• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylationdissociated 1

    2016-12-02 10:48:16TianmeiQianLiliZhaoJingWangPingLiJingQinYishengLiuBinYuFeiDingXiaosongGuSonglinZhou

    Tian-mei Qian, Li-li Zhao, Jing Wang, Ping Li, Jing Qin, Yi-sheng Liu, Bin Yu, Fei Ding, Xiao-song Gu, Song-lin Zhou

    Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China

    RESEARCH ARTICLE

    miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylationdissociated 1

    Tian-mei Qian#, Li-li Zhao#, Jing Wang, Ping Li, Jing Qin, Yi-sheng Liu, Bin Yu, Fei Ding, Xiao-song Gu, Song-lin Zhou*

    Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China

    Graphical Abstract

    #These authors contributed equally to this study.

    orcid: 0000-0001-8598-0922 (Songlin Zhou)

    Accepted: 2015-12-22

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively adjust gene expression in multifarious biological processes. However, the regulatory effects of miRNAs on Schwann cells remain poorly understood. Previous microarray analysis results have shown that miRNA expression is altered following sciatic nerve transaction, thereby affecting proliferation and migration of Schwann cells. This study investigated whether miR-148b-3p could regulate migration of Schwann cells by directly targeting cullin-associated and neddylation-dissociated 1 (Cand1). Up-regulated expression of miR-148b-3p promoted Schwann cell migration, whereas silencing of miR-148b-3p inhibited Schwann cell migration in vitro. Further experiments confirmed that Cand1 was a direct target of miR-148b-3p, and Cand1 knockdown reversed suppression of the miR-148b-3p inhibitor on Schwann cell migration. These results suggested that miR-148b-3p promoted migration of Schwann cells by directly targeting Cand1 in vitro.

    nerve regeneration; sciatic nerve injury; miR-148b-3p; Schwann cells; migration; Cand1; gene expression; microarray; peripheral nerve injury; mechanisms; neural regeneration

    Introduction

    Recovery of injuried central and peripheral nerves remains problematic and difficult (Navarro et al., 2007). This is primarily due to the inability for intrinsic growth and the existence of a regeneration barrier (Zou et al., 2009). Schwann cells (SCs) play a very important role in removing growth obstacles. Following sciatic nerve injury, mature SCs differentiate, proliferate, and migrate, thereby forming a path to guide the growth of new axons (Kury et al., 2001). SCs also contribute to the construction of a microenvironment for nerve regeneration by excreting multiple neurotrophic factors and adhesion molecules (Ngeow, 2010). However, the particular mechanisms that regulate SC proliferation and migration remain unknown. For successful regeneration, it is necessary to explore the molecular mechanisms of SCs.

    microRNAs (miRNAs) are endogenous molecules that are approximately 22 nucleotides of non-coding RNA molecules (Bartel, 2009). miRNAs come from either miRNA genes or as a part of intron-encoded proteins; they are further maturated by the endoribonuclease Dicer (Wu and Murashov, 2013). Mature miRNA can play a negative role in the degradation or silencing of mRNA by combiningthe 3′-untranslated region (UTR) (Filipowicz et al., 2008; Carthew and Sontheimer, 2009). Knocking out the key Dicer not only inhibits differentiation, but also promotes apoptosis and cell death (De Pietri Tonelli et al., 2008). In SCs, Dicer deletion increases proliferation, but blocks myelination (Bremer et al., 2010; Pereira et al., 2010; Verrier et al., 2010). Taken together, these studies suggest that miRNAs play a critical role in cell development.

    The role of miRNA has also been studied in a variety of diseases. For example, decreased miR-485-5p promotes BACE1, which stimulates the development of Alzheimer's disease (Faghihi et al., 2010). miR-433 and miR-7 regulate expression of α-synuclein, which is associated with cytotoxicity in Parkinson's disease (Wang et al., 2008; Junn et al., 2009). Previous studies have shown that miR-160b, 30b, and 181b are significantly up-regulated in the frontal cortex of schizophrenia patients (Kim et al., 2010; Santarelli et al., 2011), and miR-148b-3p increases proliferation of breast cancer cell lines (Jiang et al., 2015). Nevertheless, very little is understood about the role that miRNAs play in nerve regeneration (Lu et al., 2014).

    Results from microarray analyses and extensive function screening have revealed that expression of many miRNAs, such as miR-221/222 and miR-182, changes after sciatic nerve injury and affects proliferation and migration of SCs (Yu et al., 2011, 2012a, b). The present study investigated whether miR-148b-3p could regulate SC migration by directly targeting cullin-associated and neddylation-dissociated 1 (Cand1), a negative regulator in the proliferation (Murata et al., 2010).

