• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylationdissociated 1

    2016-12-02 10:48:16TianmeiQianLiliZhaoJingWangPingLiJingQinYishengLiuBinYuFeiDingXiaosongGuSonglinZhou

    Tian-mei Qian, Li-li Zhao, Jing Wang, Ping Li, Jing Qin, Yi-sheng Liu, Bin Yu, Fei Ding, Xiao-song Gu, Song-lin Zhou

    Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China

    RESEARCH ARTICLE

    miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylationdissociated 1

    Tian-mei Qian#, Li-li Zhao#, Jing Wang, Ping Li, Jing Qin, Yi-sheng Liu, Bin Yu, Fei Ding, Xiao-song Gu, Song-lin Zhou*

    Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China

    Graphical Abstract

    #These authors contributed equally to this study.

    orcid: 0000-0001-8598-0922 (Songlin Zhou)

    Accepted: 2015-12-22

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively adjust gene expression in multifarious biological processes. However, the regulatory effects of miRNAs on Schwann cells remain poorly understood. Previous microarray analysis results have shown that miRNA expression is altered following sciatic nerve transaction, thereby affecting proliferation and migration of Schwann cells. This study investigated whether miR-148b-3p could regulate migration of Schwann cells by directly targeting cullin-associated and neddylation-dissociated 1 (Cand1). Up-regulated expression of miR-148b-3p promoted Schwann cell migration, whereas silencing of miR-148b-3p inhibited Schwann cell migration in vitro. Further experiments confirmed that Cand1 was a direct target of miR-148b-3p, and Cand1 knockdown reversed suppression of the miR-148b-3p inhibitor on Schwann cell migration. These results suggested that miR-148b-3p promoted migration of Schwann cells by directly targeting Cand1 in vitro.

    nerve regeneration; sciatic nerve injury; miR-148b-3p; Schwann cells; migration; Cand1; gene expression; microarray; peripheral nerve injury; mechanisms; neural regeneration

    Introduction

    Recovery of injuried central and peripheral nerves remains problematic and difficult (Navarro et al., 2007). This is primarily due to the inability for intrinsic growth and the existence of a regeneration barrier (Zou et al., 2009). Schwann cells (SCs) play a very important role in removing growth obstacles. Following sciatic nerve injury, mature SCs differentiate, proliferate, and migrate, thereby forming a path to guide the growth of new axons (Kury et al., 2001). SCs also contribute to the construction of a microenvironment for nerve regeneration by excreting multiple neurotrophic factors and adhesion molecules (Ngeow, 2010). However, the particular mechanisms that regulate SC proliferation and migration remain unknown. For successful regeneration, it is necessary to explore the molecular mechanisms of SCs.

    microRNAs (miRNAs) are endogenous molecules that are approximately 22 nucleotides of non-coding RNA molecules (Bartel, 2009). miRNAs come from either miRNA genes or as a part of intron-encoded proteins; they are further maturated by the endoribonuclease Dicer (Wu and Murashov, 2013). Mature miRNA can play a negative role in the degradation or silencing of mRNA by combiningthe 3′-untranslated region (UTR) (Filipowicz et al., 2008; Carthew and Sontheimer, 2009). Knocking out the key Dicer not only inhibits differentiation, but also promotes apoptosis and cell death (De Pietri Tonelli et al., 2008). In SCs, Dicer deletion increases proliferation, but blocks myelination (Bremer et al., 2010; Pereira et al., 2010; Verrier et al., 2010). Taken together, these studies suggest that miRNAs play a critical role in cell development.

    The role of miRNA has also been studied in a variety of diseases. For example, decreased miR-485-5p promotes BACE1, which stimulates the development of Alzheimer's disease (Faghihi et al., 2010). miR-433 and miR-7 regulate expression of α-synuclein, which is associated with cytotoxicity in Parkinson's disease (Wang et al., 2008; Junn et al., 2009). Previous studies have shown that miR-160b, 30b, and 181b are significantly up-regulated in the frontal cortex of schizophrenia patients (Kim et al., 2010; Santarelli et al., 2011), and miR-148b-3p increases proliferation of breast cancer cell lines (Jiang et al., 2015). Nevertheless, very little is understood about the role that miRNAs play in nerve regeneration (Lu et al., 2014).

    Results from microarray analyses and extensive function screening have revealed that expression of many miRNAs, such as miR-221/222 and miR-182, changes after sciatic nerve injury and affects proliferation and migration of SCs (Yu et al., 2011, 2012a, b). The present study investigated whether miR-148b-3p could regulate SC migration by directly targeting cullin-associated and neddylation-dissociated 1 (Cand1), a negative regulator in the proliferation (Murata et al., 2010).

