,in terms of wind gust,the simulation results verify the applicability and robustness of the proposed control scheme.In addition,considering the failure of a control surface,we find that the proposed control method can be applied to the aeroelastic system with only the TE control surface.

    Acknowledgements

    This research was supported by the National Natural Science Foundation of China(Nos.61473307 and 61304120),and the AeronauticalScience Foundation of China (No.20155896026).

    1.Mukhopadhyay V.Historical perspective on analysis and control of aeroelastic responses.J Guidance,Control,Dyn2003;26(5):673–84.

    2.Li DC,Xiang JW,Guo SJ.Adaptive control of a nonlinear aeroelastic system.Aerospace Sci Technol2011;15(5):343–52.

    3.Lind R,Brenner M.Robust aeroservoelastic stability analysis.London:Springer-Verlag;1999.p.117–52.

    4.Waszak MR.Robust multivariable flutter suppression for benchmark active control technology wind-tunnel model.J Guidance,Control,Dyn2001;24(1):147–53.

    5.Mukhopadhyay V.Transonic flutter suppression control law design and wind-tunnel test results.J Guidance,Control,Dyn2000;23(5):930–7.

    6.Kelkar AG,Joshi SM.Passivity-based robust control with application to benchmark controls technology wing.J Guidance,Control,Dyn2000;23(5):938–47.

    7.Ko J,Kurdila AJ,Strganac TW.Nonlinear control of a prototypical wing section with torsional nonlinearity 1997.J Guidance,Control,Dyn1997;20(6):1181–9.

    8.Ko J,Strganac TW,Kurdila AJ.Adaptive feedback linearization for the control of a typical wing section with structural nonlinearity.Nonlinear Dyn1999;18(3):289–301.

    9.Xing W,Singh SN.Adaptive output feedback control of a nonlinear aeroelastic structure.J Guidance,Control,Dyn2000;23(6):1109–16.

    10.Lee KW,Singh SN.Global robust control of an aeroelastic system using output feedback.J Guidance,Control,Dyn2007;30(1):271–5.

    11.Beha A,Marzocca P,Rao VM,Gnann A.Nonlinear adaptive control of an aeroelastic two-dimensional lifting surface.J Guidance,Control,Dyn2006;29(2):382–90.

    12.Platanitis G,Strganac TW.Control of a nonlinear wing section using leading-and trailing-edge surfaces.J Guidance,Control,Dyn2004;27(1):52–8.

    13.Gujjula S,Singh SN,Yim W.Adaptive and neural control of a wing section using leading-and trailing-edge surfaces.Aerospace Sci Technol2005;9(2):161–71.

    14.Wang Z,Behal A,Marzocca P.Model-free control design for multi-input multi-output aeroelastic system subject to external disturbance.J Guidance,Control,Dyn2011;34(2):446–58.

    15.Lee KW,Singh SN.Adaptive control of multi-Input aeroelastic system with constrained inputs.J Guidance,Control,Dyn2015;38(12):2337–50.

    16.Lee KW,Singh SN.Robust higher-order sliding-mode finite-time control of aeroelastic systems.J Guidance,Control,Dyn2014;37(5):1664–70.

    17.Chen M,Ge SS,Eehow BV.Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities.IEEE Trans Neural Netw2010;21(5):796–812.

    18.Zhou J,Wen C,Zhang Y.Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity.IEEE Trans Autom Control2006;51(3):504–10.

    19.Tong S,Li Y.Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs.IEEE Trans Fuzzy Sys2013;21(1):134–46.

    20.Chen M,Ge SS,Ren BB.Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints.Automatica2011;47(3):452–65.

    21.Li Y,Tong S,Li T.Adaptive fuzzy output feedback control for output constrained nonlinear systems in the presence of input saturation.Fuzzy Sets Syst2014;248(1):138–55.

    22.Yang QY,Chen M.Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity.Neurocomputing2016;174:780–9.

    23.Liu ZC,Dong XM,Xue JP,Chen Y.Adaptive neural control for a class of time-delay systems in the presence of backlash or deadzone nonlinearity.IET Control Theory Appl2014;8(11):1009–22.

    24.Zhang TP,Ge SS.Adaptive dynamic surface control of nonlinear systems with unknown dead-zone in pure feedback form.Automatica2008;44(7):1895–903.