    Materials and Methods

    Primary Schwann cell culture and transfection with oligonucleotide

    Primary SCs were obtained from sciatic nerves of 1-day-old Sprague-Dawley rats of either sex. The SCs were cultured for 2 days with 10 μM Ara-C (Sigma, St Louis, MO, USA) to eliminate fibroblasts. The SCs were then further cultured with 50 ng/mL recombinant glial growth factor 2 (R&D Systems, Minneapolis, MN, USA) and 2 μM forskolin (R&D Systems) for 3 days, and then were purified by incubating with anti-Thy1.1 antibody diluted in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (1:1,000; Sigma) for 1.5 hours on ice (Mantuano et al., 2008). SCs were used when the purity reached 98%, as determined by immunoreaction with S100β. Primary SC cultures were cultured in DMEM containing 10% fetal bovine serum at 37°C and in a humidified 5% CO2incubator. miR-148b-3p mimics (20 mM), mimic control (20 mM), miR-148b-3p inhibitors (100 mM), inhibitor control (100 mM) or siRNAs (100 mM), and negative control (100 mM) (Ribobio, Guangzhou, Guangdong Province, China) were separately transfected into the SCs using Lipofectamine RNAiMAX transfection reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions (Yu et al., 2012a). Assays were performed three times in triplicate wells. All experimental procedures involving animals were conducted in accordance with institutional animal care guidelines and were ethically approved by the Administration Committee of Experimental Animals (SYXK (Su) 2015-0016), Jiangsu Province, China.

    Quantitative reverse-transcription polymerase chain reaction (qRT-PCR)

    At 36 hours after transfection with miRNA mimics or siRNAs, the Prime-Script RT reagent Kit (TaKaRa, Dalian, Liaoning Province, China) was used to synthesize reverse-transcribed complementary DNA (cDNA). PCR was conducted using the SYBR Premix Ex Taq kit (TaKaRa). RT-PCR was performed on an ABI7900 thermocycler (Applied Biosystems, Foster, CA, USA). qPCR primers were designed using NCBI Primer Blast and were manufactured by Sangon Biotech (Shanghai, China). Cand 1 primer sequence: forward: 5′-CCA GTC ACA GAT CAG CTC CA-3′; reverse: 5′-CCT CAT GTG GAA CAC ACG TC-3′; product size: 119 bp. The reaction system was as follows: 10 μL SYBR? Premix Ex TaqTM (2×), 2 μL PCR primer, 0.4 μL ROX Reference Dye, 1 μL product from RT reaction, and ddH2O to 20 μL. The PCR reaction was as follows: initial denaturation at 95°C for 2 minutes; 45 cycles of denaturation at 95°C for 15 seconds, annealing elongation at 60°C for 1 minute; final elongation at 95°C for 15 seconds, 60°C for 1 minute. Each sample was run in triplicate in each assay. β-Actin was used as the endogenous control. The relative expression level was calculated using the comparative 2-ΔΔCtmethods (Livak and Schmittgen, 2001).

    Cell migration assay

    SC migration was investigated using Transwell chambers with 8-mm-deep pores (Costar, Cambridge, MA, USA). The bottom surface of each membrane was coated with 10 mg/mL fibronectin (Sigma). At 36 hours after transfection with miR-148b-3p mimics (20 mM), miR-148b-3p inhibitors (100 mM), or siRNAs (100 mM), 100 μL SCs (1 × 106cells/mL) were re-suspended in DMEM and transferred to the top chambers of each Transwell (Mantuano et al., 2008). The lower chambers were loaded with 500 μL complete medium. After 24 hours, a cotton swab was used to clean the upper surface of each membrane. Migrated cells on the bottom surface of the Transwell membrane were stained with 0.1% crystal violet and quantified using a DMR inverted microscope (Leica Microsystems Bensheim, Germany). Assays were performed three times in triplicate wells. A total of 10 fields were randomly sampled per well. The average number of crystal violet-stained cells per field was determined.

    Luciferase reporter assay

    Potential mRNA targets of miR-148b-3p were predicted by Target Scan and microarray. Cand1 was finally chosen from the intersection of the prediction and microarray. We obtained the 3′-UTR sequence of Cand1 from the genomic DNA and sub-cloned the region directly downstream of the luciferase gene stop codon in the luciferase reporter vector. Different p-Luc-UTR luciferase reporter vectors were obtained from PCR amplification of the 3′-UTR sequence of Cand1 usingappropriate primers. Cand1-3′ UTR primer sequence: forward: 5′-CCG GAA TTC ACG TGT GTT CCA CAT GAG-3′; reverse: 5′-CCG CTC GAG AAA GTT TTA ACA TTT TAA TCC-3′; product size: 336 bp. The 3′-UTR sequences were confirmed by sequencing.

    Figure 1 Effects of miR-148b-3p on Schwann cell migration in vitro (crystal violet staining).

    Figure 2 miR-148b-3p-induced inhibition of Cand1 expression by targeting the 3′-untranslated region.

    Figure 3 Recapitulation of miR-148b-3p effects by Cand1 knockdown in Schwann cells.

    HEK293T cells were transfected with p-Luc-UTR (30 ng), miRNA mimics (5 pmol), and Renilla (5 ng) in each well of 96-well plates using the Lipofectamine 2000 transfection system (Invitrogen). At 48 hours after incubation, activities of firefly and Renilla luciferases were measured in the cell lysates using the dual-luciferase reporter assay system (Promega, Madison, WI, USA).

