• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing

    2017-11-20 12:08:04ZhngWenhuDengSierChenGuodingCuiYongcun
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Zhng Wenhu,Deng Sier,Chen Guoding,Cui Yongcun

    aSchool of Mechatronics Engineering,Northwestern Polytechnical University,Xi’an 710071,China

    bSchool of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China

    cCollaborative Innovation Center of Major Machine Manufacturing in Liaoning,Dalian 116024,China

    Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing

    Zhang Wenhua,Deng Sierb,c,*,Chen Guodinga,Cui Yongcuna

    aSchool of Mechatronics Engineering,Northwestern Polytechnical University,Xi’an 710071,China

    bSchool of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China

    cCollaborative Innovation Center of Major Machine Manufacturing in Liaoning,Dalian 116024,China

    Dynamic characteristic;High-speed angular contact ball bearing;Lubricant traction coefficient;Poincare′map;Stability

    In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,were obtained by a great number of elastohydrodynamic traction tests.The nonlinear dynamics differential equations of high-speed angular contact ball bearing were built on the basis of dynamic theory of rolling bearings and solved by Gear Stiff(GSTIFF)integer algorithm with variable step.The impact of lubricant traction coeff icient on cage’s dynamic characteristics in high-speed angular contact ball bearing was investigated,and Poincare′map was used to analyze the impact of three types of aviation lubricating oils on the dynamic response of cage’s mass center.And then,the period of dynamic response of cage’s mass center and the slip ratio of cage were used to assess the stability of cage under various working conditions.The results of this paper provide the theoretical basis for the selection and application of aviation lubricating oil.

    1.Introduction

    As one of basis parameters for dynamic design of rolling bearing,lubricant traction coefficient is affected by the combined impacts of slip velocity,rolling velocity and contact stress between roller and raceway,the temperature of lubricating oil,etc.Any changes in the above-mentioned factors might revise the traction behavior of lubricant between roller and raceway,causing the changes of collision force and collision frequency between cage and ball,which directly affect the stability of cage.Three types of Chinese aviation lubricating oils,namely 4109,4106 and 4050,are commonly used for lubrica-tion of angular contact ball bearing for high-speed spindle under various working conditions.However,owing to the different physics,chemistry and mechanics properties of lubricants,the systematic researchesin the connectionsof lubricant traction coefficient and cage’s dynamic characteristics are quite rare.

    In 1971,Walters1firstly built the analytic model of highspeed ball bearing,which set the foundation of dynamic analysis of high-speed ball bearing.Gupta2–5built the dynamics differential equations of ball bearing with six degrees of freedom,and then studied the cage’s whirl orbit.By stimulating,Gupta P K indicated that the frictional coefficient between ball and raceway had great impact on cage’s whirl orbit,but he did not further study the influencing factors of cage’s stability.Further to previous research,Gupta6studied the relationship between structural parameters of cage pocket clearance,guide clearance and cage stability,but neglecting the impact of lubricant properties on the stability of cage.Based on the simplified traction model of lubricant,Boesiger et al.7studied the impact of operation conditions on cage’s whirl orbit and unsteady characteristic frequency in ball bearing,pointing out that oil lubrication was more preferable than grease lubrication in terms of cage stability.Lord and Larsson8did the experimental studies of elasto-hydrodynamic traction properties for VG46,VG68 and VG150,analyzing the impact of lubricant properties on lubricant film and traction coefficient,but their research did not involve the impact of lubricant properties on cage’s stability.Rahman and Ohno9did the experiments of the fatigue life and impact performance of bearings,which were lubricated by eight types of synthesized lubricants,analyzing the lubrication film between cage and ball and the reasons for cage’s failure.In addition,in their research,they indicated that lubricant traction coefficient had great impact on cage’s failure.Based on the quasi-dynamic theory of angular contact ball bearing,Deng and Hao10studied the effect of different working conditions and structural parameters on the offset of cage’s mass center,which had been used to assess cage’s stability.Pederson et al.11developed a flexible cage model with six degrees of freedom in deep groove ball bearing,and studied cage’s instability and ball-to-cage pocket contact forces.Based on dynamic theory of angular contact ball bearing,Liu and Deng12studied the effect of working conditions and structural parameters on cage’s whirl orbit and the speed deviation ratio of cage,which were used to assess the cage’s stability.Based on dynamic theory of rolling bearing,Deng and Xie13studied the dynamic characteristics of cage in high-speed angular contact ball bearing,pointing out that too big or too small pocket clearance and the guiding clearance of cage were adverse to cage’s stability.Sathyan et al.14conducted various tests such as run-in test,temperature test,and over-lubrication test to study the instability of cage in ball bearings,and the study results show that square pocket retainers are more stable compared to circular pocket retainers.Ashtekar and Sadeghi15developed a 3D explicit finite element model(EFEM)of the cage to analyze the cage dynamics,deformation,and resulting stresses in a ball bearing under various operating conditions.Ye16studied the effect of cage clearance ratio,bearing load and bearing rotation speed on cage’s whirl orbit and the speed deviation ratio of cage,suggesting that too big or too small pocket clearance and guiding clearance of cage were not beneficial to cage’s stability.Abele et al.17promoted two new image evaluation algorithms to capture cage’s whirl with sensors installed on a bearing test rig,and analyzed the cage motion in an angular contact ball bearing under the operation conditions.All the above mentioned researches mainly focused on the impact of bearing working conditions and structural parameters on cage’s dynamic characteristics and stability,while the impact of lubricant traction coefficient on cage’s dynamic characteristics and stability has not aroused any attention.