    25.Polycarpou MM,Ioannou PA.A robust adaptive nonlinear control design.Automatica1996;32(3):423–7.

    26.Ma DCRL,Heath WP.Controller structure for plants with combined saturation and deadzone/backlash.2012 IEEE international conference on control application;2012 Oct 18–20;Dubrovnik.Piscataway(NJ):IEEE Press;2012.p.1394–9.

    27.Chen M,Yu J.Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer.Chin J Aeronautics2015;28(3):853–64.

    20 April 2016;revised 2 September 2016;accepted 28 November 2016

    Available online 16 February 2017

    *Corresponding author.

    E-mail addresses:gouyiyong@139.com(Y.Gou),dongxinmin@139.com(X.Dong).

    Peer review under responsibility of Editorial Committee of CJA.

    国产亚洲一区二区精品| 日本wwww免费看| 一级毛片我不卡| 亚洲欧美精品专区久久| 女性生殖器流出的白浆| 国产亚洲av片在线观看秒播厂| 成年人午夜在线观看视频| 在线观看av片永久免费下载| 精品久久久噜噜| 少妇熟女欧美另类| 精品少妇久久久久久888优播| 91狼人影院| 99热网站在线观看| 内射极品少妇av片p| 欧美少妇被猛烈插入视频| 国产又色又爽无遮挡免| 久久精品国产亚洲网站| 狂野欧美激情性xxxx在线观看| 国产一区二区三区综合在线观看 | 精品午夜福利在线看| 亚洲av日韩在线播放| 欧美变态另类bdsm刘玥| 人人妻人人添人人爽欧美一区卜 | 精品久久久精品久久久| 最新中文字幕久久久久| 午夜福利网站1000一区二区三区| 亚洲在久久综合| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 中文字幕制服av| 在线观看免费高清a一片| 黑人高潮一二区| 国产精品一区二区性色av| 美女cb高潮喷水在线观看| 三级国产精品欧美在线观看| 国产亚洲av片在线观看秒播厂| 成人无遮挡网站| 亚州av有码| 国产伦在线观看视频一区| 蜜桃久久精品国产亚洲av| 在线观看国产h片| 久久国产精品大桥未久av | 亚洲美女搞黄在线观看| 亚洲美女黄色视频免费看| 精品亚洲乱码少妇综合久久| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久伊人网av| 欧美变态另类bdsm刘玥| 国产精品久久久久久精品电影小说 | 欧美日韩亚洲高清精品| www.色视频.com| 我的老师免费观看完整版| 波野结衣二区三区在线| 日韩在线高清观看一区二区三区| 老熟女久久久| 啦啦啦中文免费视频观看日本| 国产男女超爽视频在线观看| 中文字幕免费在线视频6| 国产精品久久久久成人av| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品日韩av片在线观看| 日韩欧美一区视频在线观看 | 国产在线男女| 极品少妇高潮喷水抽搐| 亚洲图色成人| 国产亚洲一区二区精品| 亚洲国产精品成人久久小说| 亚洲国产欧美在线一区| 中文字幕av成人在线电影| 