• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    例談運(yùn)動(dòng)學(xué)圖像的妙用①*

    2017-11-17 06:02:52何崇榮
    物理通報(bào) 2017年12期
    關(guān)鍵詞:水平面運(yùn)動(dòng)學(xué)機(jī)車

    何崇榮

    (武漢市黃陂區(qū)第一中學(xué) 湖北 武漢 430300)

    張 黎

    (武漢市黃陂區(qū)第三中學(xué) 湖北 武漢 430317)

    例談運(yùn)動(dòng)學(xué)圖像的妙用①*

    何崇榮

    (武漢市黃陂區(qū)第一中學(xué) 湖北 武漢 430300)

    張 黎

    (武漢市黃陂區(qū)第三中學(xué) 湖北 武漢 430317)

    舉例介紹利用圖像法巧妙解決一些比較復(fù)雜的運(yùn)動(dòng)學(xué)問(wèn)題.

    運(yùn)動(dòng)學(xué) 圖像 妙用

    圖像法是解決物理問(wèn)題常用的方法,它往往能直觀地反映物理規(guī)律.利用圖像法解題有時(shí)能將復(fù)雜問(wèn)題簡(jiǎn)單化,形成巧解.下面通過(guò)具體例子來(lái)談?wù)勥\(yùn)動(dòng)學(xué)圖像的巧妙應(yīng)用.

    1 速率-時(shí)間圖像

    【例1】如圖1所示,一個(gè)固定在水平面上的光滑物塊,其左側(cè)面是斜面AB,右側(cè)面是曲面AC,已知AB和AC的長(zhǎng)度相等.兩個(gè)小球p和q同時(shí)從A點(diǎn)分別沿AB和AC由靜止開(kāi)始下滑,比較它們到達(dá)水平面的先后( )

    A.q小球先到 B.p小球先到

    C.兩小球同時(shí)到 D.無(wú)法確定

    圖1 例1題圖

    答案:A.

    解析:小球p沿光滑斜面做勻加速直線運(yùn)動(dòng),小球q沿光滑曲面下滑,沿曲面切線方向的加速度不斷減小.根據(jù)機(jī)械能守恒,兩小球到達(dá)水平面的速率相同.于是畫(huà)出兩者運(yùn)動(dòng)的速率-時(shí)間圖像如圖2所示,圖像直觀表明:tqs△BB′O,而s△BB′O>s△AA′O=sp,所以sq>sp,這與AB和AC的長(zhǎng)度相同相矛盾,于是兩者的速率-時(shí)間圖像大概應(yīng)該是如圖2所示.于是正確答案為A.

    圖2 速率-時(shí)間圖像1

    圖3 速率-時(shí)間圖像2

    評(píng)析:要比較兩小球到達(dá)水平面的時(shí)間,可以考慮將兩者到達(dá)水平面的時(shí)間表示出來(lái).但是小球q沿光滑曲面下滑,做一般的曲線運(yùn)動(dòng),很難表示小球q到達(dá)水平面的時(shí)間.而利用速率-時(shí)間圖像,不用求兩者到達(dá)水平面的時(shí)間表達(dá)式,就能直觀反映兩者所用時(shí)間大小關(guān)系.

    2 速度-時(shí)間圖像

    【例2】(原創(chuàng)題)機(jī)車啟動(dòng)往往有兩種方式:以恒定功率(即額定功率)啟動(dòng)和以恒定的加速度啟動(dòng),設(shè)機(jī)車分別按這兩種方式從靜止啟動(dòng)到獲得最大速度所用時(shí)間分別為t1,t2,行駛距離分別是s1,s2,則關(guān)于機(jī)車兩種啟動(dòng)方式所用時(shí)間及行駛距離比較正確的是( )

    A.t1>t2B.t1

    C.s1s2

    答案:B,C.