    In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,are obtained through a great number of elasto-hydrodynamic traction tests.The nonlinear dynamics differential equations are built on the basis of dynamic theory of rolling bearings and solved by Gear Stiff(GSTIFF)integer algorithm with variable step.The impact of lubricant traction coefficient on cage’s dynamic characteristics is investigated,and Poincare′map is used to analyze the impact of three types of aviation lubricating oils on dynamic response of cage’s mass center and the slip ratio of cage.The period of dynamic response of cage’s mass center and the slip ratio of cage are used to assess cage’s stability and the research results of this paper provide theoretical basis for the selection of aviation lubricating oil.

    2.Elasto-hydrodynamic traction coefficient tests

    The tests of elasto-hydrodynamic traction coefficients for three Chinese aviation lubricating oils,4109,4106 and 4050,were conducted by using a self-made test rig.The construction of test rig is shown in Fig.1,where B direction denotes the left view of local type view.

    According to the dynamic viscosity and temperatureviscosity coefficient,the three Chinese aviation lubricating oils,4109,4106 and 4050,are categorized to the low viscosity lubricant,medium viscosity lubricant,and medium viscosity,hightemperature resistant lubricant,respectively.

    The formulas of elasto-hydrodynamic traction coef ficients l of 4109,4106 and 4050 were obtained by applying the curve fitting technic to the test data.

    Fig.1 Construction of test rig.

    Table 1 Parameters of aviation lubricating oil.

    In Eq.(1),Sis slide-roll ratio of ball;AL,BL,CL,DLare functions of normal load,lubrication temperature of inlet and velocity of contact surface,and the expressions ofAL,BL,CL,DLfor 4109,4106 and 4050 are shown as Eqs.(2)–(4),respectively.

    3.Dynamic model of high-speed angular contact ball bearing

    In this paper,outer ring is fixed,inner ring rotates at constant speed,and cage is guided by outer ring.The surfaces of bearing components are absolutely smooth,and the component’s mass center coincides with its centroid.In order to build the dynamic model of bearing,the following five coordinate systems in Fig.2 are defined.

    (1)Inertial coordinate system{O;X,Y,Z}is fixed in space,Xaxis coincides with rotating axis of bearing,andYZplane parallels to radial plane through bearing center.

    (2)Coordinate system of ball mass center{obj;xbj,ybj,zbj},where subscriptjdenotes thejth ball or cage pocket.objcoincides with ball’s mass center,ybjaxis is along radial direction of bearing,andzbjaxis is along circumferential direction of bearing.{obj;xbj,ybj,zbj}moves but doesn’t spin with ball’s mass center,and each ball has its own local coordinate system.

    (3)Coordinate system of cage’s mass center{oc;xc,yc,zc}.xcaxis coincides with rotating axis of cage,yczcplane parallels to radial plane through cage center,occoincides with geometric center of cage,and{oc;xc,yc,zc}moves and spins with cage.

    (4)Coordinate system of inner ring mass center{oi;xi,yi,zi}.xiaxis is along with rotating axis of inner ring,yiziplane parallels with radial plane through inner ring mass center,oicoincides with geometric center of inner ring,and{oi;xi,yi,zi}moves and spins with inner ring.

    (5)Coordinate system of thejth cage pocket center{opj;xpj,ypj,zpj}.opjcoincides with geometric center of cage pocket,ypjaxis is along radial direction of bearing,andzpjaxis is along circumferential direction of bearing.{opj;xpj,ypj,zpj}moves and spins with cage,and each cage pocket center has its own local coordinate system.

    3.1.Nonlinear dynamics differential equations of ball

    When angular contact ball bearing is working at high speed,the forces acting on ball are shown in Fig.3.For the detailed expressions of symbols,please refer to Ref.18.

    Fig.2 Coordinate system of ball bearing.

    The nonlinear dynamics differential equations of thejth ball are shown as Eqs.(5)–(10):

    Fig.3 Schematic diagram of forces acting on ball.

    3.2.Nonlinear dynamics differential equations of cage

    The forces acting on cage are shown in Fig.4,and{or;yr,,zr}is cage’s reference coordinate system.For the expressions of symbols in Fig.4,please refer to Ref.18.

    The nonlinear dynamics differential equations of cage are shown as Eqs.(11)–(16):

    Fig.4 Schematic diagram of forces acting on cage.

    3.3.Nonlinear dynamics differential equations of inner ring

    The nonlinear dynamics differential equations of inner ring are shown as Eqs.(17)–(21):

    4.Impact of lubricant traction coefficient on cage’s dynamic characteristics

    The major parameters of high-speed angular contact ball bearing are shown in Table 2.

    Due to the strong nonlinearity of dynamics differential equations of high-speed angular contact ball bearing,the solution of nonlinear equations is more complicated.Here,the nonlinear dynamics differential Eqs.(5)–(21)were solved by GSTIFF integer algorithm with variable step19,and Poincare′map20was used to analyze the whirl orbit of cage.

    4.1.Impact analysis of lubricant temperature on dynamic response of cage’s mass center

    Table 2 Major parameters of bearing.

