• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro

    2016-12-02 10:48:14XufengJiaFeiYeYanboWangDaxiongFeng

    Xu-feng Jia, Fei Ye, Yan-bo Wang Da-xiong Feng

    1 Department of Orthopedic Surgery, Jianyang People's Hospital of Sichuan Province, Jianyang, Sichuan Province, China

    2 Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China

    RESEARCH ARTICLE

    ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro

    Xu-feng Jia1,#, Fei Ye2,#, Yan-bo Wang2, Da-xiong Feng2,*

    1 Department of Orthopedic Surgery, Jianyang People's Hospital of Sichuan Province, Jianyang, Sichuan Province, China

    2 Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China

    Graphical Abstract

    #These authors contributed equally to this study.

    orcid: 0000-0002-2457-8187 (Xu-feng Jia)

    Accepted: 2016-04-28

    Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway.

    nerve regeneration; spinal cord injury; neural stem cells; Rho signaling pathway; neurite outgrowth; myelin; YAP; neural regeneration

    Introduction

    After spinal cord injury (SCI), central nervous system neurons cannot regenerate axons spontaneously. This may be partially attributed to axon outgrowth inhibitors in the central nervous system environment, such as myelin-associated glycoprotein, myelin oligodendrocyte glycoprotein, chondroitin sulfate proteoglycans, and Nogo-66 and amino-Nogo (GrandPré et al., 2000; Prinjha et al., 2000; Fournier et al., 2001; Liu et al., 2002). Nogo-66 mainly functions as a neuron-specific inhibitor in soluble monomeric form, whereas amino-Nogo acts as a nonspecific inhibitor of neuronal and non-neuronal cells in the cluster form. Nogo-66 exerts its inhibitory function during axon regeneration by binding to the Nogo-66 receptor (Prinjha et al., 2000). The inhibitory effects of Nogo-66 and amino-Nogo can be reversed by inhibition of the Rho/Rho-kinase (ROCK) pathway in vivo,which enhances axonal regeneration and improves functional recovery after central nerve system injury.

    Fournier et al. (2000) reported that actin rearrangements within the growth cone play a key role in neurite outgrowth inhibition and neurite repulsion. The Rho family of GTPases regulates the actin cytoskeleton (Kawano et al., 2014). Rho family members are present either in their inactive form, or in an active GDP-bound form. Rho GTPases regulate collapse of the growth cone and inhibit neurite outgrowth (K?nigs et al., 2014).

    Rho family members exert their functions mainly through a variety of downstream effectors. Of interest among the downstream targets of GTP-bound Rho are p160ROCK (ROCK-I) and ROK-Rho-kinase (ROCK-II) (Guignandon et al., 2014). Once either of these is activated, the regulatory myosin light-chain phosphatase is phosphorylated (Deng et al., 2014).

    A previous study demonstrated that at low concentrations the cell-permeable pyridine derivative Y-27632, a relatively specific ROCK inhibitor, decreases ROCK-I and ROCKII activity (Ishizaki et al., 2000). Günther et al. (2014) and Roloff et al. (2015) found that in vitro application of Y-27632 to primary motoneurons and human NT2 model neurons increases neurite outgrowth. In addition, Y-27632 promotes the survival and neurite outgrowth of early postnatal cultured retinal neurocytes (Feng et al., 2013) and enhances axon regeneration in an adult rat retinal culture model only in the presence of growth-promoting factors or under high cAMP conditions (Ahmed et al., 2009). Y-27632 also promotes nerve growth factor-induced neurite outgrowth in PC12 cells; IP3 receptors and the PI3K-Akt signaling pathway might be involved in the underlying mechanisms (Minase et al., 2010). However, the mechanism of Y-27632 has not been fully explored. YAP is a major downstream effector of the Hippo pathway (Dill et al., 2015). It is markedly upregulated in many mammalian cancers, and YAP transgenic mice eventually develop liver tumors. Few reports have addressed the role of the Hippo pathway in axon regeneration after SCI.