    Materials and Methods

    Primary Schwann cell culture and transfection with oligonucleotide

    Primary SCs were obtained from sciatic nerves of 1-day-old Sprague-Dawley rats of either sex. The SCs were cultured for 2 days with 10 μM Ara-C (Sigma, St Louis, MO, USA) to eliminate fibroblasts. The SCs were then further cultured with 50 ng/mL recombinant glial growth factor 2 (R&D Systems, Minneapolis, MN, USA) and 2 μM forskolin (R&D Systems) for 3 days, and then were purified by incubating with anti-Thy1.1 antibody diluted in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (1:1,000; Sigma) for 1.5 hours on ice (Mantuano et al., 2008). SCs were used when the purity reached 98%, as determined by immunoreaction with S100β. Primary SC cultures were cultured in DMEM containing 10% fetal bovine serum at 37°C and in a humidified 5% CO2incubator. miR-148b-3p mimics (20 mM), mimic control (20 mM), miR-148b-3p inhibitors (100 mM), inhibitor control (100 mM) or siRNAs (100 mM), and negative control (100 mM) (Ribobio, Guangzhou, Guangdong Province, China) were separately transfected into the SCs using Lipofectamine RNAiMAX transfection reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions (Yu et al., 2012a). Assays were performed three times in triplicate wells. All experimental procedures involving animals were conducted in accordance with institutional animal care guidelines and were ethically approved by the Administration Committee of Experimental Animals (SYXK (Su) 2015-0016), Jiangsu Province, China.

    Quantitative reverse-transcription polymerase chain reaction (qRT-PCR)

    At 36 hours after transfection with miRNA mimics or siRNAs, the Prime-Script RT reagent Kit (TaKaRa, Dalian, Liaoning Province, China) was used to synthesize reverse-transcribed complementary DNA (cDNA). PCR was conducted using the SYBR Premix Ex Taq kit (TaKaRa). RT-PCR was performed on an ABI7900 thermocycler (Applied Biosystems, Foster, CA, USA). qPCR primers were designed using NCBI Primer Blast and were manufactured by Sangon Biotech (Shanghai, China). Cand 1 primer sequence: forward: 5′-CCA GTC ACA GAT CAG CTC CA-3′; reverse: 5′-CCT CAT GTG GAA CAC ACG TC-3′; product size: 119 bp. The reaction system was as follows: 10 μL SYBR? Premix Ex TaqTM (2×), 2 μL PCR primer, 0.4 μL ROX Reference Dye, 1 μL product from RT reaction, and ddH2O to 20 μL. The PCR reaction was as follows: initial denaturation at 95°C for 2 minutes; 45 cycles of denaturation at 95°C for 15 seconds, annealing elongation at 60°C for 1 minute; final elongation at 95°C for 15 seconds, 60°C for 1 minute. Each sample was run in triplicate in each assay. β-Actin was used as the endogenous control. The relative expression level was calculated using the comparative 2-ΔΔCtmethods (Livak and Schmittgen, 2001).

    Cell migration assay

    SC migration was investigated using Transwell chambers with 8-mm-deep pores (Costar, Cambridge, MA, USA). The bottom surface of each membrane was coated with 10 mg/mL fibronectin (Sigma). At 36 hours after transfection with miR-148b-3p mimics (20 mM), miR-148b-3p inhibitors (100 mM), or siRNAs (100 mM), 100 μL SCs (1 × 106cells/mL) were re-suspended in DMEM and transferred to the top chambers of each Transwell (Mantuano et al., 2008). The lower chambers were loaded with 500 μL complete medium. After 24 hours, a cotton swab was used to clean the upper surface of each membrane. Migrated cells on the bottom surface of the Transwell membrane were stained with 0.1% crystal violet and quantified using a DMR inverted microscope (Leica Microsystems Bensheim, Germany). Assays were performed three times in triplicate wells. A total of 10 fields were randomly sampled per well. The average number of crystal violet-stained cells per field was determined.

    Luciferase reporter assay

    Potential mRNA targets of miR-148b-3p were predicted by Target Scan and microarray. Cand1 was finally chosen from the intersection of the prediction and microarray. We obtained the 3′-UTR sequence of Cand1 from the genomic DNA and sub-cloned the region directly downstream of the luciferase gene stop codon in the luciferase reporter vector. Different p-Luc-UTR luciferase reporter vectors were obtained from PCR amplification of the 3′-UTR sequence of Cand1 usingappropriate primers. Cand1-3′ UTR primer sequence: forward: 5′-CCG GAA TTC ACG TGT GTT CCA CAT GAG-3′; reverse: 5′-CCG CTC GAG AAA GTT TTA ACA TTT TAA TCC-3′; product size: 336 bp. The 3′-UTR sequences were confirmed by sequencing.

    Figure 1 Effects of miR-148b-3p on Schwann cell migration in vitro (crystal violet staining).

    Figure 2 miR-148b-3p-induced inhibition of Cand1 expression by targeting the 3′-untranslated region.

    Figure 3 Recapitulation of miR-148b-3p effects by Cand1 knockdown in Schwann cells.

    HEK293T cells were transfected with p-Luc-UTR (30 ng), miRNA mimics (5 pmol), and Renilla (5 ng) in each well of 96-well plates using the Lipofectamine 2000 transfection system (Invitrogen). At 48 hours after incubation, activities of firefly and Renilla luciferases were measured in the cell lysates using the dual-luciferase reporter assay system (Promega, Madison, WI, USA).