    解析:如圖4所示,是機(jī)車啟動(dòng)過(guò)程的速度-時(shí)間圖像.曲線OBC表示以恒定功率啟動(dòng),曲線OAD表示以恒定加速度啟動(dòng).設(shè)機(jī)車從靜止啟動(dòng),獲得的最大速度為vm,機(jī)車以恒定的加速度啟動(dòng),勻加速持續(xù)的時(shí)間為t0,此時(shí)機(jī)車的速度為v1m,機(jī)車的額定功率為Pm,曲線上A,B兩點(diǎn)對(duì)應(yīng)的牽引力分別為FA,F(xiàn)B,兩點(diǎn)的加速度分別為aA,aB.

    圖4 機(jī)車啟動(dòng)的速度-時(shí)間圖像

    在A點(diǎn)有

    Pm=FAv1m

    在B點(diǎn)有

    Pm=FBv1m

    于是FA=FB,根據(jù)牛頓第二定律得

    aA=aB

    所以曲線BC與曲線AD完全相同,所以t1

    由于曲線BC與曲線AD完全相同,所以曲線BC與坐標(biāo)軸圍成的面積和曲線AD與坐標(biāo)軸圍成的面積相同.對(duì)于曲線OBC,設(shè)曲線上B點(diǎn)的切線與t軸相交于E點(diǎn),則OA//BE,于是△BB′E?△AA′O,所以曲線OB與坐標(biāo)軸圍成的面積小于直線OA與坐標(biāo)軸圍成的面積.所以s1

    評(píng)析:機(jī)車不管采用哪種方式啟動(dòng),運(yùn)動(dòng)過(guò)程中都有一階段做的是變加速直線運(yùn)動(dòng),那么很難定量表示機(jī)車行駛時(shí)間和距離.但利用速度-時(shí)間圖像可直觀反映兩種啟動(dòng)方式中所用時(shí)間的大小關(guān)系以及行駛距離間的大小關(guān)系.

    3 位移-時(shí)間圖像

    【例3】在地面上以初速度2v0豎直上拋一物體A后,又以初速度v0在同一地點(diǎn)豎直上拋另一個(gè)物體B,若要使兩物體能在空中相遇,則兩物體拋出的時(shí)間間隔Δt必須滿足的條件是(不計(jì)空氣阻力)( )

    答案:C.

    解法1:找出臨界情況

    當(dāng)時(shí)間間隔Δt較小時(shí),會(huì)導(dǎo)致B已落地,A還在空中,所以最短時(shí)間間隔為B落地時(shí),A也恰好落回原處相遇,因此

    當(dāng)時(shí)間間隔Δt較大時(shí),會(huì)出現(xiàn)A已落地,B還沒(méi)有拋出,所以最長(zhǎng)時(shí)間間隔為B拋出時(shí),A也恰好落回原處相遇,因此

    所以要使兩物體能在空中相遇,兩物體拋出的時(shí)間間隔Δt必須滿足

    解法2:根據(jù)運(yùn)動(dòng)學(xué)知識(shí)列方程求解

    設(shè)B拋出后經(jīng)過(guò)時(shí)間t,兩者在空中相遇.則

    然后根據(jù)xA=xB,B在空中運(yùn)動(dòng)的時(shí)間t滿足

    解法3:利用位移-時(shí)間圖像求解

    兩物體的位移-時(shí)間圖像,如圖5所示,兩條圖線的交點(diǎn)表示A,B相遇時(shí)刻,由圖可直觀看出兩物體拋出的時(shí)間間隔Δt必須滿足

    圖5 位移-時(shí)間圖像

    拓展:當(dāng)兩物體拋出的時(shí)間間隔Δt必須滿足什么條件時(shí),B在上升(或下降)階段與A相遇呢?

    圖像很直觀地顯示B剛好到達(dá)最高點(diǎn)時(shí)與A相遇這種臨界情況.

    設(shè)B剛好到達(dá)最高點(diǎn)時(shí)與A相遇,根據(jù)xA=xB得

    解得

    于是當(dāng)

    時(shí),B在下降階段與A相遇;當(dāng)

    時(shí),B在上升階段與A相遇.

