• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Indirubin-3′-monoxime suppresses amyloid-betainduced apoptosis by inhibiting tau hyperphosphorylation

    2016-12-02 10:48:15ShugangZhangXiaoshanWangYingdongZhangQingDiJingpingShiMinQianLigangXuXingjianLinJieLu

    Shu-gang Zhang, Xiao-shan Wang, Ying-dong Zhang, Qing Di Jing-ping Shi Min Qian Li-gang Xu Xing-jian Lin Jie Lu

    1 Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China

    2 Department of Neurology, Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China

    RESEARCH ARTICLE

    Indirubin-3′-monoxime suppresses amyloid-betainduced apoptosis by inhibiting tau hyperphosphorylation

    Shu-gang Zhang1,#, Xiao-shan Wang1,#, Ying-dong Zhang1,2,*, Qing Di1, Jing-ping Shi1, Min Qian1, Li-gang Xu1, Xing-jian Lin1, Jie Lu1

    1 Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China

    2 Department of Neurology, Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China

    Graphical Abstract

    #These authors contributed equally to this study.

    orcid: 0000-0002-6470-5064 (Ying-dong Zhang)

    Accepted: 2016-04-12

    Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apoptosis in Alzheimer's disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SHSY5Y cells exposed to amyloid-beta 25—35 (Aβ25—35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that indirubin-3′-monoxime reduced Aβ25—35-induced apoptosis by suppressing tau hyperphosphorylation via a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer's disease.

    nerve regeneration; indirubin-3′-monoxime; amyloid-beta; Alzheimer's disease; neuronal apoptosis; tau hyperphosphorylation; phosphorylated glycogen synthase kinase-3β; phosphorylated c-Jun N-terminal kinase; neural regeneration

    Introduction

    The recognition of pathologic features in patients with Alzheimer's disease (AD) has provided clues to the mechanisms of neuronal apoptosis, and drawn attention to new prospects for AD therapy. A number of experimental models have shown that neuronal death occurs alongside the elicitation of proteins involved in the cell cycle (Lim and Qi, 2003; Colacurcio et al., 2015). Damaged neurons, instead of continuing with the cell cycle after mitosis, initiate abortive processes that result in apoptotic cell death (Xu et al., 2008; Absalon et al., 2013). Cyclin-dependent kinase (CDK) is involved in such processes, and CDK inhibitors might reduce neuronal loss in AD (Zhang et al., 2004; Johnson et al., 2005). There is an urgent need to develop safe, effective, and selective CDK inhibitors that can pass the blood-brain barrier.

    Indirubin is a selective CDK inhibitor, which suppresses the activities of CDK1, CDK2, and CDK5. However, it has poor water solubility and liposolubility (Absalon et al., 2013). Indirubin-3′-monoxime (IMX), also a CDK inhibitor, has a low molecular weight and better solubility than indirubin (Zahler et al., 2010; Liao and Leung, 2013). It is nontoxic and acts by competition with adenosine triphosphate at the catalytic site of CDKs (Shelton et al., 2004).The compound was found to suppress tau phosphorylation in Sf9 cells expressing human tau 23 (Leclerc et al., 2001) and, in cerebellar granular neurons, it reduced apoptosis initiated by withdrawal of potassium (Xie et al., 2004). Systemic administration of IMX (20 mg/kg; 3 times per week for 2 months) in APP transgenic mice attenuated spatial memory deficits and decreased presenilin 1 (PS1) mutations in several AD-like phenotypes (Ding et al., 2010).

    The aim of the present study was to investigate the neuroprotective effect of IMX against amyloid-beta (Aβ)-induced apoptosis in cultured SH-SY5Y neuroblastoma cells. In addition, we explored the effect of IMX on tau hyperphosphorylation and putative related mechanisms.

    Materials and Methods

    SH-SY5Y cell culture

    SH-SY5Y cells (Beijing Union Medical College Cell Center, Beijing, China) were grown on RPMI 1640 medium (Gibco BRL, Gaithersburg, MD, USA) supplemented with 15% (v/v) fetal bovine serum (Gibco BRL), 2 mM L-glutamine, 100 μg/mL streptomycin (Sigma, St. Louis, MO, USA), and 100 U/mL penicillin (Sigma) in a humidified atmosphere at 5% CO2and 37°C. The medium was replaced every 2 days; cells were passaged every 3—4 days.

    Cell viability assay

    Aβ peptide fragment 25—35 (Aβ25—35; Sigma) was dissolved in sterile deionized water and stored at -20°C. IMX (Sigma) was dissolved in dimethyl sulfoxide to 10 mM, stored in aliquots at -20°C, and diluted in medium as necessary. The cells were divided into five groups in a 96-well plate: control (untreated); Aβ (20 μM Aβ25—35); IMX0.2 (0.2 μM IMX + Aβ25—35); IMX0.5 (0.5 μM IMX + Aβ25—35); and IMX1 (1.0 μM IMX + Aβ25—35). Cells in the Aβ groups were incubated with Aβ25—35at 37°C for 7 days. Cells in the IMX groups were incubated at 37°C for 2 days. We used 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium (WST-8, Cell Counting Kit-8; Dojindo, Kumamoto, Japan; Tsukatani et al., 2011) to examine the effect of IMX on Aβ25—35-induced changes in SH-SY5Y cells. After treatment, the medium was replaced by Dulbecco's modified Eagle's medium to stop the effects of IMX and Aβ25—35. WST-8 (10 μL) was added to each well, and the plate was incubated for 4 hours. Absorbance was measured at 450 nm using a Dynatech MR5000 reader (BMG Labtech, Offenburg, Germany) with a reference wavelength of 630 nm.