    Statistical analysis

    All data are expressed as the mean ± SD. Statistical analyses were performed by SPSS 18.0 software (SPSS, Chicago, IL, USA). The Student's t-test was used to compare the difference of intergroup data. A value of P < 0.05 was considered statistically significant.

    Results

    Effects of miR-148b-3p on Schwann cell migration in vitro We investigated whether miR-148b-3p played a part in the regeneration of peripheral nerves. Primary SCs were transfected with mimic control and miR-148b-3p mimic, and then added to Transwell inserts 36 hours later. At 24 hours after cell culture, crystal violet staining showed that miR-148b-3p mimic significantly promoted SC migration compared with the control (P < 0.05; Figure 1A). Silencing miR-148b-3p decreased SC migration when transfected with the inhibitor control and miR-148b-3p inhibitor (P < 0.05; Figure 1B). These results indicated that miR-148b-3p increased SC migration in vitro.

    miR-148b-3p induced inhibition of Cand1 expression by targeting the 3′-UTR region

    To investigate the underlying molecular mechanisms of miR-148b-3p initiating SC migration, potential mRNA targets of miR-148b-3p were selected by cross-referencing programs (Target Scan) and microarray results. A total of 476 potential target genes were predicted by software, and 1,736 down-regulated genes after transfection with miR-148b-3p mimics of SC were obtained (P < 0.05; Figure 2A). Among the 52 genes in the intersection of the two predictions, Cand1 was finally selected as a potential target of miR-148b-3p. Furthermore, a luciferase reporter construct was made by inserting the Cand1 3′-UTR containing the predicted target site of miR-148b-3p into the luciferase reporter gene. The relative luciferase activity was repressed by nearly 50% by miR-148b-3p (Figure 2B). These results demonstrated that miR-148b-3p specifically repressed Cand1 expression through the predicted target site in the Cand1 3′-UTR. qRT-PCR analysis further demonstrated that miR-148b-3p dramatically suppressed endogenous mRNA expression of Cand1 when the SCs were transfected with miR-148b-3p mimics (Figure 2C). These results suggested that miR-148b-3p reduced Cand1 expression by targeting the 3′-UTR region.

    Recapitulation of miR-148b-3p effects by Cand1 knockdown in Schwann cells

    Two specific small interfering RNAs (siRNAs) against Cand1 were synthesized. The results showed that siRNA-1 and siRNA-2 both inhibited Cand1 expression compared with the negative control (P < 0.05; Figure 3A). The Transwell assay showed that siRNA-1 and siRNA-2 both promoted SC migration, although the effect of siRNA-2 was more obvious (P < 0.05; Figure 3B). To further determine whether down-regulation of Cand1 directly mediated miR-148b-3p-induced SC migration, SCs were transfected with miR-148b-3p inhibitor with or without siRNA-2 against Cand1 (P < 0.05). As shown in Figure 3C, anti-miR-148b-3p significantly decreased SC migration. Conversely, a significant increase in cell migration was detected in groups co-transfected with miR-148b-3p inhibitor and siRNA-2 (P < 0.05). These results suggested that inhibition of Cand1 expression rescued the migration suppression induced by the miR-148b-3p inhibitor.

    Discussion

    The in vitro role of miR-148b-3p in SCs was explored in this study. Transfection with miR-148b-3p mimics or inhibitors revealed that miR-148b-3p improved SC migration. Cand1, a negative regulator of SKP1-Cullin1-F-box ubiquitin ligases, has the direct target region of miR-148b-3p. Decreased Cand1 expression can promote SC migration. These data showed that increased expression of miR-148b-3p promotes SC migration by reducing Cand1 expression.

    During nerve regeneration after peripheral nerve injury, miRNAs provide a powerful mechanism for post-transcriptional control of gene expression. Microarray analysis revealed miRNAs with significant expression changes, such as miR-9, miR-132, miR-182, Let-7, miR-221, and miR-222. Our previous studies showed that miR-9 inhibits SC migration by targeting Cthrc1 (Zhou et al., 2014); miR-221 and miR-222 promote SC proliferation and migration by targeting LASS2 (Yu et al., 2012b); miR-182 inhibits SC proliferation and migration by targeting FGF9 and NTM following sciatic nerve injury (Yu et al., 2012a); and Let-7 reduces SC proliferation and migration by targeting NGF (Li et al., 2015). Liu et al. (2015) showed that inhibition of miR-148b stimulates cell proliferation, enhances chemosensitivity, and increases cell metastasis and angiogenesis in vitro. Another study confirmed that miR-148b suppresses hepatocellular carcinoma cell proliferation and invasion by targeting the WNT1/β-catenin pathway (Zhang et al., 2015). However, the mechanisms of miR-148b-3p are different from miR-148b, and miR-148b-3p has been shown to increase proliferation of breast cancer cell lines (Aure et al., 2013). Proliferation of breast cancer cell lines can also be increased by miR-148b-3p (Jiang et al., 2015). The results from the present study showed another function of miR-148b-3p increased SC migration in vitro by targeting Cand1.