    Fig.5 Whirl orbit and Poincare′map under different temperatures of 4109.

    As shown in Fig.5,with the temperature of 4109 increasing,the whirl orbit of cage presents the single circle whirl,the less obvious multi-circle whirl and the obvious multicircle whirl.One Poincare′mapping point,three Poincare′mapping points and the closed curve formed by Poincare′mapping points in Fig.5(a)–(c)indicate that cage undergoes one period,three periods and quasi-periodicity at different lubricant temperatures,respectively.

    In Fig.6,both the temperatures of 4106 and 4050 have tiny impact on the dynamic response of cage,and cage keeps whirling along one circle and less obvious multiple circles,respectively.The Poincare′points in Fig.6(a)and(b)also show that cage is in the state of one periodic motion and four periodic motion respectively,no matter how the temperature of 4106 and 4050 changes.

    Fig.6 Whirl orbit and Poincare′map under different temperatures of 4106 and 4050.

    Fig.7 Whirl orbit and Poincare′map under different axial forces of 4109.

    4.2.Impact analysis of axial force on dynamic response of cage’s mass center

    We assume that the speed of inner ring is set to 14,000 r/min,axial forceFxapplied on inner ring are set to 100 N,500 N,1000 N,2000 N,3000 N and 6000 N,and lubricant temperatureTis set to 130℃.

    In Fig.7,bearing is lubricated by 4109,and when axial load is small(Fx=100 N),the whirl orbit of cage and Poincare′mapping points in Fig.7(a)are disorderly,indicating that cage is in the chaotic state.With axial load increasing(Fx=500–2000 N),cage successively undergoes the single circle whirl and the multi-circle whirl.Four Poincare′mapping points in Fig.7(b)and the closed curve formed by Poincare′mapping points in Fig.7(c)show that cage is in the four periodic and quasi-periodic state,respectively.When axial loadFxis in the range of 3000–6000 N,the disorderly Poincare′mapping points in Fig.7(d)show that cage is in chaotic state.

    In Fig.8,bearing is lubricated by 4106,and when axial load is small(Fx=100 N),the disorderly whirl orbit of cage and Poincare′mapping points in Fig.8(a)show that cage is in a chaotic state.With axial load increasing(Fx=500–3000 N),both the single circle whirl of cage and one Poincare′mapping point in Fig.8(b)represent that cage is in the state of single period.When axial loadFxis up to 6000 N,the less obvious multi-circle whirl of cage and the closed curve formed by Poincare′mapping points in Fig.8(c)also represent that cage is in a quasi-periodic state.

    Fig.8 Whirl orbit and Poincare′map under different axial forces of 4106.

    In Fig.9,bearing is lubricated by 4050,and when axial load is small(Fx=100 N),the disorderly whirl of cage and Poincare′mapping points in Fig.9(a)represent that cage is in the state of chaotic motion.When axial loadFxis up to 500 N,both the single circle whirl of cage and one Poincare′mapping point in Fig.9(b)show that the motion of cage’s mass center is in the state of single period.With axial load increasing(Fx=1000–2000 N),four Poincare′mapping points in Fig.9(c)represent that cage is in the state of four periodic motion.When axial load is big enough(Fx=3000–6000 N),as shown in Fig.9(d)and(e),cage undergoes the quasi-periodic motion and the chaotic motion,respectively.

    Fig.9 Whirl orbit and Poincare′map under different axial forces of 4050.

    Fig.10 Whirl orbit and Poincare′map under different radial forces of 4109.

    4.3.Impact analysis of combined loads on dynamic response of cage’s mass center

    We assume that the speed of inner ring is set to 14,000 r/min,radial forcesFyapplied on inner ring are set to 100 N,500 N and 1000 N,axial forceFxapplied on inner ring is set to 1000 N,and lubricant temperatureTis set to 130℃.

    In Fig.10,when bearing is lubricated by 4109,the multicircle whirl of cage is less obvious,and the closed curve formed by Poincare′mapping points also represents that cage is in the state of quasi-periodic motion,no matter how radial forceFychanges.

    In Fig.11,bearing is lubricated by 4106.When radial load is small,cage undergoes a single circle whirl,and one Poincare′mapping point in Fig.11(a)shows that cage is in the state of one periodic motion.With radial load increasing,the multicircle whirl increases obviously,and closed curve in Fig.11(b)and disorderly Poincare′mapping points in Fig.11(c)also show that cage undergoes quasi-periodic motion and ultimately tends to chaotic motion.

    In Fig.12,when bearing is lubricated by 4050,Poincare′mapping points in Fig.12(a)and(b)indicate that cage undergoes four periodic and chaotic motion with the increase of the radial load,respectively.

    Fig.11 Whirl orbit and Poincare′map under different radial forces of 4106.

    Fig.12 Whirl orbit and Poincare′map under different radial forces of 4050.

    Fig.13 Cage slip ratio under different lubricant temperatures.

    Fig. 14 Cage slip ratio under different axial forces(Speed=14000 r/min,T=130℃).

    5.Impact analysis of lubricant traction coefficient on cage’s stability

    According to the above analysis in Section 4,the motion of cage in angular contact ball bearing lubricated by 4109,4106 and 4050 shows the different dynamic responses and changing pattern under various working conditions.However,it is inadequate to assess the stability of cage with just a dynamic response result.