    Flow cytometry

    To determine the effect of IMX on early and late apoptosis and necrosis triggered by Aβ25—35, we examined SH-SY5Y cells using flow cytometry. The cells were transferred into six-well plates and incubated with IMX (0, 0.5, and 1.0 μM) for 24 hours. Aβ25—35(20 μM) was then added and mixed. Forty-eight hours later, the cells that remained fixed to the plates were collected in phosphate buffered saline (PBS) and combined with the floating dead cells. Cells (approximately 1 × 106) were washed twice with cold PBS and resuspended in 200 μL cold 1× binding buffer. Annexin V—FITC (10 μL) and propidium iodide (PI; 5 μL) were admixed and incubated in the dark at room temperature for 15 minutes, then 300 μL binding buffer was added. Cells were quantified instantly in a flow cytometer (FACSCalibur, Becton Dickinson Immunocytometry Systems, San Jose, CA, USA), using emission filters at 525 and 575 nm. Cells negative for both annexin V and PI (V-/PI-) were considered normal, whereas a V+/PI-result was considered a criterion of early apoptosis, and V+/ PI+was assumed to indicate late apoptotic-like cell death and necrosis. A minimum of 10,000 cells per experiment were assayed in the three separate trials.

    Western blot assay

    To evaluate the effects of Aβ25—35and IMX on the phosphorylation of tau, glycogen synthase kinase 3β (GSK-3β) and c-Jun N-terminal kinase (JNK) in SH-SY5Y cells, the cells were incubated with a mixture of 20 μM Aβ25—35and 0.5 μM IMX for 6 hours. They were then washed twice with cold PBS, and lysed in cell lysis buffer for 30 minutes on ice. The soluble portion was produced by centrifugation (15,000 × g for 15 minutes at 4°C). Protein concentrations were established using the bicinchoninic acid method (Yalamati et al., 2015) (Pierce Biotechnology, Rockford, IL, USA). Aliquots of total protein were boiled for 10 minutes in loading buffer and subsequently separated in 10% sodium dodecyl sulfate-polyacrylamide gel. Next, the proteins were transferred onto nitrocellulose membranes by electroporation (Immobilon TMP, Millipore Corp., Bedford, MA, USA) using a Trans-Blot system (Bio-Rad, New York, NY, USA). The membranes were then blocked with 5% nonfat milk in Tris-buffered saline with Tween-20 (TTBS; 10 mM Tris-HCl, 150 mM NaCl, 0.2% Tween-20) for 1 hour at room temperature. Samples were incubated with monoclonal primary antibodies (β-actin, 1:10,000, Sigma; polyclonal anti-tau pS199, 1:1,000, BioSource Int., Camarillo, CA, USA; anti-tau pT205, 1:1,000, Bioworld Technology (St. Louis Park, MN, USA); Ser-9-phosphorylated GSK-3β (p-GSK-3β Ser9), phosphorylated JNK (p-JNK), and JNK, all 1:1,000; Cell Signaling Technology, Beverly, MA, USA) at 4°C overnight. The membranes were washed twice with TTBS, and incubated with the secondary antibody (anti-rabbit-horseradish peroxidase, 1:5,000; Cell Signaling Technology) at room temperature for 1 hour. Proteins were then visualized using the ECL Advanced Western Blotting Detection kit (Amersham Biosciences Ltd., Amersham, UK), and the mean optical density of each band was calculated using a Fluor-S MultiImager (Bio-Rad Laboratories (Shanghai) Co., Ltd., Shanghai, China) with Quantity One software (Bio-Rad Laboratories (Shanghai) Co., Ltd.).

    Statistical analysis

    The data, presented as the mean ± SEM, were analyzed using SPSS 11.0 software (SPSS Inc., Chicago, IL, USA). Means were compared by one-way analysis of variance and the least significant difference post hoc test. P < 0.05 was considered statistically significant.

    Figure 1 Effect of IMX on viability of SH-SY5Y cells exposed to Aβ25-35.

    Figure 2 Apoptosis triggered by Aβ25-35was suppressed by IMX (flow cytometry).

    Results

    IMX enhanced the viability of SH-SY5Y cells exposed to Aβ25-35

    Under an inverted phase contrast microscope (Olympus Optical Co., Ltd., Tokyo, Japan), SH-SY5Y cells in the control group appeared well-formed than those in the Aβ group. Pretreatment with different concentrations of IMX markedly improved morphology after Aβ25—35exposure (Figure 1A).

    Cell viability after Aβ25—35exposure was significantly lower than in control cells (P < 0.001). However, pretreatment with IMX (0.5 μM and 1.0 μM) increased cell viability in a concentration-dependent manner (P < 0.01; Figure 1B).

    IMX reduced neuronal apoptosis triggered by Aβ25-35in SH-SY5Y cells

    Flow cytometry showed that there were more apoptotic cells after exposure to 20 μM Aβ25—35than in the control group (P < 0.01), but significantly fewer in the IMX group (12.4 ± 1.82%) than in the Aβ group (20.33 ± 2.02%; P < 0.01). This indicates that IMX protected cells against Aβ-induced apoptosis (Figure 2).

    IMX decreased tau phosphorylation caused by Aβ25-35

    Western blot assay revealed significantly more tau phosphorylation at Ser199 and Thr205 in the Aβ group than in the control group (P < 0.05). This effect was markedly reduced by co-treatment with IMX at 0.5 μM and 1.0 μM (P < 0.05; Figure 3).

    Effects of IMX on p-GSK-3β expression

    p-GSK-3β (Ser9) expression was lower after Aβ25—35exposure than in control cells, indicating that GSK-3β activity was increased. However, p-GSK-3β (Ser9) was markedly overexpressed after pretreatment with IMX (P < 0.05; Figure 4A). These results suggest that GSK-3β is involved in the effect of IMX on Aβ-induced tau phosphorylation.

    IMX treatment did not affect p-JNK expression

    The expression of p-JNK in the Aβ group was markedly higher than that in the control group (P < 0.05). However, there were no significant changes after IMX treatment (Figure 4B), indicating that p-JNK is not involved in the effect of IMX on Aβ-induced tau phosphorylation.

    Discussion

    Figure 3 IMX decreased Aβ25-35-induced tau phosphorylation at Ser (A) and Thr205 (B).

    Figure 4 Effect of IMX on p-GSK-3β (A) and p-JNK (B) expression in the presence of Aβ25-35.