    Cand1 has been shown to remold the SKP1-Cullin1-F-box repertoire in response to changing growth conditions (Zemla et al., 2013), and Cand1 has also been shown to bea negative regulator in the proliferation of lymph node carcinoma of prostate cells (Murata et al., 2010). The present study explored whether miR-148b-3p and Cand1 affected SC proliferation, and the results showed no change in SC proliferation, regardless of whether expression of miR-148b-3p or Cand1 was altered.

    In summary, Cand1 suppressed migration of SCs, and the results showed a direct interaction between Cand1 and miR-148b-3p. SC proliferation and migration can affect myelination, suggesting that further studies are needed to determine the effects of Cand1 on the myelin of axons. The results from the present study offer a novel target to study SC migration, and provide evidence for a role for Cand1 in peripheral nerve regeneration, as well as cancer diagnosis and treatment.

    Author contributions: TMQ, LLZ, XSG and SLZ designed the study and prepared the paper. TMQ, LLZ, JW, PL, JQ, YSL and BY performed the experiments. BY, FD and XSG analyzed data. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Aure MR, Leivonen SK, Fleischer T, Zhu Q, Overgaard J, Alsner J, Tramm T, Louhimo R, Alnaes GI, Perala M, Busato F, Touleimat N, Tost J, Borresen-Dale AL, Hautaniemi S, Troyanskaya OG, Lingjaerde OC, Sahlberg KK, Kristensen VN (2013) Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol 14:R126.

    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215-233.

    Bremer J, O'Connor T, Tiberi C, Rehrauer H, Weis J, Aguzzi A (2010) Ablation of Dicer from murine Schwann cells increases their proliferation while blocking myelination. PLoS One 5:e12450.

    Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136:642-655.

    De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911-3921.

    Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA, Cookson MR, St-Laurent G 3rd, Wahlestedt C (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56.

    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102-114.

    Jiang X, Du L, Wang L, Li J, Liu Y, Zheng G, Qu A, Zhang X, Pan H, Yang Y, Wang C (2015) Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer. Int J Cancer 136:854-862.

    Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106:13052-13057.

    Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, van den Oord EJ, Riley BP, Kendler KS, Vladimirov VI (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 124:183-191.

    Kury P, Stoll G, Muller HW (2001) Molecular mechanisms of cellular interactions in peripheral nerve regeneration. Curr Opin Neurol 14:635-639.

    Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, Hu W, Yu B, Wang Y, Ding F, Liu Y, Gu X (2015) Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 23:423-433.

    Liu Q, Xu Y, Wei S, Gao W, Chen L, Zhou T, Wang Z, Ying M, Zheng Q (2015) microRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1. Biosci Rep 35:e00229.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.

    Lu A, Huang Z, Zhang C, Zhang X, Zhao J, Zhang H, Zhang Q, Wu S, Yi X (2014) Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury. Neural Regen Res 9:1031-1040.

    Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 28:11571-11582.

    Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K, Takahashi S, Kawazu C, Hasegawa A, Ouchi Y, Homma Y, Hayashizaki Y, Inoue S (2010) miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 13:356-361.

    Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82:163-201.

    Ngeow WC (2010) Scar less: a review of methods of scar reduction at sites of peripheral nerve repair. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:357-366.

    Pereira JA, Baumann R, Norrmen C, Somandin C, Miehe M, Jacob C, Luhmann T, Hall-Bozic H, Mantei N, Meijer D, Suter U (2010) Dicer in Schwann cells is required for myelination and axonal integrity. J Neurosci 30:6763-6775.

    Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69:180-187.

    Verrier JD, Semple-Rowland S, Madorsky I, Papin JE, Notterpek L (2010) Reduction of Dicer impairs Schwann cell differentiation and myelination. J Neurosci Res 88:2558-2568.

    Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283-289.

    Wu D, Murashov AK (2013) Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Front Physiol 4:55.

    Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X (2011) Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS One 6:e24612.

    Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, Gu X (2012a) miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 40:10356-10365.

    Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, Gu X (2012b) miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 125:2675-2683.

    Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T (2013) CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun 4:1641.

    Zhang JG, Shi Y, Hong DF, Song M, Huang D, Wang CY, Zhao G (2015) MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/beta-catenin pathway. Sci Rep 5:8087.

    Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, Ding F, Yu B, Gu X (2014) MiR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 127:967-976.

    Zou H, Ho C, Wong K, Tessier-Lavigne M (2009) Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci 29:7116-7123.

    Copyedited by Cooper C, Hindle A, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.184504

    How to cite this article: Qian TM, Zhao LL, Wang J, Li P, Qin J, Liu YS, Yu B, Ding F, Gu XS, Zhou SL (2016) miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylation-dissociated 1. Neural Regen Res 11(6)∶1001-1005.

    Funding: This study was supported by the National Key Basic Research Program of China, No. 2014CB542202; the National High-Tech R&D Program of China (863 Program), No. 2012AA020502; the National Natural Science Foundation of China, No. 81130080, 81371389 and 81571198; the Natural Science Foundation of Nantong University of China, No. 13040397; the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    *Correspondence to: Song-lin Zhou, Ph.D., songlin.zhou@ntu.edu.cn.