    In this paper,the slip ratio of cage and the period of dynamic response of cage’s mass center were used as the criteria to assess the stability of cage.The cage’s slip ratio and the period of nonlinear dynamic response of cage’s mass center under different lubricant temperatures,axial loads and radial loads are shown in Figs.13–15 and Tables 3–5.

    In Figs.13–15,cage’s slip ratio shows the different changing trends under different lubricant temperatures and axial forces.But,radial force has tiny impact on cage’s slip ratio when bearing bears combined loads.

    Fig.15 Cage slip ratio with different radial forces(Fx=1000 N,Speed=14000 r/min,T=130℃).

    Table 3 Nonlinear dynamic response period of cage at different lubricant temperatures.

    Table 4 Nonlinear dynamic response period of cage at different axial forces.

    According to the above-mentioned analysis,it is apparent that different types of lubricating oils have great impact on cage’s dynamic characteristics and the stability of cage.Fewer periods of dynamic response of cage’s mass center and smaller slip ratio of cage are beneficial to cage’s stability.Therefore,in order to improve the stability of cage,the type of aviation lubricating oil is chosen according to Table 6 under different working conditions.

    Table 5 Nonlinear dynamic response period of cage at different radial forces.

    Table 6 Recommended working condition for three aviation lubricating oils.

    6.Conclusions

    (1)Lubricant traction coefficient affects the dynamic characteristics of cage,and the motion of cage’s mass center shows the abundant periodic and non-periodic(quasiperiodic and chaotic)responses.In addition,cage’s whirl orbit presents different periods of nonlinear response and changing pattern in angular contact ball bearings lubricated by different types of aviation lubricating oils.

    (2)For three types of aviation lubricating oils,4109,4106 and 4050 in this paper,a too small or too large axial force is adverse to cage’s stability.With the increase of axial force,cage might undergo from chaotic state to periodic motion,and then ultimately tend to quasiperiodic state or chaotic state.

    (3)When bearing only bears an axial force,for the sake of cage’s stability,lubricant with low viscosity is suggested for lubrication of bearing working at high speed,light load and low temperature;lubricant with medium viscosity is suggested for lubrication of bearing working at high speed,heavy load and low temperature;lubricant with the medium and high temperature resistant is suggested for lubrication of bearing working at high speed,heavy load and high temperature.

    (4)When bearing simultaneously bears an axial force and a

    radial force,for the sake of cage’s stability,lubricant with medium viscosity and high temperature resistant is suggested for lubrication of bearing working at high speed,high temperature and heavy radial load;lubricant with low viscosity is suggested for lubricating of bearing working under any other working condition.

    Acknowledgements

    The study was financially co-supported by the National Natural Science Foundation of China(No.U1404514),Henan Outstanding Person Foundation(No.144200510020)of China and Collaborative Innovation Center of Major Machine Manufacturing in Liaoning,China.

    1.Walters CT.The dynamics of ball bearings.J Lubr Tech1970;93(1):1–10.

    2.Gupta PK.Dynamics of rolling element bearings.Parts I,II,III and IV.J Lubr Tech1979;101(3):293–326.

    3.Gupta PK.Some dynamic effects in high-speed solid-lubricated ball bearings.Tribol Trans1983;26(3):393–400.

    4.Gupta PK.Advanceddynamicsofrollingelements.New York:Springer Verlag;1984.p.76–99.

    5.Gupta PK.Frictional instabilities in ball bearings.Tribol Trans1988;31(2):258–68.

    6.Gupta PK.Modeling of instabilities induced by cage clearances in ball bearings.Tribol Trans1991;34(1):93–9.

    7.Boesiger EA,Donley AD,Loewenthal S.An analytical and experimental investigation of ball bearing retainer instabilities.Analyst1992;114(3):530–9.

    8.Lord J,Larsson R.Effects of slide-roll ratio and lubricant properties on elastohydrodynamic lubrication film thickness and traction.Proc Inst Mech Eng2001;215:301–8.

    9.Rahman MZ,Ohno N.Effect of lubricating oils on cage failure of ball bearings.Tribol Trans2003;46(4):499–505.

    10.Deng SE,Hao JJ.Dynamics analysis on cage of angular contact ball bearings.Bearing2007;10:1–5[Chinese].

    11.Pederson BM,Sadeghi F,Wassgren C.The effects of cage flexibility on ball-to-cage pocket contact forces and cage instability in deep groove ball bearings.SAE Tech Pap2006;1:0358–372.

    12.Liu XH,Deng SE.Dynamic stability analysis of cages in highspeed oil-lubricated angular contact ball bearings.Trans Tianjin Univ2011;17:20–7.

    13.Deng SE,Xie PF.Flexible-body dynamics analysis on cage of high-speed angular contact ball bearing.Acta Armamentarii2011;32(5):293–311.

    14.Sathyan K,Gopinath K,Lee SH,Hsu HY.Bearing retainer designs and retainer instability failures in spacecraft moving mechanical systems.Tribol Trans2012;55(4):503–11.

    15.Ashtekar A,Sadeghi F.A new approach for including cage flexibility in dynamic bearing models by using combined explicit if nite and discrete element methods.J Tribol2012;134(4):041502.

    16.Ye ZH.Cage instabilities in high-speed ball bearings.Appl MechMater2013;278–280:3–6.