    Statistical analysis

    All data are expressed as the mean ± SD. Statistical analyses were performed by SPSS 18.0 software (SPSS, Chicago, IL, USA). The Student's t-test was used to compare the difference of intergroup data. A value of P < 0.05 was considered statistically significant.

    Results

    Effects of miR-148b-3p on Schwann cell migration in vitro We investigated whether miR-148b-3p played a part in the regeneration of peripheral nerves. Primary SCs were transfected with mimic control and miR-148b-3p mimic, and then added to Transwell inserts 36 hours later. At 24 hours after cell culture, crystal violet staining showed that miR-148b-3p mimic significantly promoted SC migration compared with the control (P < 0.05; Figure 1A). Silencing miR-148b-3p decreased SC migration when transfected with the inhibitor control and miR-148b-3p inhibitor (P < 0.05; Figure 1B). These results indicated that miR-148b-3p increased SC migration in vitro.

    miR-148b-3p induced inhibition of Cand1 expression by targeting the 3′-UTR region

    To investigate the underlying molecular mechanisms of miR-148b-3p initiating SC migration, potential mRNA targets of miR-148b-3p were selected by cross-referencing programs (Target Scan) and microarray results. A total of 476 potential target genes were predicted by software, and 1,736 down-regulated genes after transfection with miR-148b-3p mimics of SC were obtained (P < 0.05; Figure 2A). Among the 52 genes in the intersection of the two predictions, Cand1 was finally selected as a potential target of miR-148b-3p. Furthermore, a luciferase reporter construct was made by inserting the Cand1 3′-UTR containing the predicted target site of miR-148b-3p into the luciferase reporter gene. The relative luciferase activity was repressed by nearly 50% by miR-148b-3p (Figure 2B). These results demonstrated that miR-148b-3p specifically repressed Cand1 expression through the predicted target site in the Cand1 3′-UTR. qRT-PCR analysis further demonstrated that miR-148b-3p dramatically suppressed endogenous mRNA expression of Cand1 when the SCs were transfected with miR-148b-3p mimics (Figure 2C). These results suggested that miR-148b-3p reduced Cand1 expression by targeting the 3′-UTR region.

    Recapitulation of miR-148b-3p effects by Cand1 knockdown in Schwann cells

    Two specific small interfering RNAs (siRNAs) against Cand1 were synthesized. The results showed that siRNA-1 and siRNA-2 both inhibited Cand1 expression compared with the negative control (P < 0.05; Figure 3A). The Transwell assay showed that siRNA-1 and siRNA-2 both promoted SC migration, although the effect of siRNA-2 was more obvious (P < 0.05; Figure 3B). To further determine whether down-regulation of Cand1 directly mediated miR-148b-3p-induced SC migration, SCs were transfected with miR-148b-3p inhibitor with or without siRNA-2 against Cand1 (P < 0.05). As shown in Figure 3C, anti-miR-148b-3p significantly decreased SC migration. Conversely, a significant increase in cell migration was detected in groups co-transfected with miR-148b-3p inhibitor and siRNA-2 (P < 0.05). These results suggested that inhibition of Cand1 expression rescued the migration suppression induced by the miR-148b-3p inhibitor.

    Discussion

    The in vitro role of miR-148b-3p in SCs was explored in this study. Transfection with miR-148b-3p mimics or inhibitors revealed that miR-148b-3p improved SC migration. Cand1, a negative regulator of SKP1-Cullin1-F-box ubiquitin ligases, has the direct target region of miR-148b-3p. Decreased Cand1 expression can promote SC migration. These data showed that increased expression of miR-148b-3p promotes SC migration by reducing Cand1 expression.

    During nerve regeneration after peripheral nerve injury, miRNAs provide a powerful mechanism for post-transcriptional control of gene expression. Microarray analysis revealed miRNAs with significant expression changes, such as miR-9, miR-132, miR-182, Let-7, miR-221, and miR-222. Our previous studies showed that miR-9 inhibits SC migration by targeting Cthrc1 (Zhou et al., 2014); miR-221 and miR-222 promote SC proliferation and migration by targeting LASS2 (Yu et al., 2012b); miR-182 inhibits SC proliferation and migration by targeting FGF9 and NTM following sciatic nerve injury (Yu et al., 2012a); and Let-7 reduces SC proliferation and migration by targeting NGF (Li et al., 2015). Liu et al. (2015) showed that inhibition of miR-148b stimulates cell proliferation, enhances chemosensitivity, and increases cell metastasis and angiogenesis in vitro. Another study confirmed that miR-148b suppresses hepatocellular carcinoma cell proliferation and invasion by targeting the WNT1/β-catenin pathway (Zhang et al., 2015). However, the mechanisms of miR-148b-3p are different from miR-148b, and miR-148b-3p has been shown to increase proliferation of breast cancer cell lines (Aure et al., 2013). Proliferation of breast cancer cell lines can also be increased by miR-148b-3p (Jiang et al., 2015). The results from the present study showed another function of miR-148b-3p increased SC migration in vitro by targeting Cand1.