大话2 男鬼变身卡| 久久精品国产鲁丝片午夜精品| 精品人妻熟女av久视频| 高清欧美精品videossex| 卡戴珊不雅视频在线播放| 欧美少妇被猛烈插入视频| 交换朋友夫妻互换小说| 国产爽快片一区二区三区| 狂野欧美激情性xxxx在线观看| 日韩中字成人| www.av在线官网国产| 婷婷色av中文字幕| 国产综合精华液| 国产 一区精品| 国产乱人视频| 成人免费观看视频高清| 肉色欧美久久久久久久蜜桃| 久久99热6这里只有精品| 成人二区视频| 老师上课跳d突然被开到最大视频| 男女无遮挡免费网站观看| 能在线免费看毛片的网站| 亚洲欧美成人综合另类久久久| 亚洲熟女精品中文字幕| 久久国产乱子免费精品| 国产在线男女| 国产淫语在线视频| 新久久久久国产一级毛片| 春色校园在线视频观看| 在线观看免费高清a一片| 亚洲,一卡二卡三卡| 午夜免费鲁丝| av又黄又爽大尺度在线免费看| 身体一侧抽搐| 国产免费又黄又爽又色| 国产精品国产三级国产专区5o| 精品少妇久久久久久888优播| 久久久成人免费电影| 免费观看在线日韩| 成人美女网站在线观看视频| 高清毛片免费看| 国产精品久久久久久久久免| 久久人人爽人人片av| 99九九线精品视频在线观看视频| 九九久久精品国产亚洲av麻豆| av国产免费在线观看| 成人毛片60女人毛片免费| 女人久久www免费人成看片| 国产精品伦人一区二区| 一级毛片我不卡| 久久久国产一区二区| 在线观看免费日韩欧美大片 | 成年女人在线观看亚洲视频| 亚洲综合精品二区| 久久精品久久久久久噜噜老黄| 日韩,欧美,国产一区二区三区| 欧美国产精品一级二级三级 | 国产高清国产精品国产三级 | 嘟嘟电影网在线观看| 男的添女的下面高潮视频| 国产欧美亚洲国产| 一级av片app| 日韩亚洲欧美综合| 嫩草影院新地址| 男女免费视频国产| 亚洲色图av天堂| 国产伦理片在线播放av一区| av视频免费观看在线观看| 午夜激情福利司机影院| 青青草视频在线视频观看| 久久久久久久久久人人人人人人| 亚洲国产精品999| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜添av毛片| 免费观看无遮挡的男女| 寂寞人妻少妇视频99o| 男人添女人高潮全过程视频| 亚洲精品国产成人久久av| 这个男人来自地球电影免费观看 | 国产一区二区三区综合在线观看 | 又黄又爽又刺激的免费视频.| 国产精品久久久久久精品古装| 欧美成人一区二区免费高清观看| 国产精品一区二区三区四区免费观看| 欧美区成人在线视频| 啦啦啦中文免费视频观看日本| 我的女老师完整版在线观看| av播播在线观看一区| 91久久精品电影网| 三级经典国产精品| 欧美一级a爱片免费观看看| 18禁动态无遮挡网站| 国产人妻一区二区三区在| 久久6这里有精品| 99九九线精品视频在线观看视频| 亚洲美女视频黄频| 22中文网久久字幕| 人妻一区二区av| 97在线人人人人妻| 一级黄片播放器| 国模一区二区三区四区视频| 日韩三级伦理在线观看| 日本色播在线视频| 亚洲第一区二区三区不卡| 亚洲精品一二三| 国产高清三级在线| 18禁动态无遮挡网站| 亚洲人与动物交配视频| 97热精品久久久久久| 亚洲成人手机| 亚洲av电影在线观看一区二区三区| 欧美一区二区亚洲| 一二三四中文在线观看免费高清| 亚洲精品国产av成人精品| 在线 av 中文字幕| 一级黄片播放器| 久久精品夜色国产| 在现免费观看毛片| 久久精品久久久久久久性| 久久久色成人| 六月丁香七月| 又粗又硬又长又爽又黄的视频| 99久久精品热视频| 亚洲一区二区三区欧美精品| 夜夜看夜夜爽夜夜摸| 人妻制服诱惑在线中文字幕| 精品一品国产午夜福利视频| 乱码一卡2卡4卡精品| 欧美3d第一页| 麻豆成人午夜福利视频| 精品久久久久久久末码| 伦理电影免费视频| 国产精品国产三级国产av玫瑰| 国产 一区精品| 