    17.Abele E,Holland L,Nehrbass A.Image acquisition and image processing algorithms for movement analysis of bearing cages.J Tribol2015;138(2):021105.

    18.Deng SE,Jia QY,Xue JX.Design principle of rolling bearings.2rd ed.Beijing:China Standard Press;2014.p.225–37[Chinese].

    19.Gear CW.Simultaneous numerical solution of differential-algebraic equations.IEEE Trans Circ Theor1971;18(1):89–95.

    20.Harsha SP,Sandeep K,Prakash R.The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings.Int J Mech Sci2003;45(4):725–40.

    8 March 2016;revised 5 April 2016;accepted 10 May 2016

    Available online 15 October 2016

    *Corresponding author at:School of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China.Tel.:+86 379 64270625.

    E-mail addresses:526916105@qq.com(W.Zhang),dse@haust.edu.cn(S.Deng),gdchen@nwpu.edu.cn(G.Chen),372865368@qq.com(Y.Cui).

    Peer review under responsibility of Editorial Committee of CJA.

    波野结衣二区三区在线| 亚洲精品在线观看二区| 久久精品国产清高在天天线| 热99在线观看视频| 狠狠狠狠99中文字幕| 亚洲成人久久爱视频| 日本一本二区三区精品| 你懂的网址亚洲精品在线观看 | 天堂av国产一区二区熟女人妻| 亚洲成人av在线免费| 精华霜和精华液先用哪个| 最近视频中文字幕2019在线8| 国产片特级美女逼逼视频| 天堂影院成人在线观看| 免费观看在线日韩| 国产高清视频在线观看网站| 在线免费十八禁| 精品一区二区三区av网在线观看| 麻豆久久精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 国产高清有码在线观看视频| 亚洲av电影不卡..在线观看| 亚洲av五月六月丁香网| 国产蜜桃级精品一区二区三区| av视频在线观看入口| 又爽又黄无遮挡网站| 97超碰精品成人国产| 国产爱豆传媒在线观看| or卡值多少钱| 亚洲欧美精品综合久久99| 欧美+日韩+精品| 亚洲精品一区av在线观看| 亚洲最大成人av| 热99re8久久精品国产| 日韩一区二区视频免费看| 三级国产精品欧美在线观看| 国产一区二区激情短视频| 好男人在线观看高清免费视频| 最近最新中文字幕大全电影3| 亚洲经典国产精华液单| 久久这里只有精品中国| 亚洲精品影视一区二区三区av| 人妻久久中文字幕网| 不卡视频在线观看欧美| 国产精品av视频在线免费观看| 一区二区三区四区激情视频 | 国产伦在线观看视频一区| 此物有八面人人有两片| 日韩成人av中文字幕在线观看 | 免费av毛片视频| 六月丁香七月| 丝袜喷水一区| 日韩av不卡免费在线播放| 变态另类丝袜制服| 国产日本99.免费观看| 国产精品人妻久久久久久| 日韩人妻高清精品专区| 久久综合国产亚洲精品| 内地一区二区视频在线| 高清午夜精品一区二区三区 | 午夜免费激情av| 亚洲天堂国产精品一区在线| 国产高清视频在线播放一区| 偷拍熟女少妇极品色| 国产69精品久久久久777片| 日韩成人伦理影院| 色噜噜av男人的天堂激情| 91在线精品国自产拍蜜月| 99热这里只有是精品在线观看| 日日摸夜夜添夜夜添av毛片| 深夜a级毛片| 亚洲七黄色美女视频| 国产v大片淫在线免费观看| 久久鲁丝午夜福利片| eeuss影院久久| 成人午夜高清在线视频| 丝袜喷水一区| 欧美+亚洲+日韩+国产| a级毛片免费高清观看在线播放| 成人性生交大片免费视频hd| 国产成人一区二区在线| 日本 av在线| 久久午夜福利片| 尤物成人国产欧美一区二区三区| 国产精品一区二区性色av| 国产男人的电影天堂91| 热99re8久久精品国产| 亚洲国产日韩欧美精品在线观看| 黄片wwwwww| 夜夜爽天天搞| 久久久精品大字幕| 国产av在哪里看| 一夜夜www| 特大巨黑吊av在线直播| 久久精品91蜜桃| 国产私拍福利视频在线观看| 天美传媒精品一区二区| 