    另类精品久久| 午夜视频精品福利| 黑人欧美特级aaaaaa片| 亚洲欧洲日产国产| 99热网站在线观看| 久久香蕉激情| 中文字幕人妻熟女乱码| 日韩有码中文字幕| 嫁个100分男人电影在线观看| 久久免费观看电影| 1024视频免费在线观看| 永久免费av网站大全| 色94色欧美一区二区| 黄色视频不卡| 亚洲男人天堂网一区| www.999成人在线观看| 欧美激情 高清一区二区三区| 99精品欧美一区二区三区四区| 91麻豆精品激情在线观看国产 | 亚洲精品第二区| 又黄又粗又硬又大视频| 午夜91福利影院| 美国免费a级毛片| 人妻人人澡人人爽人人| 我要看黄色一级片免费的| 在线十欧美十亚洲十日本专区| 亚洲va日本ⅴa欧美va伊人久久 | 午夜视频精品福利| 妹子高潮喷水视频| 精品国产超薄肉色丝袜足j| av不卡在线播放| 色婷婷久久久亚洲欧美| 久热爱精品视频在线9| 啦啦啦啦在线视频资源| 99九九在线精品视频| 男女国产视频网站| 50天的宝宝边吃奶边哭怎么回事| 一本综合久久免费| 韩国精品一区二区三区| 美女高潮喷水抽搐中文字幕| 在线天堂中文资源库| 五月开心婷婷网| 亚洲一码二码三码区别大吗| 久久精品久久久久久噜噜老黄| 久久国产精品人妻蜜桃| 久久精品亚洲熟妇少妇任你| 亚洲国产成人一精品久久久| 欧美变态另类bdsm刘玥| 天堂中文最新版在线下载| 日本av免费视频播放| 亚洲欧洲日产国产| 亚洲av片天天在线观看| 亚洲精品中文字幕在线视频| 精品人妻在线不人妻| 免费观看av网站的网址| 别揉我奶头~嗯~啊~动态视频 | 激情视频va一区二区三区| 国产真人三级小视频在线观看| 久久久水蜜桃国产精品网| 亚洲欧美精品自产自拍| 美女主播在线视频| 精品久久久久久电影网| 久久免费观看电影| 菩萨蛮人人尽说江南好唐韦庄| 欧美另类亚洲清纯唯美| 久久午夜综合久久蜜桃| 搡老熟女国产l中国老女人| 美女国产高潮福利片在线看| 一本综合久久免费| 国产视频一区二区在线看| 99国产极品粉嫩在线观看| 青春草视频在线免费观看| 人妻 亚洲 视频| 丝瓜视频免费看黄片| 日韩精品免费视频一区二区三区| 亚洲国产日韩一区二区| 国内毛片毛片毛片毛片毛片| 欧美在线一区亚洲| 欧美日韩视频精品一区| 亚洲综合色网址| 99九九在线精品视频| 老汉色∧v一级毛片| 美女午夜性视频免费| 国产欧美日韩一区二区三 | 无遮挡黄片免费观看| 久久人人爽人人片av| 下体分泌物呈黄色| 亚洲成人免费电影在线观看| 丝袜喷水一区| 在线观看一区二区三区激情| 精品一品国产午夜福利视频| 国产不卡av网站在线观看| 五月开心婷婷网| 国产成人精品无人区| 欧美日韩福利视频一区二区| 老司机午夜十八禁免费视频| 麻豆国产av国片精品| 午夜影院在线不卡| 成年动漫av网址| 精品一区二区三卡| 日韩 欧美 亚洲 中文字幕| 国产伦理片在线播放av一区| 成人亚洲精品一区在线观看| 天堂中文最新版在线下载| 超色免费av| e午夜精品久久久久久久| 日本猛色少妇xxxxx猛交久久| 窝窝影院91人妻| 色婷婷久久久亚洲欧美| 黄色 视频免费看| 一个人免费看片子| 法律面前人人平等表现在哪些方面 | 国产一级毛片在线| 少妇粗大呻吟视频| 91成人精品电影| 亚洲视频免费观看视频| 在线精品无人区一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 日韩欧美免费精品| 中文欧美无线码| 人人妻人人澡人人看| www.熟女人妻精品国产| 丁香六月欧美| 亚洲中文日韩欧美视频| 亚洲欧美成人综合另类久久久| 正在播放国产对白刺激| 欧美 亚洲 国产 日韩一| 亚洲伊人色综图| 午夜福利免费观看在线| 最近最新免费中文字幕在线| 色婷婷av一区二区三区视频| 国产成人免费无遮挡视频| 亚洲国产成人一精品久久久| 另类亚洲欧美激情| 欧美97在线视频| 可以免费在线观看a视频的电影网站| 欧美另类一区| 中文字幕最新亚洲高清| 人妻人人澡人人爽人人| 亚洲成人免费电影在线观看| 免费黄频网站在线观看国产| 亚洲国产精品999| 国产亚洲欧美在线一区二区| 亚洲黑人精品在线| 欧美精品一区二区免费开放| 爱豆传媒免费全集在线观看| 欧美国产精品一级二级三级| 精品高清国产在线一区| 欧美性长视频在线观看| 999久久久精品免费观看国产| 丁香六月天网| 久久久久精品人妻al黑| 亚洲av欧美aⅴ国产| 人人妻人人澡人人看| 精品一区在线观看国产| 美国免费a级毛片| 欧美日韩黄片免| 国产亚洲av片在线观看秒播厂| 