    SH-SY5Y neuroblastoma cells are a well-characterized human cell model for investigating the pharmacological effects of IMX. In the present study, we exposed the cells to 20 μM Aβ25—35, which showed a low level of neurotoxicity. Aggregated Aβ25—35reduced cell viability and initiated apoptosis. Notably, our results provide evidence for the dose-dependent protective effect of IMX against Aβ-induced cell death, consistent with the findings of our previous investigation (Zhang et al., 2009).

    Aβ induces and maintains the pathogenic changes in AD, but tau protein also has an important role in the progression of the disease (Iqbal et al., 2014). Aβ amyloidosis triggers the starting phase of tau accumulation and phosphorylation at Ser199, Thr231, and Ser396 in APP Sw mice (Tomidokoro et al., 2001; Stein et al., 2004). In cultured Neuro-2a cells (Hu et al., 2004; Jung et al., 2012; Huang et al., 2014; Nicole et al., 2014; Deng et al., 2015; Zhang et al., 2015), SH-SY5Y cells, and hippocampal neurons (Lafay-Chebassier et al., 2005; Jin et al., 2011; Reifert et al., 2011; Doherty et al., 2013; Martins et al., 2013; Sui et al., 2015), Aβ markedly diminished cell viability, increased the number of apoptotic-like cells, and promoted tau phosphorylation. Inhibiting tau phosphorylation has become a viable approach to treating or even preventing AD. Here, Aβ25—35exposure elevated the rate of tau phosphorylation at pS199 and pT205 in serum-free cultured SH-SY5Y cells, supporting the findings of a previous study (Sun et al., 2008). We also found that IMX suppressed tau phosphorylation induced by Aβ25—35. This suggests that the effect of IMX on Aβ25—35-induced neurotoxicity may be via the inhibition of tau phosphorylation.

    GSK-3β, also called Tau Protein Kinase I, is a proline-directed serine/threonine kinase, which phosphorylates tau at a number of AD-relevant epitopes in vitro and in transfected cells (Hanger et al., 1992; Ishiguro et al., 1992, 1993; Mandelkow et al., 1992; Mulot et al., 1994; Sperbera et al., 1995;Bass et al., 2015). GSK-3β may have a pivotal function in the relationship between Aβ peptides and phosphorylated tau, and triggers a pathogenic cycle in AD (Wang et al., 2006; Dobarro et al., 2013; Hoppe et al., 2013; Xian et al., 2014; Amin et al., 2015; Kim et al., 2015; Vossel et al., 2015), resulting in a more important effect than those caused by other kinases such as cdk/MAPK (Elyaman et al., 2002; Liu et al., 2002). The activation of GSK-3β is reportedly related to its low rate of phosphorylation at residue Ser9 (Stambolic and Woodgett, 1994; Wang et al., 1994; Murai et al., 1996). In the present study, we used an antibody against p-GSK-3β Ser9 to investigate the activation of GSK-3β in SH-SY5Y cells. After exposure to Aβ25—35, p-GSK-3β (Ser9) expression was decreased, indicating that GSK-3β activity was elevated. However, pretreatment with IMX led to a considerable rise in the expression of p-GSK-3β (Ser9), which suggests that GSK-3β contributes critically to the action of IMX on Aβ-initiated tau phosphorylation.

    The constituents of the mitogen-activated protein kinase (MAPK) family, including extracellular signal-regulated kinase, p38 MAPK, and JNK, are enzymes of major importance in the hyperphosphorylation of tau. Because the activation of JNK is critically involved in Aβ-induced cell death (Wei et al., 2002), we investigated the effects of IMX on JNK activation after Aβ25—35exposure. Expression of p-JNK in the Aβ25—35-exposed cells was significantly higher than in control cells. However, there were no significant changes after IMX treatment, indicating that IMX did not influence JNK in our cell system.

    In summary, IMX exerted neuroprotective effects by preventing Aβ-induced damage, via a mechanism that likely involves inhibition of tau phosphorylation. The suppression of GSK-3β signaling was the most important route by which IMX suppressed phosphorylation. Taking into consideration the important role of Aβ throughout the pathogenesis of AD, our results suggest that IMX is a promising drug candidate for the treatment of AD.

    Author contributions: YDZ, SGZ and XSW conceived and designed the study. XJL, SGZ, LGX and JL performed the experiments. SGZ, JPS, MQ and QD analyzed the data and wrote the paper. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Absalon S, Kochanek DM, Raghavan V, Krichevsky AM (2013) MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 33:14645-14659.

    Amin J, Paquet C, Baker A, Asuni AA, Love S, Holmes C, Hugon J, Nicoll JA, Boche D (2015) Effect of amyloid-β (Aβ) immunization on hyperphosphorylated tau: a potential role for glycogen synthase kinase (GSK)-3β. Neuropathol Appl Neurobiol 41:445-457.

    Bass B, Upson S, Roy K, Montgomery EL, Jalonen TO, Murray IV (2015) Glycogen and amyloid-beta: key players in the shift from neuronal hyperactivity to hypoactivity observed in Alzheimer's disease?. Neural Regen Res 10:1023-1025.

    Colacurcio DJ, Zyskind JW, Jordan-Sciutto KL, Espinoza CA (2015) Caspase-dependent degradation of MDMx/MDM4 cell cycle regulatory protein in amyloid β-induced neuronal damage. Neurosci Lett 609:182-188.

    Deng J, Habib A, Obregon DF, Barger SW, Giunta B, Wang YJ, Hou H, Sawmiller D, Tan J (2015) Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3β signaling pathway. J Neurochem 135:630-637.

    Ding Y, Qiao A, Fan GH (2010) Indirubin-3'-monoxime rescues spatial memory deficits and attenuates β-amyloid-associated neuropathology in a mouse model of Alzheimer's disease. Neurobiol Dis 39:156-168.

    Dobarro M, Gerenu G, Ramírez MJ (2013) Propranolol reduces cognitive deficits, amyloid and tau pathology in Alzheimer's transgenic mice. Int J Neuropsychopharmacol 16:2245-2257.