在线免费十八禁| 欧美成人免费av一区二区三区| 国产色婷婷99| 亚洲最大成人中文| 亚洲成人av在线免费| 人妻夜夜爽99麻豆av| 色在线成人网| 国产高清激情床上av| 久久精品综合一区二区三区| 欧美一区二区亚洲| 久久久久九九精品影院| 午夜爱爱视频在线播放| 中出人妻视频一区二区| 亚洲中文日韩欧美视频| 搡老岳熟女国产| 欧美在线一区亚洲| 99精品在免费线老司机午夜| 欧美日韩在线观看h| 女人十人毛片免费观看3o分钟| 直男gayav资源| 久久鲁丝午夜福利片| 国内少妇人妻偷人精品xxx网站| 国产黄a三级三级三级人| 精品免费久久久久久久清纯| 又爽又黄a免费视频| 日本黄大片高清| 国产精品三级大全| 老司机福利观看| 国产精品1区2区在线观看.| 我的女老师完整版在线观看| 色视频www国产| 白带黄色成豆腐渣| 波多野结衣高清作品| 久久精品夜色国产| 波野结衣二区三区在线| 亚洲精品一卡2卡三卡4卡5卡| 在线免费观看的www视频| 简卡轻食公司| 亚洲经典国产精华液单| 国产精品爽爽va在线观看网站| 国产单亲对白刺激| 成人特级黄色片久久久久久久| 九色成人免费人妻av| 韩国av在线不卡| 亚洲欧美日韩东京热| 丰满的人妻完整版| 麻豆精品久久久久久蜜桃| 少妇熟女aⅴ在线视频| 国产成人91sexporn| 久久久色成人| 国产精品一区二区三区四区免费观看 | 欧美激情在线99| 一本精品99久久精品77| 日本与韩国留学比较| 一个人观看的视频www高清免费观看| 久久人妻av系列| 国产女主播在线喷水免费视频网站 | 亚洲在线自拍视频| 亚洲欧美日韩无卡精品| 欧美色视频一区免费| 国产亚洲精品综合一区在线观看| 亚洲一级一片aⅴ在线观看| 国产黄色视频一区二区在线观看 | 中文字幕av在线有码专区| 美女大奶头视频| 欧美成人a在线观看| 99热这里只有是精品50| 午夜精品国产一区二区电影 | 1000部很黄的大片| 69av精品久久久久久| 国产成人a区在线观看| 91午夜精品亚洲一区二区三区| 精品免费久久久久久久清纯| 最近最新中文字幕大全电影3| 亚洲精品日韩在线中文字幕 | 精品日产1卡2卡| 熟女电影av网| 搡老妇女老女人老熟妇| 国内精品久久久久精免费| 久久精品人妻少妇| 丝袜美腿在线中文| 亚洲人成网站在线观看播放| 91麻豆精品激情在线观看国产| 国产麻豆成人av免费视频| 少妇熟女aⅴ在线视频| 亚洲精品色激情综合| 简卡轻食公司| 在线观看免费视频日本深夜| 床上黄色一级片| 人妻少妇偷人精品九色| 久久天躁狠狠躁夜夜2o2o| 天美传媒精品一区二区| 午夜激情福利司机影院| 如何舔出高潮| 亚洲性久久影院| 免费在线观看影片大全网站| av免费在线看不卡| 国产黄色小视频在线观看| 久99久视频精品免费| 男女那种视频在线观看| 99久久九九国产精品国产免费| 91av网一区二区| 国产精品精品国产色婷婷| 人妻少妇偷人精品九色| 中文在线观看免费www的网站| 免费看光身美女| 日本与韩国留学比较| 国产一区二区激情短视频| 亚洲欧美日韩高清专用| 亚洲久久久久久中文字幕| 成人高潮视频无遮挡免费网站| 久久久午夜欧美精品| 成年女人永久免费观看视频| 在线免费观看不下载黄p国产| 亚洲av免费高清在线观看| 毛片女人毛片| 国产精品久久电影中文字幕| 少妇高潮的动态图| 久久精品国产自在天天线| 一个人免费在线观看电影| 国产69精品久久久久777片| 99久久精品一区二区三区| 日韩欧美 国产精品| 日韩三级伦理在线观看| 插阴视频在线观看视频| 特大巨黑吊av在线直播| 久久久久国产精品人妻aⅴ院| 日韩欧美精品v在线| 淫秽高清视频在线观看| 精品人妻熟女av久视频| 十八禁国产超污无遮挡网站| 成人特级黄色片久久久久久久| 日本 av在线| 99国产精品一区二区蜜桃av| 91精品国产九色| 看免费成人av毛片| av国产免费在线观看| 夜夜爽天天搞| 国产视频内射| 免费大片18禁| 成人性生交大片免费视频hd| 亚洲在线观看片| 在线天堂最新版资源| 久久久久久久久久黄片| 午夜亚洲福利在线播放| 欧美色欧美亚洲另类二区| 中国美白少妇内射xxxbb| 日本免费一区二区三区高清不卡| 亚洲精品色激情综合| 麻豆国产av国片精品| 啦啦啦韩国在线观看视频| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 久久久色成人| 国产精品野战在线观看| 日日啪夜夜撸| 淫秽高清视频在线观看| 中出人妻视频一区二区| 亚洲精品日韩在线中文字幕 | 午夜爱爱视频在线播放| 国产午夜福利久久久久久| 神马国产精品三级电影在线观看| 性色avwww在线观看| 欧美人与善性xxx| 国产精品人妻久久久影院| 校园春色视频在线观看| 亚洲精品日韩av片在线观看| 最新在线观看一区二区三区| 午夜福利在线在线| 好男人在线观看高清免费视频| 国产黄片美女视频| 嫩草影院新地址| 亚洲在线自拍视频| 国产精品一及| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 