    A previous report showed that Y-27632 treatment led to functional and anatomical recovery in mice with corticospinal tract lesions (Dergham et al., 2002). The present study was designed to investigate the effects of ROCK inhibition using Y-27632 on neurite outgrowth and neuronal differentiation in neural stem cells (NSCs) and explore the underlying mechanisms.

    Materials and Methods

    NSC culture

    Animal studies were approved by the Institutional Animal Care and Use Committee of the Affiliated Hospital of Southwest Medical University, China (IACUC protocol No. [2012009]), and performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Precautions were taken to minimize suffering and the number of animals used in each experiment.

    For NSC isolation, 100 specific-pathogen-free neonatal Kunming mice (postnatal days 2—6) were provided by the Animal Experimental Center of Southwest Medical University, China (license No. SYXK (Chuan) 2013-181). NSC isolation and culture were performed as described previously (Lingor et al., 2008), with modifications. Briefly, a single-cell suspension was prepared from subventricular zone tissue (Paxinos and Franklin, 2013) and cultured in Dulbecco's modified Eagle's medium (DMEM)/F12 (1:1; Invitrogen, Carlsbad, CA, USA) with B27 supplement (2%; Invitrogen), epidermal growth factor (20 ng/mL; Invitrogen) and basic fibroblast growth factor (20 ng/mL; Invitrogen). After 5—7 days, neurospheres were broken into small clusters and cultured in the same medium at a ratio of 1:3. Proliferative NSCs formed three-dimensional cell clusters. NSCs at passages 2—4 were used for subsequent experiments.

    To investigate NSC differentiation, medium containing DMEM/F12 (1:1), B27 (2%) and retinoic acid (5 μM; Sigma-Aldrich, St. Louis, MO, USA) was used to culture cell clusters on cover slips pre-coated with 0.1 mg/mL poly-D-lysine. The culture medium was refreshed every other day. Six days later, neurobasal medium containing 2% B27 and 20 ng/mL nerve growth factor (Invitrogen) was used.

    Detection of cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay A single-cell suspension made by cell clusters was seeded into a 96-well plate at a density of 3.0 × 103NSCs per 100 μL of proliferation-inducing medium, and then cultured with the same medium containing different concentrations of Y-27632 (Cytoskeleton Inc., Denver, CO, USA) for 4, 8 or 12 hours. Four hours later, cells were incubated with MTT detergent (10 μL/well; Sigma-Aldrich) at 37°C for 2—4 hours in the dark. Optical density at 570 nm was read on a microplate fluorescence reader (FL600; BioTek, Winooski, VT, USA).

    Neurite outgrowth measurement

    Neurite outgrowth was measured as described previously (Hirose et al., 1998; Sandvig et al., 2004). To detect inhibition of ROCK, the dissociated cell clusters were incubated with proliferation-inducing medium containing 10 μM Y-27632 or an equivalent volume of sterile H2O and then plated onto 10 μg/mL laminin (Sigma-Aldrich) for 1—2 hours. Cells treated with Y-27632 were spread onto the myelin substrate. Neurite outgrowth was quantified using ImageJ software (NIH, Bethesda, MD, USA).

    Western blot assay

    Western blot assay was performed as described previously (Ivanov et al., 2009). Cells were collected after centrifugation and then lysed in radioimmune precipitation assay buffer containing a protein inhibitor cocktail (Sigma-Aldrich). Protein content was quantified by bicinchoninic acid assay (Pierce, Rockford, IL, USA), and equal amounts of protein were separated by polyacrylamide gel electrophoresis. The proteins were then transferred to a polyvinylidene fluoride membrane (BioRad, Hercules, CA, USA). Themembrane was incubated for 1 hour at room temperature in Tris-buffered saline with Tween-20 containing 5% bovine serum albumin to block nonspecific binding, then at 4°C overnight with antibodies against ROCK-II (1:1,000; BD Transduction Laboratories, San Diego, CA, USA), YAP (1:1,000; BD Transduction Laboratories), Akt (1:1,000; Santa Cruz Biotechnology, Santa Cruz, CA, USA), phospho-Akt (1:1,000; Cell Signaling Technology, Danvers, MA, USA), phospho-p44/42 mitogen-activated protein kinase (MAPK; Thr202/Tyr204; 1:1,000; Cell Signaling Technology), and GAPDH (1:5,000; Sigma-Aldrich). All primary antibodies were rabbit anti-mouse monoclonal antibodies. The membrane was rinsed, and the enhanced chemiluminescence method (ThermoScientific, Hudson, NH, USA) was used to visualize the bands, using goat anti-rabbit HRP-conjugated antibodies (1:400; BioRad) at room temperature for 2 hours. Signal intensity (optical density) was quantified using ImageJ software. Relative optical density was calculated relative to GAPDH.