    Doherty GH, Beccano-Kelly D, Yan SD, Gunn-Moore FJ, Harvey J (2013) Leptin prevents hippocampal synaptic disruption and neuronal cell death induced by amyloid β. Neurobiol Aging 34:226-237.

    Elyaman W, Yardin C, Hugon J (2002) Involvement of glycogen synthase kinase-3beta and tau phosphorylation in neuronal Golgi disassembly. J Neurochem 81:870-880.

    Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH (1992) Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147:58-62.

    Hoppe JB, Coradini K, Frozza RL, Oliveira CM, Meneghetti AB, Bernardi A, Pires ES, Beck RCR, Salbego CG (2013) Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol Learn Mem 106:134-144.

    Hu J, Geng M, Li J, Xin X, Wang J, Tang M, Zhang J, Zhang X, Ding J (2004) Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J Pharmacol Sci 95:248-255.

    Huang HC, Tang D, Xu K, Jiang ZF (2014) Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3β signaling pathway. J Recept Signal Transduct Res 34:26-37.

    Iqbal K, Kazim SF, Bolognin S, Blanchard J (2014) Shifting balance from neurodegeneration to regeneration of the brain: a novel therapeutic approach to Alzheimer's disease and related neurodegenerative conditions. Neural Regen Res 9:1518-1519.

    Ishiguro K, Omori A, Takamatsu M, Sato K, Arioka M, Uchida T, Imahori K (1992) Phosphorylation sites on tau by tau protein kinase I, a bovine derived kinase generating an epitope of paired helical filaments. Neurosci Lett 148:202-206.

    Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, Kobayashi S, Uchida T, Imahori K (1993) Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett 325:167-172.

    Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108:5819-5824.

    Johnson K, Liu L, Majdzadeh N, Chavez C, Chin PC, Morrison B, Wang L, Park J, Chugh P, Chen HM, D'Mello SR (2005) Inhibition of neuronal apoptosis by the cyclin-dependent kinase inhibitor GW8510: identification of 3' substituted indolones as a scaffold for the development of neuroprotective drugs. J Neurochem 93:538-548.

    Jung KM, Astarita G, Yasar S, Vasilevko V, Cribbs DH, Head E, Cotman CW, Piomelli D (2012) An amyloid β(42)-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer's disease. Neurobiol Aging 33:1522-1532.

    Kim HG, Park G, Lim S, Park H, Choi JG, Jeong HU, Kang MS, Lee MK, Oh MS (2015) Mori Fructus improves cognitive and neuronal dysfunction induced by beta-amyloid toxicity through the GSK-3β pathway in vitro and in vivo. J Ethnopharmacol 171:196-204.

    Lafay-Chebassier C, Paccalin M, Page G, Barc-Pain S, Perault-Pochat MC, Gil R, Pradier L, Hugon J (2005) mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer's disease. J Neurochem 94:215-225.

    Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L (2001) Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 276:251-260.

    Liao XM, Leung KN (2013) Indirubin-3'-oxime induces mitochondrial dysfunction and triggers growth inhibition and cell cycle arrest in human neuroblastoma cells. Oncol Rep 29:371-379.

    Lim AC, Qi RZ (2003) Cyclin-dependent kinases in neural development and degeneration. J Alzheimers Dis 5:329-335.

    Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2002) Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta. FEBS Lett 530:209-214.

    Mandelkow EM, Drewes G, Biernat J, Gustke N, Van Lint J, Vandenheede JR, Mandelkow E (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 314:315-321.

    Martins I, Gomes S, Costa RO, Otvos L, Oliveira CR, Resende R, Pereira CMF (2013) Leptin and ghrelin prevent hippocampal dysfunction induced by Aβ oligomers. Neuroscience 241:41-51.

    Mulot SF, Hughes K, Woodgett JR, Anderton BH, Hanger DP (1994) PHF-tau from Alzheimer's brain comprises four species on SDSPAGE which can be mimicked by in vitro phosphorylation of human brain tau by glycogen synthase kinase-3 beta. FEBS Lett 349:359-364.

    Murai H, Okazaki M, Kikuchi A (1996) Tyrosine dephosphorylation of glycogen synthase kinase-3 is involved in its extracellular signal-dependent inactivation. FEBS Lett 392:153-160.

    Nicole R, Giulia Di B, Carmela P, Salvatore A, Renato B, Giuseppina C (2014) CHF5074 protects SH-SY5Y human neuronal-like cells from amyloidbeta 25-35 and tumor necrosis factor related apoptosis inducing ligand toxicity in vitro. Curr Alzheimer Res 11:714-724.

    Reifert J, Hartung-Cranston D, Feinstein SC (2011) Amyloid beta-mediated cell death of cultured hippocampal neurons reveals extensive Tau fragmentation without increased full-length tau phosphorylation. J Biol Chem 286:20797-20811.

    Shelton SB, Krishnamurthy P, Johnson GV (2004) Effects of cyclin-dependent kinase-5 activity on apoptosis and tau phosphorylation in immortalized mouse brain cortical cells. J Neurosci Res 76:110-120.

    Sperbera BR, Leight S, Goedert M, Lee VMY (1995) Glycogen synthase kinase-3β phosphorylates tau protein at multiple sites in intact cells. Neurosci Lett 197:149-153.

    Stambolic V, Woodgett JR (1994) Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303:701-704.

    Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA (2004) Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24:7707-7717.

    Sui HJ, Zhang LL, Liu Z, Jin Y (2015) Atorvastatin prevents A[beta] oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage. Acta Pharmacol Sin 36:553-564.

    Sun ZK, Yang HQ, Pan J, Zhen H, Wang ZQ, Chen SD, Ding JQ (2008) Protective effects of erythropoietin on tau phosphorylation induced by beta-amyloid. J Neurosci Res 86:3018-3027.

    Tomidokoro Y, Ishiguro K, Harigaya Y, Matsubara E, Ikeda M, Park JM, Yasutake K, Kawarabayashi T, Okamoto K, Shoji M (2001) Aβ amyloidosis induces the initial stage of tau accumulation in APPSw mice. Neurosci Lett 299:169-172.