    評(píng)析:第一種解法兩種臨界情況不是那么容易判斷出來(lái);第二種解法利用運(yùn)動(dòng)學(xué)知識(shí)列方程計(jì)算比較麻煩;第三種利用位移-時(shí)間圖像求解就很直觀明了,借助圖像可以很容易理解兩種臨界情況,也能直觀顯示兩物體相遇具體情景.

    4 加速度-時(shí)間圖像

    【例4】(改編題)如圖6所示,把一重為G的物體,用水平推力F=kt(k為恒量,t為時(shí)間)壓在豎直的足夠高的平整墻上,從t=0開(kāi)始,求物體運(yùn)動(dòng)的時(shí)間和最大速度.

    解析:分析物體的運(yùn)動(dòng)情況,對(duì)物體,根據(jù)牛頓第二定律有

    mg-μN(yùn)=ma

    N=F=kt

    所以

    mg-μkt=ma

    物體先做加速度逐漸減小的加速運(yùn)動(dòng),當(dāng)加速度減為零時(shí)

    之后正壓力N繼續(xù)增大,則摩擦力繼續(xù)增大,于是物體開(kāi)始減速,減速階段加速度大小

    所以第二階段物體做加速度逐漸增大的減速運(yùn)動(dòng),當(dāng)物體速度減為零時(shí),物體靜止.

    圖6 例4題圖

    這兩個(gè)階段,物體的加速度關(guān)于t=t1對(duì)稱,如圖7所示,于是全過(guò)程物體的運(yùn)動(dòng)時(shí)間

    由于物體加速度a與時(shí)間t滿足線性關(guān)系,于是a-t圖像與坐標(biāo)軸圍成的面積很容易計(jì)算,從而求出物體的最大速度

    Δv=Sa-t=vm-0

    圖7 加速度-時(shí)間圖像

    評(píng)析:由于物體做的是變加速直線運(yùn)動(dòng),高中階段不可能用運(yùn)動(dòng)學(xué)公式求解.而物體加速度a與時(shí)間t滿足線性關(guān)系,于是可以利用a-t圖像求解物體運(yùn)動(dòng)的最大速度和時(shí)間.

    2017-03-14)

    *①《物理通報(bào)》武漢工作室供稿.

    猜你喜歡
    水平面運(yùn)動(dòng)學(xué)機(jī)車
    大連機(jī)車
    重載機(jī)車牽引計(jì)算仿真系統(tǒng)開(kāi)發(fā)及其應(yīng)用
    基于MATLAB的6R機(jī)器人逆運(yùn)動(dòng)學(xué)求解分析
    基于CTC3.0系統(tǒng)機(jī)車摘掛功能的實(shí)現(xiàn)
    基于D-H法的5-DOF串并聯(lián)機(jī)床運(yùn)動(dòng)學(xué)分析
    一種機(jī)車聯(lián)接箱工藝開(kāi)發(fā)
    坡角多大,圓柱體在水平面滾得最遠(yuǎn)
    水平面內(nèi)勻速圓周運(yùn)動(dòng)的四種模型解讀
    基于運(yùn)動(dòng)學(xué)原理的LBI解模糊算法
    水平面上圓周運(yùn)動(dòng)中臨界問(wèn)題的分析和解題策略
    乐昌市| 临夏市| 堆龙德庆县| 中牟县| 娱乐| 望奎县| 泾源县| 如东县| 荔浦县| 泰和县| 南平市| 锦屏县| 射洪县| 宜兴市| 石首市| 会同县| 新和县| 高碑店市| 大安市| 大足县| 内黄县| 浮梁县| 喀什市| 新竹市| 三都| 玉门市| 黔西| 福海县| 深泽县| 昌邑市| 安丘市| 黄骅市| 廉江市| 萨迦县| 南华县| 龙里县| 特克斯县| 清涧县| 璧山县| 吴堡县| 横山县|