    Statistical analysis

    Raw data were imported into Origin 9.0 software (OriginLab Corporation, Northampton, MA, USA) for graphing and fitted with Sigma Plot (Systat Software Inc., San Jose, CA, USA). Data, expressed as the mean ± SEM, were analyzed using Student's two-tailed t-test between two groups, or one-way analysis of variance followed by Tukey's post-hoc test for multiple comparisons. P < 0.05 was considered statistically significant.

    Results

    Effects of Y-27632 on NSC viability

    MTT assay showed that the viability of NSCs at passages 2—4 was not reduced after incubation with Y-27632 at 0.5—2 μg/mL for 4 hours (Figure 1A) or 1 μg/mL for 4 and 8 hours (Figure 1B). Therefore, in subsequent experiments, NSCs were treated with 1 μg/mL Y-27632 for 4 hours.

    Y-27632 increased neurite outgrowth in NSCs

    Treatment of NSCs with Y-27632 for 4 hours significantly increased neurite length during subsequent neuronal differentiation. Y-27632 dose-dependently promoted NSC neurite outgrowth, with the greatest effect observed at 2 μg/mL (Figure 2A). After 1 day of culture, the average neurite length in the NSCs was significantly greater in the three groups treated with Y-37632 than in the control group (150 ± 20 μm vs. 63 ± 6 μm; P < 0.05). At 5 days, the average neurite length in the three Y-27632 groups was more than twice that in the control group (Figure 2B).

    Y-27632 increased YAP protein expression in NSCs

    After a 4-hour treatment with 1 μg/mL Y-27632, western blots were performed to assess the changes in two important signaling pathway effectors, p-Akt and p-MAPK. After Y-27632 treatment, ratios of p-Akt/Akt and p-MAPK/MAPK were significantly elevated (Figure 3). Interestingly, YAP protein expression was also significantly upregulated, and accompanied by a downregulation of ROCKII expression.

    These findings suggest that hyperactivation of YAP in NSCs contributes to neurite outgrowth.

    Discussion

    Blocking the ROCK pathway promotes neurite outgrowth in SCI models (Fournier et al., 2003; Kubo et al., 2007; Boadas-Vaello and Verdú , 2015; Hou et al., 2015). Here, we investigated the inhibitory effects of ROCK on NSC differentiation and neurite outgrowth. Our results showed that ROCK inhibition significantly promoted neuronal differentiation and neurite outgrowth in mouse NSCs. These observations provide insights into stem cell therapy and functional recovery of axonal growth.

    Myelin is an important inhibitor of axon regeneration after SCI. It is secreted by oligodendrocytes in injured nervous tissue (Sandvig et al., 2004). In the central nervous system, Nogo-A is the most ubiquitous myelin-associated protein (McGee and Strittmatter, 2003). By binding to the Nogo-66 receptor, Nogo activates the Rho/ROCK pathway, which in turn activates PI3K/Akt signaling and cytoskeleton organization effectors (Liao et al., 2007; Schmandke et al., 2007), leading to neurite elongation (Hirose et al., 1998). There is evidence that cell survival, proliferation and regeneration can be enhanced by inhibition of the Rho/ROCK signaling pathway, and partially through the MAPK and Akt signaling pathways (Lingor et al., 2008). Our results also showed that phospho-Akt and MAPK were elevated in Y-27632-treated NSCs, indicating that these molecules are important in axonal regeneration after SCI. The Rho/ROCK signaling pathway is also suggested to play a key role in neuronal differentiation (Sandvig et al., 2004). Our results show that neuronal differentiation was significantly enhanced in NSCs after Y-27632 treatment. These results were consistent with a previous study that showed that ERK1/2 phosphorylation is necessary for early neuronal differentiation and embryonic stem cell survival (Li et al., 2006).