    Tsukatani T, Suenaga H, Higuchi T, Shiga M, Noguchi K, Matsumoto K (2011) Distinction of Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium. J Gen Appl Microbiol 57:331-339.

    Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH, Yu GQ, Mucke L (2015) Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β. J Cell Biol 209:419-433.

    Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ (1994) Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 269:14566-14574.

    Wang ZF, Li HL, Li XC, Zhang Q, Tian Q, Wang Q, Xu H, Wang JZ (2006) Effects of endogenous β-amyloid overproduction on tau phosphorylation in cell culture. J Neurochem 98:1167-1175.

    Wei W, Wang X, Kusiak JW (2002) Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor I protection. J Biol Chem 277:17649-17656.

    Xian YF, Mao QQ, Wu JC, Su ZR, Chen JN, Lai XP, Ip SP, Lin ZX (2014) Isorhynchophylline treatment improves the amyloid-β-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau protein hyperphosphorylation. J Alzheimers Dis 39:331-346.

    Xie Y, Liu Y, Ma C, Yuan Z, Wang W, Zhu Z, Gao G, Liu X, Yuan H, Chen R, Huang S, Wang X, Zhu X, Wang X, Mao Z, Li M (2004) Indirubin-3′-oxime inhibits c-Jun NH2-terminal kinase: anti-apoptotic effect in cerebellar granule neurons. Neurosci Lett 367:355-359.

    Xu L, Di Q, Zhang Y (2008) Cell cycle proteins preceded neuronal death after chronic cerebral hypoperfusion in rats. Neurol Res 30:932-939.

    Yalamati P, Bhongir AV, Karra M, Beedu SR (2015) Comparative Analysis of Urinary Total Proteins by Bicinchoninic Acid and Pyrogallol Red Molybdate Methods. J Clin Diagn Res 9:BC01-BC04.

    Zahler S, Liebl J, Fürst R, Vollmar AM (2010) Anti-angiogenic potential of small molecular inhibitors of cyclin dependent kinases in vitro. Angiogenesis 13:239-249.

    Zhang LF, Zhou ZW, Wang ZH, Du YH, He ZX, Cao C, Zhou SF (2015) Coffee and caffeine potentiate the antiamyloidogenic activity of melatonin via inhibition of Aβ oligomerization and modulation of the Tau-mediated pathway in N2a/APP cells. Drug Des Devel Ther 9:241-272.

    Zhang M, Li J, Chakrabarty P, Bu B, Vincent I (2004) Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. Am J Pathol 165:843-853.

    Zhang S, Zhang Y, Xu L, Lin X, Lu J, Di Q, Shi J, Xu J (2009) Indirubin-3′-monoxime inhibits β-amyloid-induced neurotoxicity in neuroblastoma SH-SY5Y cells. Neurosci Lett 450:142-146.

    Copyedited by Slone-Murphy J, Hindle A, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.184500

    How to cite this article: Zhang SG, Wang XS, Zhang YD, Di Q, Shi JP, Qian M, Xu LG, Lin XJ, Lu J (2016) Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation. Neural Regen Res 11(6)∶988-993.

    Funding: This research was supported by the Nanjing Medical Science and Technique Development Foundation of China, No. QRX11199; a grant from the Nanjing Science and Technology Commission Project of China, No. 201303010; and a grant from the Health Research Project in Nanjing City of China, No. YKK14101.

    *Correspondence to: Ying-dong Zhang, M.D., zhangyingdong@aliyun.com.