男人和女人高潮做爰伦理| 欧美不卡视频在线免费观看| 男女之事视频高清在线观看| 少妇的逼水好多| 亚洲av美国av| 国产精品永久免费网站| 久久这里只有精品中国| 精品久久久久久成人av| 少妇被粗大猛烈的视频| aaaaa片日本免费| 九九在线视频观看精品| 一进一出好大好爽视频| 男女啪啪激烈高潮av片| 成年女人永久免费观看视频| 久久精品夜色国产| 欧美日韩国产亚洲二区| 大型黄色视频在线免费观看| 乱人视频在线观看| 国产单亲对白刺激| 日日摸夜夜添夜夜添av毛片| 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 亚洲成a人片在线一区二区| 国产精品亚洲美女久久久| 97人妻精品一区二区三区麻豆| 男女之事视频高清在线观看| 亚洲久久久久久中文字幕| 九九在线视频观看精品| 国产精品人妻久久久影院| 国产成人aa在线观看| 麻豆一二三区av精品| 欧美日韩在线观看h| 亚洲高清免费不卡视频| 免费一级毛片在线播放高清视频| 国产一区二区三区av在线 | 长腿黑丝高跟| 国产精品美女特级片免费视频播放器| 久久久久久久久中文| 蜜臀久久99精品久久宅男| 成人午夜高清在线视频| av黄色大香蕉| 国产极品精品免费视频能看的| 国产国拍精品亚洲av在线观看| 97超级碰碰碰精品色视频在线观看| 国产伦在线观看视频一区| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人综合色| 国产色爽女视频免费观看| 91午夜精品亚洲一区二区三区| 亚洲av一区综合| 人妻久久中文字幕网| 亚洲最大成人中文| 亚洲av.av天堂| 亚洲欧美中文字幕日韩二区| 成人欧美大片| 日韩欧美在线乱码| 黄色配什么色好看| 久久久成人免费电影| 午夜福利视频1000在线观看| 国产av麻豆久久久久久久| 亚洲真实伦在线观看| 亚洲国产精品成人综合色| 亚洲av成人精品一区久久| 成人av一区二区三区在线看| av在线天堂中文字幕| 内地一区二区视频在线| 欧美日韩一区二区视频在线观看视频在线 | 久久九九热精品免费| 欧美高清成人免费视频www| 一区福利在线观看| 禁无遮挡网站| 天堂av国产一区二区熟女人妻| 午夜影院日韩av| 日韩欧美精品免费久久| 中文资源天堂在线| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av成人av| 国产视频内射| 91av网一区二区| 国产精品伦人一区二区| 一a级毛片在线观看| 国产v大片淫在线免费观看| 国产精品无大码| 国产视频内射| 国产 一区精品| 99热全是精品| 国产三级在线视频| 国产精品伦人一区二区| 日韩精品有码人妻一区| 欧美中文日本在线观看视频| 夜夜看夜夜爽夜夜摸| avwww免费| 成人国产麻豆网| 毛片一级片免费看久久久久| 国产 一区 欧美 日韩| 人妻夜夜爽99麻豆av| 我要搜黄色片| 国产高清三级在线| 久久久午夜欧美精品| 少妇猛男粗大的猛烈进出视频 | 六月丁香七月| 成人精品一区二区免费| 亚洲欧美成人综合另类久久久 | 国产精品,欧美在线| 51国产日韩欧美| 精品福利观看| 久久精品综合一区二区三区| 国产精品不卡视频一区二区| 精品免费久久久久久久清纯| 亚洲经典国产精华液单| 18禁裸乳无遮挡免费网站照片| 亚洲成人av在线免费| 高清毛片免费观看视频网站| 久久精品91蜜桃| 日韩亚洲欧美综合| 嫩草影视91久久| 亚洲人与动物交配视频| 日本与韩国留学比较| 一级av片app| 久久精品国产自在天天线| 内地一区二区视频在线| 在线免费观看的www视频| 亚洲av成人精品一区久久| 久久人人爽人人爽人人片va| 少妇的逼水好多| 国产精品精品国产色婷婷| 欧美最黄视频在线播放免费| 久久这里只有精品中国| 国内揄拍国产精品人妻在线| 卡戴珊不雅视频在线播放| 日本一本二区三区精品| 看黄色毛片网站| 2021天堂中文幕一二区在线观| 性插视频无遮挡在线免费观看| 国产欧美日韩精品一区二区| 国产精品av视频在线免费观看| 老司机午夜福利在线观看视频| 男女啪啪激烈高潮av片| 男插女下体视频免费在线播放| 亚洲欧美日韩东京热| av在线天堂中文字幕| 联通29元200g的流量卡| avwww免费| 成年女人毛片免费观看观看9| 天天躁夜夜躁狠狠久久av| av女优亚洲男人天堂| 国产精品久久久久久久电影| 亚洲精品久久国产高清桃花| 三级经典国产精品| 国产精品,欧美在线| 99久久成人亚洲精品观看| 一a级毛片在线观看| 久久草成人影院| 亚洲美女黄片视频| 麻豆乱淫一区二区| 国内少妇人妻偷人精品xxx网站| 日本欧美国产在线视频| 伦理电影大哥的女人| 久久久久久久午夜电影| 成人一区二区视频在线观看| 波多野结衣高清作品| 乱码一卡2卡4卡精品| 日本 av在线| 99热这里只有精品一区| 在线观看一区二区三区| 成人二区视频| 亚洲激情五月婷婷啪啪| 亚洲最大成人手机在线| 三级经典国产精品| 日韩欧美免费精品| 日韩国内少妇激情av| 