    Interestingly, our results showed that while Y-27632 upregulated p-Akt and MAPK expression in NSCs, it also significantly increased that of the Hippo signaling pathway mediator YAP. All components of the Hippo signaling pathway have one or more vertebrate orthologs. Human cancers have been linked to mutations in these genes (McClatchey and Giovannini, 2005; Harvey and Tapon, 2007). Cao et al. (2008) reported that the Hippo signaling pathway greatly contributes to the regulation of neural progenitor cell number by controlling cell proliferation and apoptosis. Our results showed that ROCKII inhibition induced YAP to regulate the neurite outgrowth of vertebrate NSCs. In the mouse blastocyst, inhibition of ROCK by Y-27632 significantly enhances inner cell mass by activating Hippo signaling pathway (Kono et al., 2014). Taken together, our data suggest that Y-27632 mediates NSC outgrowth partially through activation of Hippo signaling pathway, thus enhancing axon regeneration after SCI.

    Author contributions: XFJ and DXF conceived, designed, and revised the paper. FY and YBW collected data. XFJ wrote thepaper. All authors approved the final version of the paper.

    Figure 1 Changes in viability of NSCs after Y-27632 exposure (MTT assay).

    Figure 2 Neurite outgrowth of NSCs after treatment with Y-27632 for 4 hours.

    Figure 3 YAP protein expression in NSCs after Y-27632 treatment (western blot assay).

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Ahmed Z, Berry M, Logan A (2009) ROCK inhibition promotes adult retinal ganglion cell neurite outgrowth only in the presence of growth promoting factors. Mol Cell Neurosci 42:128-133.

    Boadas-Vaello P, Verdú E (2015) Epigallocatechin-3-gallate treatment to promote neuroprotection and functional recovery after nervous system injury. Neural Regen Res 10:1390-1392.

    Cao X, Pfaff SL, Gage FH (2008) YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev 22:3320-3334.

    Deng Z, Huang Z, Yuan M, Yang K, Pang Y (2014) Baculovirus induces host cell aggregation via a Rho/Rok-dependent mechanism. J Gen Virol 95:2310-2320.

    Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22:6570-6577.

    Dill PE, Liang N, Pende M (2015) New insights into the pathophysiology of the tuberous sclerosis complex: crosstalk of mTOR- and hippo-YAP pathways in cell growth. Rare Dis 3:e1016701.

    Feng PL, Wang J, Yang ZJ, Liu XH, Zhong YS (2013) Effect of Y-27632 on the cultured retinal neurocytes of rats. Int J Ophthalmol 6:15-18.

    Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341-346.

    Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416-1423.

    Fournier AE, Nakamura F, Kawamoto S, Goshima Y, Kalb RG, Strittmatter SM (2000) Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse. J Cell Biol 149:411-422.

    Günther R, Saal KA, Suhr M, Scheer D, Koch JC, B?hr M, Lingor P, T?nges L (2014) The rho kinase inhibitor Y-27632 improves motor performance in male SOD1(G93A) mice. Front Neurosci 8:304.

    GrandPré T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403:439-444.

    Guignandon A, Faure C, Neutelings T, Rattner A, Mineur P, Linossier MT, Laroche N, Lambert C, Deroanne C, Nusgens B, Demets R, Colige A, Vico L (2014) Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J 28:4077-4087.

    Harvey K, Tapon N (2007) The Salvador-Warts-Hippo pathway-an emerging tumour-suppressor network. Nat Rev Cancer 7:182-191.

    Hirose M, Ishizaki T, Watanabe N, Uehata M, Kranenburg O, Moolenaar WH, Matsumura F, Maekawa M, Bito H, Narumiya S (1998) Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol 141:1625-1636.

    Hou XL, Chen Y, Yin H, Duan WG (2015) Combination of fasudil and celecoxib promotes the recovery of injured spinal cord in rats better than celecoxib or fasudil alone. Neural Regen Res 10:1836-1840.

    Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol 57:976-983.

    Ivanov AI, Samarin SN, Bachar M, Parkos CA, Nusrat A (2009) Protein kinase C activation disrupts epithelial apical junctions via ROCKII dependent stimulation of actomyosin contractility. BMC Cell Biol 10:36.

    K?nigs V, Jennings R, Vogl T, Horsthemke M, Bachg AC, Xu Y, Grobe K, Brakebusch C, Schwab A, B?hler M, Knaus UG, Hanley PJ (2014) Mouse macrophages completely lacking Rho subfamily GTPases (RhoA, RhoB, and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and altered motility. J Biol Chem 289:30772-30784.

    Kawano Y, Kaneko-Kawano T, Shimamoto K (2014) Rho family GTPase-dependent immunity in plants and animals. Front Plant Sci 5:522.

    Kono K, Tamashiro DA, Alarcon VB (2014) Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 394:142-155.

    Kubo T, Hata K, Yamaguchi A, Yamashita T (2007) Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration. Curr Pharm Des 13:2493-2499.

    Li Z, Theus MH, Wei L (2006) Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev Growth Differ 48:513-523.

    Liao JK, Seto M, Noma K (2007) Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 50:17-24.

    Lingor P, T?nges L, Pieper N, Bermel C, Barski E, Planchamp V, B?hr M (2008) ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain 131:250-263.

    Liu BP, Fournier A, GrandPré T, Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297:1190-1193.

    McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis—the NF2 tumor suppressor, Merlin. Genes Dev 19:2265-2277.

    McGee AW, Strittmatter SM (2003) The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci 26:193-198.

    Minase T, Ishima T, Itoh K, Hashimoto K (2010) Potentiation of nerve growth factor-induced neurite outgrowth by the ROCK inhibitor Y-27632: a possible role of IP3 receptors. Eur J Pharmacol 648:67-73.

    Paxinos G, Franklin KB (2013) The Mouse Brain in Stereotaxic Coordinates. San Diego: Elsevier.

    Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michalovich D, Simmons DL, Walsh FS (2000) Neurobiology: Inhibitor of neurite outgrowth in humans. Nature 403:383-384.

    Roloff F, Scheiblich H, Dewitz C, Dempewolf S, Stern M, Bicker G (2015) Enhanced neurite outgrowth of human model (NT2) neurons by small-molecule inhibitors of Rho/ROCK signaling. PLoS One 10:e0118536.

    Sandvig A, Berry M, Barrett LB, Butt A, Logan A (2004) Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 46:225-251.

    Schmandke A, Schmandke A, Strittmatter SM (2007) ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 13:454-469.

    Copyedited by Slone-Murphy J, Frenchman B, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.184499

    How to cite this article: Jia XF, Ye F, Wang YB, Feng DX (2016) ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro. Neural Regen Res 11(6)∶983-987.

    Funding: This study was supported by the National Natural Science Foundation of China (General Program), No. 30872602.

    *Correspondence to: Da-xiong Feng, M.D., fdxlz2002@163.com.