    中文字幕高清在线视频| 欧美中文综合在线视频| 欧美日韩一区二区视频在线观看视频在线| 免费黄网站久久成人精品| 午夜福利影视在线免费观看| 丰满迷人的少妇在线观看| 在线观看免费午夜福利视频| 国产av精品麻豆| 久久毛片免费看一区二区三区| 久久久久久免费高清国产稀缺| 在线观看免费高清a一片| 久久久国产一区二区| 少妇被粗大猛烈的视频| 亚洲第一区二区三区不卡| 精品酒店卫生间| 免费黄网站久久成人精品| 在现免费观看毛片| 日日摸夜夜添夜夜爱| 中文精品一卡2卡3卡4更新| 国产精品国产三级专区第一集| 满18在线观看网站| 一本一本久久a久久精品综合妖精| 蜜桃国产av成人99| 婷婷色综合www| 色吧在线观看| 久久99精品国语久久久| 亚洲人成77777在线视频| 巨乳人妻的诱惑在线观看| 另类精品久久| 99九九在线精品视频| 一级毛片电影观看| 成人国产麻豆网| 国产福利在线免费观看视频| 另类亚洲欧美激情| 九九爱精品视频在线观看| 国产精品嫩草影院av在线观看| 黄色毛片三级朝国网站| 成人国产麻豆网| 免费高清在线观看视频在线观看| 美女主播在线视频| 久久免费观看电影| 午夜福利免费观看在线| 波野结衣二区三区在线| 久久av网站| 一区二区日韩欧美中文字幕| 国产在线一区二区三区精| 久久久精品区二区三区| 黄网站色视频无遮挡免费观看| 欧美日韩av久久| 欧美国产精品va在线观看不卡| 亚洲情色 制服丝袜| 久久ye,这里只有精品| 国产亚洲午夜精品一区二区久久| 成人18禁高潮啪啪吃奶动态图| 天美传媒精品一区二区| 免费日韩欧美在线观看| 天堂俺去俺来也www色官网| 丝袜在线中文字幕| 美女午夜性视频免费| 男女无遮挡免费网站观看| h视频一区二区三区| 蜜桃在线观看..| 午夜福利在线免费观看网站| 亚洲精品视频女| 成人黄色视频免费在线看| 国产麻豆69| 18禁裸乳无遮挡动漫免费视频| 午夜激情久久久久久久| 黑人猛操日本美女一级片| 久久综合国产亚洲精品| 最近手机中文字幕大全| 精品少妇内射三级| 啦啦啦在线免费观看视频4| 高清不卡的av网站| 欧美日韩国产mv在线观看视频| 久久97久久精品| 校园人妻丝袜中文字幕| 久久午夜综合久久蜜桃| 我的亚洲天堂| 日日爽夜夜爽网站| 国产精品 欧美亚洲| 爱豆传媒免费全集在线观看| 日韩不卡一区二区三区视频在线| 日韩av在线免费看完整版不卡| 国产一区二区三区综合在线观看| 亚洲精华国产精华液的使用体验| 国产精品熟女久久久久浪| 日本猛色少妇xxxxx猛交久久| 黄色视频不卡| 久久久久久久国产电影| av不卡在线播放| 亚洲国产精品一区三区| 欧美日韩一级在线毛片| 黄色视频不卡| 国产精品久久久久久精品古装| 美女福利国产在线| 精品久久久久久电影网| 宅男免费午夜| 妹子高潮喷水视频| 久久久国产一区二区| 欧美最新免费一区二区三区| 热99久久久久精品小说推荐| 国产精品香港三级国产av潘金莲 | 亚洲欧美成人综合另类久久久| 大香蕉久久成人网| 亚洲av日韩在线播放| 天堂中文最新版在线下载| 久久国产精品大桥未久av| 性高湖久久久久久久久免费观看| 国产探花极品一区二区| 热99久久久久精品小说推荐| 国产av一区二区精品久久| 日韩精品免费视频一区二区三区| 免费黄频网站在线观看国产| 女人高潮潮喷娇喘18禁视频| 午夜精品国产一区二区电影| 欧美亚洲日本最大视频资源| 一级黄片播放器| 麻豆精品久久久久久蜜桃| 日韩 亚洲 欧美在线| 丝袜脚勾引网站| 午夜激情av网站| a 毛片基地| 久久久久网色| 不卡av一区二区三区| av电影中文网址| 最近手机中文字幕大全| 亚洲精品国产av成人精品| netflix在线观看网站| 99久久综合免费| 热re99久久国产66热| 嫩草影院入口| 热re99久久国产66热| 国产免费一区二区三区四区乱码| 国精品久久久久久国模美| 国产av国产精品国产| 我的亚洲天堂| 国精品久久久久久国模美| 黄色毛片三级朝国网站| 久久 成人 亚洲| 日日爽夜夜爽网站| 99久久综合免费| 精品国产国语对白av| 9191精品国产免费久久| 亚洲婷婷狠狠爱综合网| 久久精品国产综合久久久| 亚洲,一卡二卡三卡| 亚洲精品久久午夜乱码| 久久久久久久精品精品| 日本爱情动作片www.在线观看| 一区二区三区四区激情视频| 黄色毛片三级朝国网站| 大片免费播放器 马上看| netflix在线观看网站| 美国免费a级毛片| 超碰成人久久| 国产精品一区二区精品视频观看| 激情视频va一区二区三区| 超碰97精品在线观看| 女人被躁到高潮嗷嗷叫费观| 18禁动态无遮挡网站| 自线自在国产av| 国产亚洲精品第一综合不卡| 天天影视国产精品| 日韩一区二区视频免费看| 精品人妻在线不人妻| 国产精品久久久人人做人人爽| 国产成人午夜福利电影在线观看| 18禁国产床啪视频网站| 男女床上黄色一级片免费看| 欧美黑人欧美精品刺激| 男女免费视频国产| 国产一区二区在线观看av| 免费av中文字幕在线| 中文字幕av电影在线播放| 在线免费观看不下载黄p国产| 丝袜脚勾引网站| 亚洲三区欧美一区| 丝袜在线中文字幕| 黑人巨大精品欧美一区二区蜜桃| 亚洲色图 男人天堂 中文字幕| 91国产中文字幕| 99精品久久久久人妻精品| 亚洲免费av在线视频| 激情五月婷婷亚洲| 人人澡人人妻人| 观看美女的网站| 亚洲自偷自拍图片 自拍| 男人爽女人下面视频在线观看| 久热爱精品视频在线9| 韩国高清视频一区二区三区| 如何舔出高潮| 久久精品国产a三级三级三级| 国产日韩欧美在线精品| 欧美变态另类bdsm刘玥| 欧美人与善性xxx| 国产成人精品福利久久| 一级片免费观看大全| 国产极品粉嫩免费观看在线| 女人精品久久久久毛片| 一边亲一边摸免费视频| 黄片播放在线免费| 欧美乱码精品一区二区三区| 97人妻天天添夜夜摸| 亚洲成人一二三区av| 十八禁高潮呻吟视频| 久久精品熟女亚洲av麻豆精品| 久久av网站| 黑丝袜美女国产一区| 精品福利永久在线观看| 久久99精品国语久久久| 人人妻人人澡人人看| 国产一区亚洲一区在线观看| 亚洲精品国产色婷婷电影| 国产av国产精品国产| 又黄又粗又硬又大视频| 黄色视频在线播放观看不卡| 丝袜在线中文字幕| 涩涩av久久男人的天堂| 欧美黑人精品巨大| 亚洲在久久综合| 色网站视频免费| 男女边摸边吃奶| 一区二区av电影网| 成人三级做爰电影| 国产男女内射视频| 一级毛片 在线播放| 中文字幕最新亚洲高清| 欧美日韩国产mv在线观看视频| 9热在线视频观看99| 18禁观看日本| 亚洲欧美成人精品一区二区| 叶爱在线成人免费视频播放| 亚洲激情五月婷婷啪啪| 国产极品粉嫩免费观看在线| 国产激情久久老熟女| 黄色毛片三级朝国网站| 国产 精品1| 亚洲精品国产区一区二| 一级爰片在线观看| 国产欧美亚洲国产| 天天操日日干夜夜撸| 操出白浆在线播放| www.