    Cand1 has been shown to remold the SKP1-Cullin1-F-box repertoire in response to changing growth conditions (Zemla et al., 2013), and Cand1 has also been shown to bea negative regulator in the proliferation of lymph node carcinoma of prostate cells (Murata et al., 2010). The present study explored whether miR-148b-3p and Cand1 affected SC proliferation, and the results showed no change in SC proliferation, regardless of whether expression of miR-148b-3p or Cand1 was altered.

    In summary, Cand1 suppressed migration of SCs, and the results showed a direct interaction between Cand1 and miR-148b-3p. SC proliferation and migration can affect myelination, suggesting that further studies are needed to determine the effects of Cand1 on the myelin of axons. The results from the present study offer a novel target to study SC migration, and provide evidence for a role for Cand1 in peripheral nerve regeneration, as well as cancer diagnosis and treatment.

    Author contributions: TMQ, LLZ, XSG and SLZ designed the study and prepared the paper. TMQ, LLZ, JW, PL, JQ, YSL and BY performed the experiments. BY, FD and XSG analyzed data. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Aure MR, Leivonen SK, Fleischer T, Zhu Q, Overgaard J, Alsner J, Tramm T, Louhimo R, Alnaes GI, Perala M, Busato F, Touleimat N, Tost J, Borresen-Dale AL, Hautaniemi S, Troyanskaya OG, Lingjaerde OC, Sahlberg KK, Kristensen VN (2013) Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol 14:R126.

    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215-233.

    Bremer J, O'Connor T, Tiberi C, Rehrauer H, Weis J, Aguzzi A (2010) Ablation of Dicer from murine Schwann cells increases their proliferation while blocking myelination. PLoS One 5:e12450.

    Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136:642-655.

    De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911-3921.

    Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA, Cookson MR, St-Laurent G 3rd, Wahlestedt C (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56.

    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102-114.

    Jiang X, Du L, Wang L, Li J, Liu Y, Zheng G, Qu A, Zhang X, Pan H, Yang Y, Wang C (2015) Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer. Int J Cancer 136:854-862.

    Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106:13052-13057.

    Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, van den Oord EJ, Riley BP, Kendler KS, Vladimirov VI (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 124:183-191.

    Kury P, Stoll G, Muller HW (2001) Molecular mechanisms of cellular interactions in peripheral nerve regeneration. Curr Opin Neurol 14:635-639.

    Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, Hu W, Yu B, Wang Y, Ding F, Liu Y, Gu X (2015) Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 23:423-433.

    Liu Q, Xu Y, Wei S, Gao W, Chen L, Zhou T, Wang Z, Ying M, Zheng Q (2015) microRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1. Biosci Rep 35:e00229.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.

    Lu A, Huang Z, Zhang C, Zhang X, Zhao J, Zhang H, Zhang Q, Wu S, Yi X (2014) Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury. Neural Regen Res 9:1031-1040.

    Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 28:11571-11582.

    Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K, Takahashi S, Kawazu C, Hasegawa A, Ouchi Y, Homma Y, Hayashizaki Y, Inoue S (2010) miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 13:356-361.

    Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82:163-201.

    Ngeow WC (2010) Scar less: a review of methods of scar reduction at sites of peripheral nerve repair. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:357-366.

    Pereira JA, Baumann R, Norrmen C, Somandin C, Miehe M, Jacob C, Luhmann T, Hall-Bozic H, Mantei N, Meijer D, Suter U (2010) Dicer in Schwann cells is required for myelination and axonal integrity. J Neurosci 30:6763-6775.

    Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69:180-187.

    Verrier JD, Semple-Rowland S, Madorsky I, Papin JE, Notterpek L (2010) Reduction of Dicer impairs Schwann cell differentiation and myelination. J Neurosci Res 88:2558-2568.

    Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283-289.

    Wu D, Murashov AK (2013) Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Front Physiol 4:55.

    Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X (2011) Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS One 6:e24612.

    Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, Gu X (2012a) miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 40:10356-10365.

    Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, Gu X (2012b) miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 125:2675-2683.

    Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T (2013) CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun 4:1641.

    Zhang JG, Shi Y, Hong DF, Song M, Huang D, Wang CY, Zhao G (2015) MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/beta-catenin pathway. Sci Rep 5:8087.

    Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, Ding F, Yu B, Gu X (2014) MiR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 127:967-976.

    Zou H, Ho C, Wong K, Tessier-Lavigne M (2009) Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci 29:7116-7123.

    Copyedited by Cooper C, Hindle A, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.184504

    How to cite this article: Qian TM, Zhao LL, Wang J, Li P, Qin J, Liu YS, Yu B, Ding F, Gu XS, Zhou SL (2016) miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylation-dissociated 1. Neural Regen Res 11(6)∶1001-1005.

    Funding: This study was supported by the National Key Basic Research Program of China, No. 2014CB542202; the National High-Tech R&D Program of China (863 Program), No. 2012AA020502; the National Natural Science Foundation of China, No. 81130080, 81371389 and 81571198; the Natural Science Foundation of Nantong University of China, No. 13040397; the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    *Correspondence to: Song-lin Zhou, Ph.D., songlin.zhou@ntu.edu.cn.