    国产91精品成人一区二区三区| 精品国产超薄肉色丝袜足j| 日韩国内少妇激情av| 欧美黑人欧美精品刺激| 成人三级做爰电影| 岛国视频午夜一区免费看| 亚洲aⅴ乱码一区二区在线播放| 99国产综合亚洲精品| 亚洲午夜精品一区,二区,三区| 18禁黄网站禁片午夜丰满| 他把我摸到了高潮在线观看| 免费一级毛片在线播放高清视频| 亚洲一区高清亚洲精品| 后天国语完整版免费观看| 97人妻精品一区二区三区麻豆| 最新在线观看一区二区三区| 国产高清视频在线观看网站| 国产精品电影一区二区三区| 麻豆av在线久日| 12—13女人毛片做爰片一| 久久久久精品国产欧美久久久| 偷拍熟女少妇极品色| 日本黄大片高清| 校园春色视频在线观看| 我要搜黄色片| av中文乱码字幕在线| 熟妇人妻久久中文字幕3abv| 两性夫妻黄色片| bbb黄色大片| 在线a可以看的网站| 女生性感内裤真人,穿戴方法视频| 一区二区三区国产精品乱码| 午夜激情福利司机影院| 国产人伦9x9x在线观看| 美女高潮喷水抽搐中文字幕| 男插女下体视频免费在线播放| 欧美乱色亚洲激情| 久久草成人影院| 亚洲性夜色夜夜综合| 午夜福利在线观看免费完整高清在 | 无遮挡黄片免费观看| 精品国产乱子伦一区二区三区| 国产黄色小视频在线观看| 99久久久亚洲精品蜜臀av| 亚洲在线自拍视频| 成人av在线播放网站| 十八禁网站免费在线| 曰老女人黄片| 少妇的丰满在线观看| 国产精品精品国产色婷婷| 欧美高清成人免费视频www| 中亚洲国语对白在线视频| 色噜噜av男人的天堂激情| av黄色大香蕉| 亚洲aⅴ乱码一区二区在线播放| 18禁观看日本| 亚洲中文日韩欧美视频| 亚洲国产色片| 亚洲国产欧美人成| 久久久久亚洲av毛片大全| 亚洲av片天天在线观看| 国产伦人伦偷精品视频| 女人高潮潮喷娇喘18禁视频| 无限看片的www在线观看| e午夜精品久久久久久久| 亚洲av第一区精品v没综合| avwww免费| 成人特级黄色片久久久久久久| 中文字幕av在线有码专区| 国产精品一区二区三区四区久久| 在线国产一区二区在线| 免费搜索国产男女视频| 日本黄色视频三级网站网址| 国产aⅴ精品一区二区三区波| 亚洲国产色片| 亚洲九九香蕉| 12—13女人毛片做爰片一| 欧美精品啪啪一区二区三区| 淫秽高清视频在线观看| 免费高清视频大片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av电影不卡..在线观看| 亚洲无线在线观看| 曰老女人黄片| 无人区码免费观看不卡| www.999成人在线观看| 国产精品一区二区三区四区免费观看 | 天天添夜夜摸| 网址你懂的国产日韩在线| 成熟少妇高潮喷水视频| 久久久久国内视频| 久久中文看片网| 亚洲色图av天堂| 淫妇啪啪啪对白视频| 日本黄色视频三级网站网址| 欧美中文综合在线视频| 性色avwww在线观看| 成人特级av手机在线观看| av黄色大香蕉| 久久午夜亚洲精品久久| 男女床上黄色一级片免费看| 国产野战对白在线观看| 夜夜躁狠狠躁天天躁| 久久精品夜色国产| 性插视频无遮挡在线免费观看| 亚洲美女视频黄频| 久久热精品热| 欧美激情久久久久久爽电影| 国产色爽女视频免费观看| 秋霞在线观看毛片| 久久国内精品自在自线图片| 成人漫画全彩无遮挡| 天堂√8在线中文| 国产午夜精品久久久久久一区二区三区| 中文亚洲av片在线观看爽| 国产色爽女视频免费观看| 春色校园在线视频观看| 日本wwww免费看| av黄色大香蕉| 免费看日本二区| 久久人人爽人人片av| 丝袜美腿在线中文| 久久久成人免费电影| 国产真实伦视频高清在线观看| 国产综合懂色| 亚洲不卡免费看| 51国产日韩欧美| 日韩制服骚丝袜av| 永久免费av网站大全| 国产91av在线免费观看| 