熟女人妻精品国产| 日韩欧美精品免费久久| 婷婷色av中文字幕| 亚洲精品久久成人aⅴ小说| 成人亚洲欧美一区二区av| 国产精品国产三级专区第一集| 一本—道久久a久久精品蜜桃钙片| 制服人妻中文乱码| 日本欧美国产在线视频| 久久久久久人人人人人| 免费看不卡的av| 看十八女毛片水多多多| 在线看a的网站| 哪个播放器可以免费观看大片| 一边亲一边摸免费视频| 91精品国产国语对白视频| 99热全是精品| 一个人免费看片子| 亚洲精华国产精华液的使用体验| 精品国产露脸久久av麻豆| 欧美精品一区二区免费开放| 亚洲国产欧美在线一区| 久久97久久精品| 国产精品一区二区精品视频观看| 国产深夜福利视频在线观看| 久久久欧美国产精品| 夫妻性生交免费视频一级片| 黄片无遮挡物在线观看| xxxhd国产人妻xxx| 亚洲精品成人av观看孕妇| 女的被弄到高潮叫床怎么办| 无遮挡黄片免费观看| 国产成人精品福利久久| 国产极品天堂在线| 成人国语在线视频| 国产成人免费无遮挡视频| 亚洲欧美精品综合一区二区三区| 观看美女的网站| 精品国产一区二区久久| 美女大奶头黄色视频| 久久久久精品人妻al黑| 韩国精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 午夜精品国产一区二区电影| 新久久久久国产一级毛片| 国产成人欧美| 亚洲精品国产区一区二| 五月天丁香电影| av国产久精品久网站免费入址| 亚洲av电影在线观看一区二区三区| 亚洲一级一片aⅴ在线观看| 欧美精品一区二区免费开放| 欧美在线一区亚洲| 人人妻人人澡人人爽人人夜夜| 亚洲,欧美精品.| 欧美97在线视频| 欧美精品高潮呻吟av久久| 国产av一区二区精品久久| 人人妻,人人澡人人爽秒播 | 国产亚洲欧美精品永久| 国精品久久久久久国模美| 亚洲欧美精品综合一区二区三区| 久久精品国产a三级三级三级| 亚洲男人天堂网一区| 亚洲一码二码三码区别大吗| 国产欧美日韩综合在线一区二区| 午夜久久久在线观看| 在现免费观看毛片| 韩国高清视频一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲精品美女久久av网站| 一级片免费观看大全| 国产成人91sexporn| 色视频在线一区二区三区| 曰老女人黄片| 亚洲图色成人| 亚洲精华国产精华液的使用体验| 久久人妻熟女aⅴ| 久久精品久久久久久噜噜老黄| 国产视频首页在线观看| 一边摸一边抽搐一进一出视频| 国产精品一二三区在线看| 午夜精品国产一区二区电影| 欧美黑人欧美精品刺激| 一本—道久久a久久精品蜜桃钙片| 亚洲精品第二区| 国产伦理片在线播放av一区| 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 黄色毛片三级朝国网站| 飞空精品影院首页| a级片在线免费高清观看视频| 国产高清不卡午夜福利| 制服诱惑二区| 欧美日韩视频高清一区二区三区二| 飞空精品影院首页| 国产成人精品在线电影| 波多野结衣一区麻豆| 国产成人啪精品午夜网站| 一本大道久久a久久精品| www.自偷自拍.com| 亚洲精品美女久久av网站| 男女边摸边吃奶| 国产男人的电影天堂91| 一区二区三区激情视频| 亚洲成人av在线免费| 大片电影免费在线观看免费| 水蜜桃什么品种好| 欧美黄色片欧美黄色片| 视频区图区小说| 国产日韩欧美视频二区| 在线天堂中文资源库| 大片电影免费在线观看免费| 国产 精品1| 久久av网站| 日韩制服骚丝袜av| 免费黄色在线免费观看| 亚洲人成77777在线视频| 日韩中文字幕视频在线看片| 日韩 亚洲 欧美在线| 欧美激情极品国产一区二区三区| 又大又黄又爽视频免费| 一本久久精品| 国产淫语在线视频| 亚洲人成电影观看| 亚洲国产最新在线播放| 久久亚洲国产成人精品v| 两性夫妻黄色片| 亚洲 欧美一区二区三区| 嫩草影视91久久| 国产av精品麻豆| 国产男女内射视频| 亚洲欧美激情在线| 热99久久久久精品小说推荐| 国产精品久久久久久人妻精品电影 | 亚洲精品国产色婷婷电影| 婷婷色综合www| 精品一区二区三卡| 91aial.com中文字幕在线观看| 亚洲欧洲日产国产| 亚洲欧美激情在线| 国产av精品麻豆| 国产视频首页在线观看| 麻豆乱淫一区二区| 国产一卡二卡三卡精品 | 久久热在线av| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成77777在线视频| 免费不卡黄色视频| 中文字幕精品免费在线观看视频| 宅男免费午夜| 爱豆传媒免费全集在线观看| 水蜜桃什么品种好| 五月开心婷婷网| 99热网站在线观看| 9191精品国产免费久久| 午夜福利视频在线观看免费| 国产成人精品久久久久久| 免费久久久久久久精品成人欧美视频| 一二三四在线观看免费中文在| 欧美老熟妇乱子伦牲交| 99香蕉大伊视频| 国语对白做爰xxxⅹ性视频网站| 精品视频人人做人人爽| 这个男人来自地球电影免费观看 | 青春草视频在线免费观看| 在线观看免费日韩欧美大片| 