    亚洲欧洲日产国产| 热99国产精品久久久久久7| 啦啦啦中文免费视频观看日本| 91精品国产国语对白视频| 夜夜骑夜夜射夜夜干| 我要看黄色一级片免费的| 欧美人与性动交α欧美软件| 又紧又爽又黄一区二区| 亚洲图色成人| 久久久欧美国产精品| 亚洲成av片中文字幕在线观看| 国产精品av久久久久免费| 国产欧美日韩一区二区三 | 久久久久网色| 久久人人97超碰香蕉20202| 久久狼人影院| 国产精品.久久久| 亚洲av日韩在线播放| 欧美精品一区二区免费开放| 成年女人毛片免费观看观看9 | 日韩大片免费观看网站| 我的亚洲天堂| 99国产精品一区二区三区| 亚洲精品成人av观看孕妇| 亚洲国产精品国产精品| 赤兔流量卡办理| 亚洲av电影在线进入| 日韩一本色道免费dvd| 久久免费观看电影| 国产97色在线日韩免费| www.精华液| 久久 成人 亚洲| 一二三四在线观看免费中文在| 日韩制服丝袜自拍偷拍| 热99久久久久精品小说推荐| 欧美日韩综合久久久久久| 18禁黄网站禁片午夜丰满| 美女扒开内裤让男人捅视频| 亚洲国产最新在线播放| 日韩中文字幕欧美一区二区 | 国产成人av教育| 国产成人啪精品午夜网站| 一区二区三区四区激情视频| 韩国高清视频一区二区三区| 国产主播在线观看一区二区 | 日本av手机在线免费观看| 午夜福利影视在线免费观看| 自线自在国产av| 搡老岳熟女国产| 精品一区二区三卡| 国产精品九九99| 岛国毛片在线播放| 十分钟在线观看高清视频www| 91精品伊人久久大香线蕉| 在线亚洲精品国产二区图片欧美| 亚洲人成77777在线视频| 亚洲欧美成人综合另类久久久| 亚洲,一卡二卡三卡| 欧美日韩亚洲高清精品| 99国产精品免费福利视频| 亚洲美女黄色视频免费看| 欧美另类一区| 97人妻天天添夜夜摸| 久久亚洲精品不卡| 欧美日韩成人在线一区二区| 丰满迷人的少妇在线观看| 99热全是精品| 在线精品无人区一区二区三| 少妇人妻 视频| av国产精品久久久久影院| 美女国产高潮福利片在线看| 亚洲国产精品成人久久小说| 日本一区二区免费在线视频| 国产成人欧美在线观看 | 久久久久久久久免费视频了| 日日夜夜操网爽| 久热爱精品视频在线9| 极品少妇高潮喷水抽搐| 人人妻人人爽人人添夜夜欢视频| 成人亚洲欧美一区二区av| 国产精品 国内视频| 嫁个100分男人电影在线观看 | 国产黄色视频一区二区在线观看| 老司机影院成人| 国产日韩欧美视频二区| av天堂在线播放| 国产日韩欧美亚洲二区| 国产爽快片一区二区三区| 国产高清视频在线播放一区 | 男女高潮啪啪啪动态图| 国产精品三级大全| 亚洲国产精品一区三区| 欧美 亚洲 国产 日韩一| 日韩制服丝袜自拍偷拍| 人人妻人人澡人人爽人人夜夜| 母亲3免费完整高清在线观看| 免费在线观看黄色视频的| 国产精品一区二区在线不卡| 热99国产精品久久久久久7| 欧美成人精品欧美一级黄| 国产精品久久久人人做人人爽| 你懂的网址亚洲精品在线观看| bbb黄色大片| 中国国产av一级| 妹子高潮喷水视频| 蜜桃在线观看..| 久久99一区二区三区| 色婷婷av一区二区三区视频| 久久精品国产综合久久久| 老司机靠b影院| 久久天堂一区二区三区四区| 国产精品偷伦视频观看了| 亚洲国产中文字幕在线视频| 黄色视频在线播放观看不卡| 人人妻人人爽人人添夜夜欢视频| 免费高清在线观看视频在线观看| 一本—道久久a久久精品蜜桃钙片| 久久性视频一级片| 欧美日韩黄片免| 亚洲中文字幕日韩| 久久精品国产综合久久久| 真人做人爱边吃奶动态| 蜜桃国产av成人99| 五月开心婷婷网| 成年人黄色毛片网站| 免费av中文字幕在线| 美女国产高潮福利片在线看| 亚洲视频免费观看视频| 国产熟女欧美一区二区| 欧美激情高清一区二区三区| 国产男女超爽视频在线观看| 性高湖久久久久久久久免费观看| 美女中出高潮动态图| 亚洲精品一区蜜桃| 国产无遮挡羞羞视频在线观看| 亚洲av片天天在线观看| 夜夜骑夜夜射夜夜干| a 毛片基地| 亚洲精品日本国产第一区| 国产精品久久久久成人av| 中文乱码字字幕精品一区二区三区| 在现免费观看毛片| 9热在线视频观看99| 黄色 视频免费看| av视频免费观看在线观看| 最近最新中文字幕大全免费视频 | 国产av国产精品国产| 麻豆乱淫一区二区| 国产伦理片在线播放av一区| 久久久久久久久久久久大奶| 欧美少妇被猛烈插入视频| a级毛片黄视频| 搡老岳熟女国产| 久久99一区二区三区| av又黄又爽大尺度在线免费看| 夜夜骑夜夜射夜夜干| 天天影视国产精品| 香蕉国产在线看| 青青草视频在线视频观看| 丰满饥渴人妻一区二区三| 亚洲精品一二三| 18在线观看网站| 成人手机av| 