国产精品久久视频播放| 国产高潮美女av| 韩国av在线不卡| 日韩人妻高清精品专区| 亚洲国产色片| 国产午夜福利久久久久久| 久久久久久伊人网av| av在线播放精品| av在线亚洲专区| 日本免费a在线| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 成人美女网站在线观看视频| 国产私拍福利视频在线观看| 亚洲美女搞黄在线观看 | 亚洲精品国产av成人精品 | 两个人视频免费观看高清| 伦精品一区二区三区| 偷拍熟女少妇极品色| 搡老熟女国产l中国老女人| 日韩成人av中文字幕在线观看 | 六月丁香七月| 久久精品综合一区二区三区| 亚洲不卡免费看| 日本色播在线视频| 在线免费观看不下载黄p国产| 国产午夜福利久久久久久| 在线观看午夜福利视频| 欧美另类亚洲清纯唯美| 精品少妇黑人巨大在线播放 | 国产色婷婷99| 免费av毛片视频| 在线播放国产精品三级| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 12—13女人毛片做爰片一| 插阴视频在线观看视频| 成人亚洲欧美一区二区av| 国产精品嫩草影院av在线观看| 国产av在哪里看| 国产久久久一区二区三区| 天堂√8在线中文| 国产午夜精品论理片| 久久午夜福利片| 久久久久久九九精品二区国产| 一级av片app| 高清日韩中文字幕在线| 午夜视频国产福利| 丝袜美腿在线中文| 91久久精品电影网| 蜜桃亚洲精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲美女视频黄频| 99久久精品一区二区三区| 69人妻影院| 中文亚洲av片在线观看爽| 国产美女午夜福利| 日韩精品有码人妻一区| 亚洲丝袜综合中文字幕| 欧美zozozo另类| 人妻夜夜爽99麻豆av| 久久精品国产99精品国产亚洲性色| 男女做爰动态图高潮gif福利片| 成人综合一区亚洲| 一个人免费在线观看电影| 你懂的网址亚洲精品在线观看 | 国产精品一区www在线观看| 深夜a级毛片| 亚洲人成网站高清观看| 18禁在线播放成人免费| 成人特级黄色片久久久久久久| aaaaa片日本免费| 国产成人91sexporn| 在线国产一区二区在线| 成人无遮挡网站| 国产三级中文精品| 色尼玛亚洲综合影院| 色哟哟·www| 看免费成人av毛片| 在线免费十八禁| 一a级毛片在线观看| 可以在线观看毛片的网站| 久久久久久久午夜电影| 国产亚洲精品av在线| 亚洲av第一区精品v没综合| 精品99又大又爽又粗少妇毛片| 两性午夜刺激爽爽歪歪视频在线观看| 91久久精品国产一区二区三区| 啦啦啦韩国在线观看视频| 波多野结衣高清作品| 久久久精品大字幕| 国产av不卡久久| 国产欧美日韩精品一区二区| 亚洲精品国产成人久久av| 国产精品人妻久久久久久| 露出奶头的视频| 国产精品亚洲美女久久久| 日本免费a在线| 夜夜看夜夜爽夜夜摸| 最新在线观看一区二区三区| 亚洲自偷自拍三级| 国内精品一区二区在线观看| 人妻少妇偷人精品九色| 久久精品国产亚洲av香蕉五月| 亚洲人成网站在线观看播放| 亚洲精品久久国产高清桃花| 2021天堂中文幕一二区在线观| 国产高清三级在线| 69人妻影院| 成人毛片a级毛片在线播放| 免费黄网站久久成人精品| 国产一区二区亚洲精品在线观看| 亚洲av五月六月丁香网| 精品无人区乱码1区二区| 国产私拍福利视频在线观看| 熟妇人妻久久中文字幕3abv| 欧美色视频一区免费| eeuss影院久久| 麻豆一二三区av精品| 97热精品久久久久久| 日本与韩国留学比较| 精品久久久噜噜| 色播亚洲综合网| 国产乱人视频| 午夜久久久久精精品| 观看美女的网站| 色哟哟哟哟哟哟| 国产精品久久电影中文字幕| 国产精品爽爽va在线观看网站| 中文亚洲av片在线观看爽| 国产精品伦人一区二区| 麻豆国产97在线/欧美| av天堂中文字幕网| 韩国av在线不卡| 国产成年人精品一区二区| 国产精品人妻久久久久久| av在线播放精品| 全区人妻精品视频| 少妇人妻精品综合一区二区 | 精品少妇黑人巨大在线播放 | 亚洲成人中文字幕在线播放| 直男gayav资源| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 男女视频在线观看网站免费| 99热精品在线国产| 有码 亚洲区| 一个人看视频在线观看www免费| 欧美成人a在线观看| 人妻夜夜爽99麻豆av| 亚洲成a人片在线一区二区| 久久精品国产自在天天线| 观看免费一级毛片| 床上黄色一级片| 中国美白少妇内射xxxbb| 日日摸夜夜添夜夜爱| 成年女人看的毛片在线观看| 欧美xxxx性猛交bbbb| 亚洲成人精品中文字幕电影| 亚洲图色成人| 色哟哟·www| 在线播放无遮挡| 18禁裸乳无遮挡免费网站照片| 美女免费视频网站| 久久久久久久久中文| 99久国产av精品国产电影| 午夜a级毛片| 天堂av国产一区二区熟女人妻| 最近手机中文字幕大全| 最新中文字幕久久久久| 色5月婷婷丁香|