免费在线观看完整版高清| 精品国产一区二区三区久久久樱花| 国产色视频综合| e午夜精品久久久久久久| 人人妻人人添人人爽欧美一区卜| www日本在线高清视频| 亚洲精品国产av蜜桃| h视频一区二区三区| 午夜福利在线免费观看网站| 国产黄色免费在线视频| 久久久久国产一级毛片高清牌| 国产精品一区二区免费欧美 | 美女午夜性视频免费| 亚洲精品国产精品久久久不卡| 中文字幕人妻丝袜制服| 麻豆国产av国片精品| 一级毛片电影观看| 黑人操中国人逼视频| 热re99久久精品国产66热6| 久久狼人影院| 91成年电影在线观看| 久久免费观看电影| 亚洲成国产人片在线观看| 黄色怎么调成土黄色| 亚洲精品成人av观看孕妇| 欧美在线黄色| 亚洲性夜色夜夜综合| 制服诱惑二区| 欧美中文综合在线视频| 王馨瑶露胸无遮挡在线观看| 建设人人有责人人尽责人人享有的| 波多野结衣av一区二区av| 欧美日本中文国产一区发布| 18在线观看网站| 国产男人的电影天堂91| 一本综合久久免费| 亚洲五月色婷婷综合| 男人舔女人的私密视频| 国产不卡av网站在线观看| 国产一区二区激情短视频 | 国产精品久久久久成人av| 国产亚洲精品第一综合不卡| 亚洲第一青青草原| 久久99一区二区三区| av片东京热男人的天堂| 日日爽夜夜爽网站| 黄色 视频免费看| 国产91精品成人一区二区三区 | 色94色欧美一区二区| 久久精品国产亚洲av高清一级| 亚洲人成电影免费在线| 亚洲国产欧美在线一区| 色播在线永久视频| 黑人操中国人逼视频| 又黄又粗又硬又大视频| av天堂在线播放| 亚洲av日韩精品久久久久久密| 久久久水蜜桃国产精品网| 大陆偷拍与自拍| 久久人妻熟女aⅴ| 国产精品成人在线| 亚洲av男天堂| 中文字幕高清在线视频| 亚洲一区中文字幕在线| 亚洲 欧美一区二区三区| 在线观看www视频免费| 欧美在线黄色| 老司机影院毛片| 精品国产乱码久久久久久小说| 国产精品一区二区免费欧美 | 69av精品久久久久久 | 日韩大片免费观看网站| 日日摸夜夜添夜夜添小说| 999精品在线视频| 国产精品国产av在线观看| 国产精品 国内视频| 国产男女内射视频| 亚洲午夜精品一区,二区,三区| 新久久久久国产一级毛片| 国产有黄有色有爽视频| 日韩制服骚丝袜av| 91九色精品人成在线观看| 久久久久久人人人人人| 午夜福利,免费看| 一级,二级,三级黄色视频| 操美女的视频在线观看| 99国产精品99久久久久| 成人av一区二区三区在线看 | svipshipincom国产片| 国产老妇伦熟女老妇高清| 女人高潮潮喷娇喘18禁视频| 国产在线视频一区二区| 成年人黄色毛片网站| 91老司机精品| 亚洲三区欧美一区| 国产精品国产av在线观看| 久久天躁狠狠躁夜夜2o2o| 黑人猛操日本美女一级片| 久热爱精品视频在线9| 午夜福利一区二区在线看| 永久免费av网站大全| 国产区一区二久久| 亚洲成人手机| 国产亚洲av片在线观看秒播厂| 精品免费久久久久久久清纯 | 日本欧美视频一区| 精品免费久久久久久久清纯 | 国产精品二区激情视频| 精品国产乱码久久久久久小说| 美女福利国产在线| 午夜视频精品福利| 国产精品一区二区在线观看99| 日本wwww免费看| 免费一级毛片在线播放高清视频 | 欧洲精品卡2卡3卡4卡5卡区| 欧美不卡视频在线免费观看 | 欧美日韩亚洲国产一区二区在线观看| 在线十欧美十亚洲十日本专区| 丁香欧美五月| 午夜福利在线观看吧| 国内久久婷婷六月综合欲色啪| 精品一区二区三区视频在线观看免费| 久久精品夜夜夜夜夜久久蜜豆 | 脱女人内裤的视频| 亚洲精品在线美女| 亚洲男人天堂网一区| 男女视频在线观看网站免费 | 久久中文看片网| 最近在线观看免费完整版| 国产av麻豆久久久久久久| 久久欧美精品欧美久久欧美| 嫩草影院精品99| 国产97色在线日韩免费| 亚洲一区二区三区不卡视频| 在线视频色国产色| 岛国在线免费视频观看| 久久伊人香网站| 欧美三级亚洲精品| 天堂√8在线中文| 老司机午夜十八禁免费视频| 国产亚洲精品一区二区www| 中文字幕人成人乱码亚洲影| 中国美女看黄片| 成人18禁高潮啪啪吃奶动态图| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av片天天在线观看| 欧美又色又爽又黄视频| 国内毛片毛片毛片毛片毛片| 两人在一起打扑克的视频| 超碰成人久久| 久久婷婷人人爽人人干人人爱| 色精品久久人妻99蜜桃| 99热这里只有是精品50| 精品电影一区二区在线| 国产精品自产拍在线观看55亚洲| 