免费av中文字幕在线| 国产欧美日韩一区二区三区在线| 老司机影院毛片| 日本vs欧美在线观看视频| 亚洲欧美一区二区三区久久| 巨乳人妻的诱惑在线观看| 国产伦人伦偷精品视频| 肉色欧美久久久久久久蜜桃| 可以免费在线观看a视频的电影网站| 亚洲精品一卡2卡三卡4卡5卡 | 少妇被粗大的猛进出69影院| 国产成人精品无人区| 成年女人毛片免费观看观看9 | 超碰成人久久| 丝袜喷水一区| 亚洲精品久久久久久婷婷小说| 搡老乐熟女国产| 国产亚洲av高清不卡| 大香蕉久久网| 大片电影免费在线观看免费| 五月天丁香电影| 国产伦理片在线播放av一区| 国产成人一区二区三区免费视频网站 | 嫁个100分男人电影在线观看 | 999久久久国产精品视频| 午夜免费男女啪啪视频观看| 久久综合国产亚洲精品| 久久久精品国产亚洲av高清涩受| 久9热在线精品视频| 最黄视频免费看| e午夜精品久久久久久久| 美女扒开内裤让男人捅视频| 日日夜夜操网爽| 亚洲一区中文字幕在线| 建设人人有责人人尽责人人享有的| 美国免费a级毛片| 国产精品国产三级国产专区5o| 黑人巨大精品欧美一区二区蜜桃| tube8黄色片| 极品少妇高潮喷水抽搐| www.自偷自拍.com| 青春草视频在线免费观看| 国产一区二区三区综合在线观看| 最近最新中文字幕大全免费视频 | 夜夜骑夜夜射夜夜干| 精品人妻1区二区| 大陆偷拍与自拍| 女人精品久久久久毛片| 国产精品一区二区精品视频观看| av视频免费观看在线观看| 国产欧美亚洲国产| 大陆偷拍与自拍| 老司机靠b影院| 啦啦啦啦在线视频资源| av线在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 两人在一起打扑克的视频| 久久精品久久精品一区二区三区| www.熟女人妻精品国产| 少妇猛男粗大的猛烈进出视频| 又黄又粗又硬又大视频| 超碰97精品在线观看| 日韩 欧美 亚洲 中文字幕| 伊人亚洲综合成人网| 搡老乐熟女国产| 老司机靠b影院| 国产三级黄色录像| 中文字幕色久视频| 天堂俺去俺来也www色官网| 免费看不卡的av| 亚洲av国产av综合av卡| 欧美乱码精品一区二区三区| 久久精品国产a三级三级三级| 亚洲图色成人| 精品少妇久久久久久888优播| 热re99久久国产66热| 亚洲欧美精品综合一区二区三区| 日本91视频免费播放| 欧美激情 高清一区二区三区| 大香蕉久久网| 国产一区二区三区av在线| 日韩伦理黄色片| 中文字幕最新亚洲高清| 欧美精品啪啪一区二区三区 | 日本vs欧美在线观看视频| 久久影院123| 9191精品国产免费久久| 婷婷成人精品国产| av线在线观看网站| 国产精品久久久人人做人人爽| 岛国毛片在线播放| 一级,二级,三级黄色视频| av片东京热男人的天堂| 中文精品一卡2卡3卡4更新| 久久青草综合色| 亚洲欧美日韩另类电影网站| 国产黄色视频一区二区在线观看| 午夜两性在线视频| 国产亚洲精品第一综合不卡| 亚洲视频免费观看视频| 国产亚洲欧美在线一区二区| 国产伦人伦偷精品视频| 别揉我奶头~嗯~啊~动态视频 | 国产欧美日韩一区二区三 | 成人午夜精彩视频在线观看| 亚洲人成77777在线视频| 成人黄色视频免费在线看| 日韩制服骚丝袜av| 人人澡人人妻人| 欧美日韩国产mv在线观看视频| 日韩中文字幕欧美一区二区 | 欧美xxⅹ黑人| 欧美人与性动交α欧美精品济南到| xxx大片免费视频| 日日夜夜操网爽| 久久人人爽人人片av| 精品一品国产午夜福利视频| 精品国产乱码久久久久久男人| 国产一区二区三区av在线| 国产男女内射视频| 欧美日韩av久久| 国产深夜福利视频在线观看| 久久亚洲国产成人精品v| 狠狠婷婷综合久久久久久88av| 人体艺术视频欧美日本| 成人手机av| 国产麻豆69| 国产av国产精品国产| 国产亚洲一区二区精品| 男女午夜视频在线观看| 99re6热这里在线精品视频| 欧美成狂野欧美在线观看| 免费久久久久久久精品成人欧美视频| 精品福利观看| 啦啦啦 在线观看视频| 亚洲av男天堂| 亚洲欧美精品综合一区二区三区| 色网站视频免费| 国产成人啪精品午夜网站| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区| 99香蕉大伊视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品中文字幕在线视频| 成人免费观看视频高清| 一本色道久久久久久精品综合| 精品久久久精品久久久| 亚洲男人天堂网一区| av又黄又爽大尺度在线免费看| 侵犯人妻中文字幕一二三四区| 另类亚洲欧美激情| 