免费观看性生交大片5| 亚洲熟妇中文字幕五十中出| 久久欧美精品欧美久久欧美| 在线天堂最新版资源| 久久这里有精品视频免费| 免费观看a级毛片全部| 内射极品少妇av片p| 一级毛片aaaaaa免费看小| 91精品伊人久久大香线蕉| 国产精品久久久久久久电影| 亚洲最大成人av| 久久鲁丝午夜福利片| 深夜a级毛片| 精品人妻一区二区三区麻豆| 嫩草影院入口| 日韩精品有码人妻一区| 男人狂女人下面高潮的视频| 精品一区二区免费观看| av在线蜜桃| 欧美人与善性xxx| 国产在视频线在精品| 亚洲精品国产av成人精品| 全区人妻精品视频| 国产美女午夜福利| 天美传媒精品一区二区| 色哟哟·www| .国产精品久久| 成年版毛片免费区| 最近的中文字幕免费完整| 国产三级在线视频| 亚洲国产高清在线一区二区三| 黄色一级大片看看| 级片在线观看| 联通29元200g的流量卡| 免费观看人在逋| 亚洲精品日韩av片在线观看| 久久亚洲国产成人精品v| 国产一区有黄有色的免费视频 | 成人特级av手机在线观看| 两个人的视频大全免费| 亚洲av二区三区四区| 看免费成人av毛片| 欧美潮喷喷水| 国产免费又黄又爽又色| 99热精品在线国产| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久精品电影| 免费看日本二区| 欧美丝袜亚洲另类| 一级毛片我不卡| 建设人人有责人人尽责人人享有的 | 久久久久免费精品人妻一区二区| 日日摸夜夜添夜夜添av毛片| h日本视频在线播放| 午夜精品一区二区三区免费看| 国内精品宾馆在线| 日韩成人av中文字幕在线观看| 亚洲av成人av| 又粗又硬又长又爽又黄的视频| 亚洲18禁久久av| 国产私拍福利视频在线观看| 99久久精品热视频| av播播在线观看一区| 91aial.com中文字幕在线观看| 国产av在哪里看| 亚洲欧美精品专区久久| 91aial.com中文字幕在线观看| 自拍偷自拍亚洲精品老妇| 97人妻精品一区二区三区麻豆| 看非洲黑人一级黄片| 哪个播放器可以免费观看大片| 国产午夜精品久久久久久一区二区三区| 神马国产精品三级电影在线观看| 日韩av不卡免费在线播放| 神马国产精品三级电影在线观看| 午夜日本视频在线| 神马国产精品三级电影在线观看| 我的老师免费观看完整版| 成人毛片a级毛片在线播放| 又粗又爽又猛毛片免费看| 国产精品综合久久久久久久免费| 汤姆久久久久久久影院中文字幕 | 日本五十路高清| 中文字幕av成人在线电影| 国产女主播在线喷水免费视频网站 | 男女那种视频在线观看| 特大巨黑吊av在线直播| 久久99热6这里只有精品| 久久久久久久国产电影| 欧美成人精品欧美一级黄| 免费黄网站久久成人精品| videos熟女内射| 蜜桃久久精品国产亚洲av| 18禁动态无遮挡网站| 麻豆精品久久久久久蜜桃| 久久精品久久久久久久性| 亚洲综合精品二区| 最近手机中文字幕大全| 在现免费观看毛片| 久久久色成人| 狂野欧美白嫩少妇大欣赏| 国产视频内射| 亚洲精品国产av成人精品| 国产真实乱freesex| 免费黄色在线免费观看| 禁无遮挡网站| 日韩一区二区三区影片| 久久精品久久久久久久性| 干丝袜人妻中文字幕| 亚洲久久久久久中文字幕| 午夜精品一区二区三区免费看| 国产淫语在线视频| 欧美变态另类bdsm刘玥| 看片在线看免费视频| 亚洲国产日韩欧美精品在线观看| 亚洲,欧美,日韩| 久久鲁丝午夜福利片| 国产av码专区亚洲av| 91午夜精品亚洲一区二区三区| 亚洲自拍偷在线| 搡女人真爽免费视频火全软件| av免费观看日本| 黄片无遮挡物在线观看| 在线a可以看的网站| 亚洲中文字幕一区二区三区有码在线看| 久久久欧美国产精品| 欧美人与善性xxx| 精品酒店卫生间| 