女人被狂操c到高潮| 一二三四在线观看免费中文在| 亚洲精品色激情综合| 久久香蕉激情| 好看av亚洲va欧美ⅴa在| avwww免费| 制服诱惑二区| 在线观看舔阴道视频| 日本 av在线| 久9热在线精品视频| xxx96com| 大型黄色视频在线免费观看| 亚洲精品粉嫩美女一区| 久久这里只有精品19| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 国产成人影院久久av| 中文字幕高清在线视频| 亚洲国产精品999在线| 十八禁人妻一区二区| 欧美乱码精品一区二区三区| 色综合亚洲欧美另类图片| 国产成人aa在线观看| 国产精品国产高清国产av| 丰满的人妻完整版| 亚洲色图 男人天堂 中文字幕| 久久久久免费精品人妻一区二区| 午夜福利18| 中亚洲国语对白在线视频| 在线a可以看的网站| 99re在线观看精品视频| 久久天躁狠狠躁夜夜2o2o| 窝窝影院91人妻| 亚洲欧美日韩无卡精品| 黄片大片在线免费观看| 久久 成人 亚洲| 色噜噜av男人的天堂激情| 色播亚洲综合网| 亚洲欧美日韩高清在线视频| 最好的美女福利视频网| 日韩大码丰满熟妇| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品999在线| 久久久久九九精品影院| 亚洲av片天天在线观看| 日韩欧美一区二区三区在线观看| 国产成人av教育| 一本综合久久免费| 1024香蕉在线观看| 国产成人一区二区三区免费视频网站| 亚洲国产精品合色在线| 变态另类丝袜制服| 欧美成人免费av一区二区三区| 在线a可以看的网站| 欧美日韩中文字幕国产精品一区二区三区| 成熟少妇高潮喷水视频| 麻豆成人av在线观看| 色综合站精品国产| 欧美极品一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱色亚洲激情| 亚洲成人国产一区在线观看| 1024视频免费在线观看| 国产成人精品久久二区二区免费| 国产高清激情床上av| 18禁黄网站禁片午夜丰满| 白带黄色成豆腐渣| 麻豆国产97在线/欧美 | av福利片在线观看| 天天添夜夜摸| 中文字幕最新亚洲高清| 亚洲精品一区av在线观看| 亚洲精品久久国产高清桃花| 色综合婷婷激情| 99热只有精品国产| 亚洲一区高清亚洲精品| 三级男女做爰猛烈吃奶摸视频| 久久精品影院6| 色av中文字幕| 久久久久久九九精品二区国产 | 亚洲精品一卡2卡三卡4卡5卡| 久久精品综合一区二区三区| 精品久久久久久成人av| 日韩欧美 国产精品| 国产精品久久久久久人妻精品电影| 日韩大尺度精品在线看网址| 在线视频色国产色| 国产av又大| 超碰成人久久| 久久久久久国产a免费观看| 国产av一区在线观看免费| 亚洲乱码一区二区免费版| 在线观看日韩欧美| 在线观看66精品国产| 性色av乱码一区二区三区2| 亚洲 欧美一区二区三区| 国产精品久久久久久精品电影| 麻豆国产av国片精品| 手机成人av网站| videosex国产| 亚洲天堂国产精品一区在线| 久久国产乱子伦精品免费另类| 国产真实乱freesex| 精品福利观看| av在线天堂中文字幕| 夜夜躁狠狠躁天天躁| 午夜免费观看网址| 精品日产1卡2卡| 欧美又色又爽又黄视频| 两性夫妻黄色片| 日韩精品中文字幕看吧| 国产成年人精品一区二区| 国产精品久久电影中文字幕| 久久欧美精品欧美久久欧美| 亚洲av电影在线进入| 99久久国产精品久久久| 可以在线观看毛片的网站| 国产精品久久久久久久电影 | 90打野战视频偷拍视频| 久久精品综合一区二区三区| 91av网站免费观看| 国产亚洲av嫩草精品影院| 啦啦啦韩国在线观看视频| av在线播放免费不卡| 国产真实乱freesex| 777久久人妻少妇嫩草av网站| 国产av不卡久久| 首页视频小说图片口味搜索| 成人av一区二区三区在线看| 亚洲七黄色美女视频| 成人精品一区二区免费| 久久中文看片网| 蜜桃久久精品国产亚洲av| 久久人人精品亚洲av| 青草久久国产| 精品福利观看| 欧美日韩亚洲综合一区二区三区_| 免费观看精品视频网站| 久久精品aⅴ一区二区三区四区| 夜夜夜夜夜久久久久| 一进一出好大好爽视频| 亚洲欧美精品综合久久99| 人妻夜夜爽99麻豆av| a在线观看视频网站| 日韩国内少妇激情av| 成在线人永久免费视频| 一区二区三区激情视频| 国产亚洲欧美在线一区二区| 久久热在线av| avwww免费| 首页视频小说图片口味搜索| 老熟妇仑乱视频hdxx| 