成年美女黄网站色视频大全免费| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频 | 老鸭窝网址在线观看| 精品国产一区二区久久| 91精品国产国语对白视频| 精品福利观看| 亚洲精品美女久久久久99蜜臀 | 91老司机精品| 99久久综合免费| 免费黄频网站在线观看国产| 亚洲成色77777| 18禁黄网站禁片午夜丰满| 亚洲成人手机| 激情视频va一区二区三区| 欧美变态另类bdsm刘玥| 色94色欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲色图综合在线观看| 午夜两性在线视频| 老司机靠b影院| 99精国产麻豆久久婷婷| 久久久精品国产亚洲av高清涩受| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看 | 爱豆传媒免费全集在线观看| 国精品久久久久久国模美| 国产亚洲av高清不卡| 中文字幕人妻丝袜一区二区| 大话2 男鬼变身卡| 一级毛片 在线播放| 高清不卡的av网站| 妹子高潮喷水视频| 欧美变态另类bdsm刘玥| 1024视频免费在线观看| 无限看片的www在线观看| 精品人妻一区二区三区麻豆| 国产黄频视频在线观看| 亚洲欧美一区二区三区国产| 免费看不卡的av| 欧美日韩成人在线一区二区| 9热在线视频观看99| 国产高清不卡午夜福利| 日本av手机在线免费观看| 纯流量卡能插随身wifi吗| 色94色欧美一区二区| 日日爽夜夜爽网站| 欧美人与善性xxx| av网站在线播放免费| 自线自在国产av| 18在线观看网站| 亚洲av片天天在线观看| 成人午夜精彩视频在线观看| 男女高潮啪啪啪动态图| 日本欧美视频一区| 极品人妻少妇av视频| 秋霞在线观看毛片| 亚洲av电影在线进入| 精品少妇内射三级| a级片在线免费高清观看视频| 一级毛片 在线播放| 久久精品久久久久久久性| 天堂中文最新版在线下载| 日日爽夜夜爽网站| kizo精华| 国产成人av激情在线播放| 考比视频在线观看| 亚洲综合色网址| av线在线观看网站| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区三区在线| 国产色视频综合| 老司机在亚洲福利影院| 成年美女黄网站色视频大全免费| netflix在线观看网站| 男女无遮挡免费网站观看| 国产一区二区在线观看av| 免费看av在线观看网站| 天天躁夜夜躁狠狠久久av| 丁香六月欧美| 在线观看国产h片| 少妇 在线观看| 久久国产精品人妻蜜桃| 精品福利观看| 亚洲第一av免费看| 成人免费观看视频高清| 亚洲av成人精品一二三区| 少妇猛男粗大的猛烈进出视频| 国产高清视频在线播放一区 | 国产欧美日韩综合在线一区二区| 一区二区三区四区激情视频| 晚上一个人看的免费电影| 国产精品.久久久| 国产一区二区在线观看av| 丰满饥渴人妻一区二区三| av网站免费在线观看视频| 亚洲精品国产av成人精品| 老汉色av国产亚洲站长工具| 国产成人a∨麻豆精品| 十八禁网站网址无遮挡| av天堂久久9| 成年动漫av网址| 操美女的视频在线观看| 国产爽快片一区二区三区| 免费人妻精品一区二区三区视频| 2021少妇久久久久久久久久久| 国产免费现黄频在线看| 亚洲国产欧美网| 十八禁网站网址无遮挡| 久久综合国产亚洲精品| a级片在线免费高清观看视频| 久久久久国产一级毛片高清牌| 久久人人爽人人片av| 在线观看免费日韩欧美大片| 一级a爱视频在线免费观看| 亚洲欧美一区二区三区黑人| 一本大道久久a久久精品| 成人免费观看视频高清| 成人18禁高潮啪啪吃奶动态图| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看 | 久久久久视频综合| 伊人久久大香线蕉亚洲五| 亚洲天堂av无毛| 亚洲精品一区蜜桃| 十八禁人妻一区二区| 国产片特级美女逼逼视频| 国产高清不卡午夜福利| 免费一级毛片在线播放高清视频 | 亚洲人成电影免费在线| 超碰97精品在线观看| 久久99一区二区三区| 午夜福利视频精品| 91精品三级在线观看| 久久国产亚洲av麻豆专区| 老汉色av国产亚洲站长工具| 高潮久久久久久久久久久不卡| 亚洲人成网站在线观看播放| 熟女少妇亚洲综合色aaa.