亚洲精品自拍成人| 十八禁网站网址无遮挡 | 嫩草影院新地址| 夫妻午夜视频| 黑人高潮一二区| 99热网站在线观看| 日本wwww免费看| 黄片无遮挡物在线观看| 亚洲精品乱码久久久久久按摩| 男女啪啪激烈高潮av片| 国产精品国产三级专区第一集| 永久免费av网站大全| 国产熟女欧美一区二区| 男人舔奶头视频| 午夜福利在线在线| 国产真实伦视频高清在线观看| 免费人妻精品一区二区三区视频| 草草在线视频免费看| 久久99热这里只有精品18| 黑人高潮一二区| 久久久久人妻精品一区果冻| 免费av中文字幕在线| 大香蕉久久网| 新久久久久国产一级毛片| 国产高清三级在线| h视频一区二区三区| 成人午夜精彩视频在线观看| 国产精品99久久久久久久久| 国产精品国产av在线观看| 久久久精品免费免费高清| 大又大粗又爽又黄少妇毛片口| 中文字幕久久专区| 亚洲,欧美,日韩| 丝袜脚勾引网站| 国产免费一区二区三区四区乱码| 国产亚洲一区二区精品| 国产精品99久久99久久久不卡 | 一级毛片黄色毛片免费观看视频| 成人毛片60女人毛片免费| 少妇人妻一区二区三区视频| 欧美日韩视频精品一区| 日本与韩国留学比较| av国产免费在线观看| 日本av免费视频播放| 国产爱豆传媒在线观看| 精品国产一区二区三区久久久樱花 | 七月丁香在线播放| 日本av免费视频播放| 边亲边吃奶的免费视频| 我的老师免费观看完整版| 身体一侧抽搐| 伦精品一区二区三区| 亚洲精品国产av蜜桃| 亚洲国产色片| 三级国产精品片| 午夜精品国产一区二区电影| 直男gayav资源| 免费看av在线观看网站| 秋霞在线观看毛片| 美女高潮的动态| 高清在线视频一区二区三区| 久久久久精品性色| 午夜老司机福利剧场| 日本猛色少妇xxxxx猛交久久| 22中文网久久字幕| .国产精品久久| 免费大片黄手机在线观看| 成人高潮视频无遮挡免费网站| 人妻一区二区av| 久久av网站| 成人亚洲欧美一区二区av| 色网站视频免费| 波野结衣二区三区在线| 免费看光身美女| 大又大粗又爽又黄少妇毛片口| 国产淫语在线视频| 久久久精品免费免费高清| 国产精品国产av在线观看| 人人妻人人看人人澡| 日韩在线高清观看一区二区三区| 久久亚洲国产成人精品v| 国产又色又爽无遮挡免| 亚洲丝袜综合中文字幕| 国产探花极品一区二区| 国产成人精品久久久久久| 成人国产麻豆网| 色吧在线观看| 在线观看三级黄色| 精品午夜福利在线看| 国产亚洲最大av| 久久午夜福利片| 99久国产av精品国产电影| 最近手机中文字幕大全| 下体分泌物呈黄色| 国产精品一区www在线观看| 欧美精品亚洲一区二区| 久久精品久久久久久久性| 国产69精品久久久久777片| 国产无遮挡羞羞视频在线观看| 少妇人妻精品综合一区二区| 人妻系列 视频| 欧美成人精品欧美一级黄| 国产深夜福利视频在线观看| 观看免费一级毛片| 欧美一级a爱片免费观看看| 欧美一级a爱片免费观看看| 国产精品久久久久久久久免| 女的被弄到高潮叫床怎么办| 欧美高清性xxxxhd video| av线在线观看网站| 日本欧美视频一区| 国产成人一区二区在线| 亚洲久久久国产精品| 亚洲欧美日韩东京热| 久久人妻熟女aⅴ| 亚洲欧美日韩无卡精品| 国产乱人视频| 国产精品.久久久| 性高湖久久久久久久久免费观看| 久久精品人妻少妇| 黄色一级大片看看| 三级经典国产精品| 国产探花极品一区二区| 国产成人精品福利久久| 久久99蜜桃精品久久| 少妇的逼好多水| 免费观看性生交大片5| 国产成人a∨麻豆精品| 久久久色成人| 亚洲欧美日韩另类电影网站 | 国产人妻一区二区三区在| 三级国产精品片| 免费黄网站久久成人精品| 亚洲三级黄色毛片| 亚洲无线观看免费| 久久女婷五月综合色啪小说| av在线蜜桃| 蜜臀久久99精品久久宅男| 精品久久久久久久久亚洲| 亚洲一级一片aⅴ在线观看| 国产精品一区二区在线不卡| 国产av国产精品国产| 