99riav亚洲国产免费| 国语自产精品视频在线第100页| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| 男女床上黄色一级片免费看| 亚洲精品国产一区二区精华液| 99国产极品粉嫩在线观看| 在线观看免费午夜福利视频| 国产亚洲av高清不卡| 最近最新中文字幕大全免费视频| 中文资源天堂在线| 99在线人妻在线中文字幕| 日本三级黄在线观看| www.www免费av| 9191精品国产免费久久| 美女黄网站色视频| 亚洲男人的天堂狠狠| 村上凉子中文字幕在线| 国产麻豆成人av免费视频| ponron亚洲| 国产亚洲av嫩草精品影院| av免费在线观看网站| 亚洲精品美女久久av网站| 欧美大码av| 男人舔女人下体高潮全视频| www国产在线视频色| 人人妻人人澡欧美一区二区| 在线观看免费午夜福利视频| 国产99白浆流出| 91国产中文字幕| 成人特级黄色片久久久久久久| 一级片免费观看大全| 曰老女人黄片| 欧美zozozo另类| 麻豆一二三区av精品| 久久精品影院6| 九色国产91popny在线| 国产主播在线观看一区二区| 少妇的丰满在线观看| 又粗又爽又猛毛片免费看| 毛片女人毛片| 变态另类成人亚洲欧美熟女| 夜夜爽天天搞| 亚洲最大成人中文| 久久中文字幕人妻熟女| 日日爽夜夜爽网站| 88av欧美| 久久久久久久久免费视频了| 国产精品,欧美在线| 久久久久精品国产欧美久久久| av在线播放免费不卡| 91麻豆av在线| 97人妻精品一区二区三区麻豆| 老司机午夜十八禁免费视频| 精品电影一区二区在线| 国产成人aa在线观看| 一区二区三区高清视频在线| 久久九九热精品免费| 动漫黄色视频在线观看| 久久久久九九精品影院| 全区人妻精品视频| 十八禁人妻一区二区| 国产精品1区2区在线观看.| 69av精品久久久久久| 手机成人av网站| 男女视频在线观看网站免费 | 五月玫瑰六月丁香| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美三级三区| 一本精品99久久精品77| 中文字幕人成人乱码亚洲影| 久久精品国产99精品国产亚洲性色| 亚洲国产精品sss在线观看| 精品欧美一区二区三区在线| 日韩欧美精品v在线| 又爽又黄无遮挡网站| 美女免费视频网站| 特大巨黑吊av在线直播| 巨乳人妻的诱惑在线观看| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 黄色丝袜av网址大全| 免费电影在线观看免费观看| 精品第一国产精品| 99精品欧美一区二区三区四区| 精品第一国产精品| 亚洲精品色激情综合| 高潮久久久久久久久久久不卡| 黄色视频不卡| 精品久久久久久久人妻蜜臀av| 亚洲无线在线观看| 黑人操中国人逼视频| 国产一区二区三区在线臀色熟女| 亚洲国产欧美网| 免费看美女性在线毛片视频| 国产免费男女视频| 在线观看美女被高潮喷水网站 | 亚洲中文日韩欧美视频| a级毛片a级免费在线| 9191精品国产免费久久| 听说在线观看完整版免费高清| netflix在线观看网站| 极品教师在线免费播放| 亚洲专区字幕在线| 国产亚洲精品久久久久5区| 欧美日韩瑟瑟在线播放| cao死你这个sao货| 国产精品1区2区在线观看.| 桃红色精品国产亚洲av| 欧美日韩黄片免| av福利片在线| 久久精品人妻少妇| 亚洲一区高清亚洲精品| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播| 他把我摸到了高潮在线观看| 99热这里只有是精品50| 欧美黑人欧美精品刺激| 日日夜夜操网爽| 亚洲av电影在线进入| 超碰成人久久| 亚洲五月天丁香| 精品一区二区三区视频在线观看免费| 亚洲人成电影免费在线| 神马国产精品三级电影在线观看 | 人人妻,人人澡人人爽秒播| 99久久综合精品五月天人人| 一a级毛片在线观看| 午夜成年电影在线免费观看| 深夜精品福利| 男男h啪啪无遮挡| 91av网站免费观看| 变态另类成人亚洲欧美熟女| 亚洲色图 男人天堂 中文字幕| ponron亚洲| 国产精品亚洲av一区麻豆| 国产高清激情床上av| 精品久久久久久久久久免费视频| 亚洲精品国产精品久久久不卡| 国产伦一二天堂av在线观看| 欧美黑人巨大hd| 日日夜夜操网爽| 国产一区二区在线av高清观看| netflix在线观看网站| 亚洲七黄色美女视频| 亚洲熟女毛片儿| 欧美日韩福利视频一区二区| 2021天堂中文幕一二区在线观| 成人亚洲精品av一区二区|