| 国产日韩欧美在线精品| 国产成人欧美在线观看 | xxxhd国产人妻xxx| 亚洲国产成人一精品久久久| 久久久国产精品麻豆| 欧美大码av| 精品国产一区二区三区四区第35| 久久这里只有精品19| 国产爽快片一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看www视频免费| 亚洲精品自拍成人| 欧美日韩精品网址| 精品福利永久在线观看| 我要看黄色一级片免费的| 美女大奶头黄色视频| 欧美精品亚洲一区二区| 电影成人av| 欧美精品啪啪一区二区三区 | 欧美老熟妇乱子伦牲交| 国产精品三级大全| 久久国产精品男人的天堂亚洲| 日韩大片免费观看网站| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| tube8黄色片| 欧美中文综合在线视频| 国产欧美亚洲国产| www日本在线高清视频| 免费看av在线观看网站| 亚洲成av片中文字幕在线观看| 亚洲 欧美一区二区三区| 叶爱在线成人免费视频播放| 黄色视频在线播放观看不卡| 美女主播在线视频| 少妇精品久久久久久久| 成人影院久久| 人人妻人人澡人人爽人人夜夜| 老司机影院成人| 两性夫妻黄色片| videos熟女内射| 国产视频首页在线观看| 精品久久久久久久毛片微露脸 | 好男人视频免费观看在线| 亚洲av欧美aⅴ国产| 老司机靠b影院| 狂野欧美激情性xxxx| 1024香蕉在线观看| 欧美日韩国产mv在线观看视频| 51午夜福利影视在线观看| 国产视频一区二区在线看| 精品国产一区二区久久| av视频免费观看在线观看| 国产免费视频播放在线视频| 亚洲av欧美aⅴ国产| 久久久久久久大尺度免费视频| 婷婷丁香在线五月| 欧美日本中文国产一区发布| 又黄又粗又硬又大视频| 欧美精品一区二区免费开放| 极品少妇高潮喷水抽搐| 国产精品一区二区在线不卡| 最近中文字幕2019免费版| 日韩 亚洲 欧美在线| 亚洲精品日韩在线中文字幕| 热re99久久精品国产66热6| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| svipshipincom国产片| 91麻豆精品激情在线观看国产 | 亚洲国产成人一精品久久久| 高清av免费在线| 黄色视频不卡| 成年人午夜在线观看视频| 日本午夜av视频| 男人添女人高潮全过程视频| 日日爽夜夜爽网站| 亚洲国产欧美一区二区综合| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品国产欧美久久久 | 亚洲精品自拍成人| 欧美日韩精品网址| 国产成人一区二区三区免费视频网站 | 成人亚洲精品一区在线观看| 少妇 在线观看| 婷婷色综合大香蕉| 国产真人三级小视频在线观看| 免费在线观看日本一区| 交换朋友夫妻互换小说| www.自偷自拍.com| 国产精品一区二区在线不卡| 免费观看人在逋| 婷婷成人精品国产| 女人精品久久久久毛片| 国产成人一区二区在线| 在现免费观看毛片| 亚洲av欧美aⅴ国产| 韩国高清视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲av高清不卡| 又大又爽又粗| 蜜桃国产av成人99| 国产精品成人在线| 午夜精品国产一区二区电影| 桃花免费在线播放| 久久亚洲精品不卡| 制服人妻中文乱码| 尾随美女入室| 日日夜夜操网爽| 99精国产麻豆久久婷婷| 丝袜脚勾引网站| 亚洲色图 男人天堂 中文字幕| www.自偷自拍.com| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产最新在线播放| 国产成人精品久久久久久| 欧美精品亚洲一区二区| 国产精品成人在线| 91字幕亚洲| 亚洲精品乱久久久久久| 久久精品熟女亚洲av麻豆精品| 亚洲精品国产色婷婷电影| 99re6热这里在线精品视频| 中文字幕高清在线视频| 肉色欧美久久久久久久蜜桃| 777久久人妻少妇嫩草av网站| 嫁个100分男人电影在线观看 | 日本一区二区免费在线视频| 国产亚洲av片在线观看秒播厂| av网站在线播放免费| 国产一卡二卡三卡精品| 中文字幕av电影在线播放| 一级毛片黄色毛片免费观看视频| 欧美精品亚洲一区二区| 久9热在线精品视频| 精品人妻在线不人妻| 女人爽到高潮嗷嗷叫在线视频| 男人操女人黄网站| 男女无遮挡免费网站观看| 大片免费播放器 马上看| 国产成人影院久久av| 国产成人系列免费观看| 亚洲,一卡二卡三卡| 男女边摸边吃奶| av在线老鸭窝| 99国产精品99久久久久| 日韩大码丰满熟妇| 日韩视频在线欧美| av国产久精品久网站免费入址| 国产黄频视频在线观看| 一区福利在线观看| 国语对白做爰xxxⅹ性视频网站| 国产精品一国产av| 赤兔流量卡办理| 不卡av一区二区三区| 欧美日韩福利视频一区二区| 欧美老熟妇乱子伦牲交| 久久久久网色| 操美女的视频在线观看| 亚洲精品美女久久av网站| 久久人人爽人人片av| 又粗又硬又长又爽又黄的视频|