日本一二三区视频观看| 热re99久久精品国产66热6| 亚洲欧美一区二区三区国产| 亚洲美女搞黄在线观看| 亚洲精华国产精华液的使用体验| 亚洲欧美成人精品一区二区| 久久亚洲国产成人精品v| 欧美激情国产日韩精品一区| 精品国产露脸久久av麻豆| 三级经典国产精品| 这个男人来自地球电影免费观看 | 精品亚洲乱码少妇综合久久| 欧美丝袜亚洲另类| 国产一级毛片在线| a级一级毛片免费在线观看| 日韩欧美一区视频在线观看 | 亚洲精品国产成人久久av| 青青草视频在线视频观看| 国产免费视频播放在线视频| 午夜老司机福利剧场| 国产淫片久久久久久久久| 日韩一区二区三区影片| 国产精品伦人一区二区| 亚洲国产精品国产精品| 青春草视频在线免费观看| 国产成人午夜福利电影在线观看| 一个人看的www免费观看视频| 国产精品.久久久| 在线观看av片永久免费下载| 2018国产大陆天天弄谢| 最后的刺客免费高清国语| 超碰97精品在线观看| 在线观看人妻少妇| 久热这里只有精品99| 日日摸夜夜添夜夜添av毛片| 波野结衣二区三区在线| 日韩精品有码人妻一区| 日本爱情动作片www.在线观看| 好男人视频免费观看在线| 国产成人a∨麻豆精品| 欧美成人午夜免费资源| .国产精品久久| 七月丁香在线播放| 国精品久久久久久国模美| 亚洲国产成人一精品久久久| 成人亚洲欧美一区二区av| h日本视频在线播放| 免费av不卡在线播放| 久久久久久人妻| 国产在线男女| 亚洲欧美一区二区三区黑人 | 亚洲人成网站在线播| 精品亚洲成a人片在线观看 | 成人影院久久| 一本一本综合久久| 国产深夜福利视频在线观看| 99re6热这里在线精品视频| 大陆偷拍与自拍| 丰满人妻一区二区三区视频av| 天天躁日日操中文字幕| 国产视频内射| 国产伦精品一区二区三区四那| 精品熟女少妇av免费看| 精品久久久久久久久亚洲| 日本vs欧美在线观看视频 | 赤兔流量卡办理| 国产黄色免费在线视频| 国产高清有码在线观看视频| 尤物成人国产欧美一区二区三区| 九九在线视频观看精品| 91午夜精品亚洲一区二区三区| 国产精品一区二区性色av| 美女主播在线视频| 最黄视频免费看| 有码 亚洲区| 欧美高清性xxxxhd video| 一区二区三区乱码不卡18| 成年av动漫网址| 亚洲国产日韩一区二区| av免费在线看不卡| 久久精品夜色国产| 亚洲第一区二区三区不卡| 嫩草影院新地址| 黄色欧美视频在线观看| 久久精品国产自在天天线| 免费黄色在线免费观看| 亚洲无线观看免费| 热99国产精品久久久久久7| 国产亚洲精品久久久com| 久久久精品94久久精品| 久久久亚洲精品成人影院| 国产亚洲欧美精品永久| av国产精品久久久久影院| 国产v大片淫在线免费观看| 精品少妇黑人巨大在线播放| 看非洲黑人一级黄片| 亚洲内射少妇av| 水蜜桃什么品种好| 99久久精品国产国产毛片| 老熟女久久久| 免费av不卡在线播放| 91午夜精品亚洲一区二区三区| 国产精品一及| 一本久久精品| 精品亚洲乱码少妇综合久久| 伊人久久精品亚洲午夜| 日本与韩国留学比较| 有码 亚洲区| 黄色视频在线播放观看不卡| 黄色欧美视频在线观看| 国产在线免费精品| 熟女av电影| 日本色播在线视频| 亚洲va在线va天堂va国产| 国产在线一区二区三区精| 午夜福利高清视频| a级毛片免费高清观看在线播放| 国产亚洲一区二区精品| 天堂中文最新版在线下载| 91久久精品国产一区二区三区| 精品一区二区三区视频在线| 97超碰精品成人国产| 中文欧美无线码| 国产成人免费无遮挡视频| 国产午夜精品一二区理论片| 日韩不卡一区二区三区视频在线| 久久国内精品自在自线图片| 久久这里有精品视频免费| 欧美精品一区二区免费开放| 国产熟女欧美一区二区| 国产精品偷伦视频观看了| 国产高清国产精品国产三级 | 热re99久久精品国产66热6| 韩国av在线不卡| h视频一区二区三区| 