免费观看性生交大片5| 99久久人妻综合| 亚洲七黄色美女视频| 制服人妻中文乱码| 久久久久久人人人人人| 精品国产露脸久久av麻豆| 日韩av免费高清视频| 亚洲欧美日韩另类电影网站| 久久久久精品人妻al黑| 少妇人妻久久综合中文| 老司机亚洲免费影院| 亚洲精品一二三| 久久久久精品久久久久真实原创| 一本大道久久a久久精品| 日韩欧美一区视频在线观看| 欧美日韩视频精品一区| 国产av国产精品国产| 国产免费又黄又爽又色| 又大又爽又粗| 国产成人免费无遮挡视频| 国产日韩欧美在线精品| 日韩大码丰满熟妇| 久久 成人 亚洲| 搡老岳熟女国产| 免费人妻精品一区二区三区视频| 美女福利国产在线| 精品国产一区二区三区四区第35| 国产精品国产三级专区第一集| 高清不卡的av网站| 精品视频人人做人人爽| 国产熟女午夜一区二区三区| 最近手机中文字幕大全| a级片在线免费高清观看视频| 亚洲国产av新网站| 黄色视频在线播放观看不卡| 老汉色av国产亚洲站长工具| 少妇人妻久久综合中文| 亚洲国产精品一区三区| 纯流量卡能插随身wifi吗| 国产伦人伦偷精品视频| 菩萨蛮人人尽说江南好唐韦庄| 成人漫画全彩无遮挡| a 毛片基地| av在线老鸭窝| 亚洲人成77777在线视频| 最黄视频免费看| 天美传媒精品一区二区| 天堂俺去俺来也www色官网| 久久婷婷青草| 亚洲七黄色美女视频| 日韩大片免费观看网站| 午夜日韩欧美国产| 在线亚洲精品国产二区图片欧美| 男女床上黄色一级片免费看| 别揉我奶头~嗯~啊~动态视频 | 国产在线视频一区二区| 国产男女内射视频| 男人舔女人的私密视频| 亚洲一区二区三区欧美精品| 亚洲国产欧美网| 亚洲第一青青草原| 久久久久视频综合| 丝袜在线中文字幕| 满18在线观看网站| 国产成人免费无遮挡视频| 80岁老熟妇乱子伦牲交| 日本vs欧美在线观看视频| 韩国av在线不卡| 你懂的网址亚洲精品在线观看| 9色porny在线观看| 亚洲欧美色中文字幕在线| 波多野结衣一区麻豆| 曰老女人黄片| 免费高清在线观看日韩| 精品一区在线观看国产| 嫩草影视91久久| 亚洲精品,欧美精品| 欧美人与性动交α欧美软件| 十八禁网站网址无遮挡| 午夜激情久久久久久久| 18禁观看日本| 日韩大码丰满熟妇| 不卡av一区二区三区| www.av在线官网国产| 精品一区在线观看国产| 免费黄频网站在线观看国产| 成人黄色视频免费在线看| a 毛片基地| 免费高清在线观看日韩| 两个人看的免费小视频| 少妇精品久久久久久久| 99精品久久久久人妻精品| 亚洲欧美日韩另类电影网站| 男女免费视频国产| 99久久99久久久精品蜜桃| 99国产精品免费福利视频| 夫妻午夜视频| 人妻 亚洲 视频| 午夜久久久在线观看| 国产野战对白在线观看| 日日撸夜夜添| 九九爱精品视频在线观看| 国产极品粉嫩免费观看在线| 麻豆精品久久久久久蜜桃| 人成视频在线观看免费观看| 大片免费播放器 马上看| 国产精品二区激情视频| 一边亲一边摸免费视频| 日日啪夜夜爽| av福利片在线| 一区二区三区激情视频| 日韩人妻精品一区2区三区| 在现免费观看毛片| 人体艺术视频欧美日本| 黄片小视频在线播放| 美女扒开内裤让男人捅视频| 女人高潮潮喷娇喘18禁视频| 少妇被粗大猛烈的视频| 建设人人有责人人尽责人人享有的| 美女大奶头黄色视频| 老司机深夜福利视频在线观看 | 国产av国产精品国产| 深夜精品福利| 少妇人妻久久综合中文| 在线 av 中文字幕| 99精国产麻豆久久婷婷| 高清不卡的av网站| 黄色视频不卡| 色视频在线一区二区三区| 国产野战对白在线观看| 狠狠婷婷综合久久久久久88av| 国产1区2区3区精品| 成年动漫av网址| 91aial.com中文字幕在线观看| av不卡在线播放| 人体艺术视频欧美日本| 国产1区2区3区精品| 国产精品二区激情视频| 多毛熟女@视频| 国产色婷婷99| 成人国语在线视频| 人人妻,人人澡人人爽秒播 | 欧美黄色片欧美黄色片| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 性少妇av在线| 成年av动漫网址| 中文字幕人妻熟女乱码| 妹子高潮喷水视频| 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 成人毛片60女人毛片免费| 无限看片的www在线观看| 夫妻性生交免费视频一级片| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av涩爱| 激情五月婷婷亚洲| 另类亚洲欧美激情| 国产99久久九九免费精品| 性高湖久久久久久久久免费观看| 欧美乱码精品一区二区三区| 亚洲精品aⅴ在线观看| 亚洲欧美激情在线| 久久久久精品久久久久真实原创| 精品亚洲成国产av| 亚洲欧洲日产国产| 中文字幕人妻丝袜一区二区 | 日韩欧美一区视频在线观看| 高清av免费在线| 国产色婷婷99| 亚洲av福利一区| 国产xxxxx性猛交| 日韩中文字幕视频在线看片| 91成人精品电影| 十分钟在线观看高清视频www| 韩国高清视频一区二区三区| 超色免费av| 国产无遮挡羞羞视频在线观看| 欧美日韩成人在线一区二区| 日韩中文字幕欧美一区二区 | 电影成人av| 久久久久国产精品人妻一区二区| 亚洲av中文av极速乱| 国产乱来视频区| 男人操女人黄网站| 18禁动态无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美亚洲日本最大视频资源| 波多野结衣一区麻豆| 欧美 日韩 精品 国产| 久久精品久久久久久噜噜老黄| 国产深夜福利视频在线观看| 国产一区二区在线观看av| 久久精品国产a三级三级三级| 精品久久久久久电影网| 国产乱人偷精品视频| 18禁裸乳无遮挡动漫免费视频| 无遮挡黄片免费观看| 久久久久国产一级毛片高清牌| 国产xxxxx性猛交| 久久久精品94久久精品| 国产av一区二区精品久久| 久久午夜综合久久蜜桃|