亚洲av中文av极速乱| 欧美日韩精品成人综合77777| 舔av片在线| 一级毛片我不卡| 精品一品国产午夜福利视频| 久久精品人妻少妇| 欧美zozozo另类| 晚上一个人看的免费电影| 国产探花极品一区二区| 黄片wwwwww| 精品一区二区三区视频在线| 在线观看一区二区三区激情| 亚洲第一区二区三区不卡| 一级a做视频免费观看| 晚上一个人看的免费电影| 精品国产一区二区三区久久久樱花 | 亚洲人成网站在线观看播放| 男的添女的下面高潮视频| 七月丁香在线播放| 天堂俺去俺来也www色官网| 亚洲最大成人中文| 国产精品国产三级国产av玫瑰| 99久久综合免费| 啦啦啦啦在线视频资源| 欧美xxⅹ黑人| 成人漫画全彩无遮挡| 亚洲精品乱码久久久v下载方式| 2022亚洲国产成人精品| 在线免费十八禁| 九九在线视频观看精品| 亚洲国产精品一区三区| 老女人水多毛片| 少妇被粗大猛烈的视频| 麻豆乱淫一区二区| 1000部很黄的大片| 91精品国产国语对白视频| 免费看不卡的av| 一级毛片 在线播放| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 王馨瑶露胸无遮挡在线观看| 亚洲最大成人中文| 黄色怎么调成土黄色| 国产免费又黄又爽又色| 国产真实伦视频高清在线观看| 日韩亚洲欧美综合| 久久久久久久久久久免费av| 亚洲精品国产成人久久av| 一级爰片在线观看| 精品国产乱码久久久久久小说| 99热6这里只有精品| 免费观看av网站的网址| 国产精品精品国产色婷婷| 亚洲图色成人| 亚洲一区二区三区欧美精品| 18禁在线无遮挡免费观看视频| 久久久久久久亚洲中文字幕| 高清黄色对白视频在线免费看 | 久久亚洲国产成人精品v| 中国三级夫妇交换| 欧美成人精品欧美一级黄| 深夜a级毛片| 久久人人爽人人片av| 成年美女黄网站色视频大全免费 | 久久97久久精品| 久久97久久精品| 国产伦理片在线播放av一区| 高清日韩中文字幕在线| 国产精品伦人一区二区| 免费观看av网站的网址| xxx大片免费视频| 热re99久久精品国产66热6| 男的添女的下面高潮视频| 精品久久久精品久久久| 麻豆成人av视频| 免费久久久久久久精品成人欧美视频 | 欧美激情国产日韩精品一区| 精品国产三级普通话版| 丰满少妇做爰视频| 日韩一区二区视频免费看| 这个男人来自地球电影免费观看 | 久久久精品94久久精品| 婷婷色av中文字幕| 亚洲中文av在线| av卡一久久| 在线精品无人区一区二区三 | 少妇熟女欧美另类| 人妻一区二区av| 在线观看三级黄色| 在线亚洲精品国产二区图片欧美 | 日本午夜av视频| 婷婷色综合www| 亚洲最大成人中文| 免费久久久久久久精品成人欧美视频 | 亚洲精品第二区| 亚洲国产日韩一区二区| 有码 亚洲区| 亚洲av在线观看美女高潮| 1000部很黄的大片| 少妇猛男粗大的猛烈进出视频| 午夜视频国产福利| 久久99热这里只有精品18| 国产精品国产三级国产专区5o| 大陆偷拍与自拍| 国产亚洲午夜精品一区二区久久| 精品亚洲乱码少妇综合久久| 日韩av在线免费看完整版不卡| 国产亚洲精品久久久com| 久久久久国产网址| 99九九线精品视频在线观看视频| 国产淫语在线视频| 精品国产三级普通话版| 亚洲精品日本国产第一区| 成人免费观看视频高清| 免费大片18禁| 免费少妇av软件| 国产 一区 欧美 日韩| 亚洲精品日韩在线中文字幕| 国产精品久久久久成人av| 黄色配什么色好看| 舔av片在线| 小蜜桃在线观看免费完整版高清| www.色视频.com| 91精品国产九色| 这个男人来自地球电影免费观看 | 极品教师在线视频| 2022亚洲国产成人精品| 热99国产精品久久久久久7| 亚洲,欧美,日韩| 一级a做视频免费观看| videos熟女内射| 亚洲精品久久久久久婷婷小说| 日本一二三区视频观看| 伦理电影大哥的女人| 国产精品精品国产色婷婷|