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 亚洲国产欧洲综合997久久,| 国产高清国产精品国产三级 | 中文字幕av成人在线电影| 国产伦精品一区二区三区视频9| 亚洲欧洲日产国产| 国产精品女同一区二区软件| 亚洲va在线va天堂va国产| 国产在视频线精品| 中国国产av一级| 精品一区二区免费观看| 老司机影院毛片| 日本免费一区二区三区高清不卡| 亚洲激情五月婷婷啪啪| 五月伊人婷婷丁香| 激情 狠狠 欧美| 精品欧美国产一区二区三| 国产老妇伦熟女老妇高清| 亚洲欧美日韩高清专用| 欧美xxxx性猛交bbbb| 国产成人aa在线观看| 亚洲欧美一区二区三区国产| 婷婷色av中文字幕| 99久久人妻综合| 尤物成人国产欧美一区二区三区| 老师上课跳d突然被开到最大视频| 又爽又黄a免费视频| 亚洲av成人av| 国产国拍精品亚洲av在线观看| 日本av手机在线免费观看| 久久精品影院6| 国产精品野战在线观看| 日韩视频在线欧美| 天堂网av新在线| 三级经典国产精品| 亚洲综合色惰| av国产久精品久网站免费入址| 高清毛片免费看| 国产精品.久久久| 久久婷婷人人爽人人干人人爱| av视频在线观看入口| 久久精品夜色国产| 日韩欧美在线乱码| 国产乱人视频| 久久精品综合一区二区三区| 国产成人aa在线观看| 国产探花在线观看一区二区| 国产熟女欧美一区二区| av又黄又爽大尺度在线免费看 | 女人十人毛片免费观看3o分钟| 亚洲精品456在线播放app| 国产伦理片在线播放av一区| 久久久久久九九精品二区国产| АⅤ资源中文在线天堂| 亚洲国产色片| 日韩欧美在线乱码| 国产成人freesex在线| 22中文网久久字幕| 国产精品国产三级国产av玫瑰| 色播亚洲综合网| 如何舔出高潮| 成年版毛片免费区| 精品久久久久久久久亚洲| 有码 亚洲区| 国模一区二区三区四区视频| 别揉我奶头 嗯啊视频| 亚洲经典国产精华液单| 国产成人91sexporn| 国产私拍福利视频在线观看| 99国产精品一区二区蜜桃av| 啦啦啦啦在线视频资源| 欧美日韩国产亚洲二区| 久久久午夜欧美精品| 国产亚洲午夜精品一区二区久久 | 在线播放无遮挡| 日本午夜av视频| 我要搜黄色片| 精品久久久久久久久久久久久| 国产老妇女一区| 亚洲综合色惰| 卡戴珊不雅视频在线播放| 欧美另类亚洲清纯唯美| 少妇熟女aⅴ在线视频| 少妇被粗大猛烈的视频| 免费观看人在逋| 一级黄片播放器| 久久久久久久久中文| 国产精品综合久久久久久久免费| 国产成人精品婷婷| 2021少妇久久久久久久久久久| 十八禁国产超污无遮挡网站| 女人久久www免费人成看片 | 亚州av有码| 一个人免费在线观看电影| 男插女下体视频免费在线播放| 晚上一个人看的免费电影| 少妇熟女aⅴ在线视频| 久久久久精品久久久久真实原创| 丝袜美腿在线中文| 晚上一个人看的免费电影| 黄色一级大片看看| 日日啪夜夜撸| 纵有疾风起免费观看全集完整版 | 老女人水多毛片| av.在线天堂| 色综合亚洲欧美另类图片| 亚洲va在线va天堂va国产| 成人美女网站在线观看视频| 日韩欧美 国产精品| 亚洲自偷自拍三级| 乱系列少妇在线播放| 免费人成在线观看视频色| 黄片无遮挡物在线观看| 性插视频无遮挡在线免费观看| 国产又黄又爽又无遮挡在线| 在线观看av片永久免费下载| 免费观看性生交大片5| 亚洲国产精品国产精品| 久久精品91蜜桃| 色哟哟·www| 午夜福利成人在线免费观看| 色网站视频免费| 久久久精品94久久精品| 99久久人妻综合| 一个人看视频在线观看www免费| 日韩中字成人| 最近中文字幕高清免费大全6| 欧美成人免费av一区二区三区| 国内精品一区二区在线观看| 色噜噜av男人的天堂激情| 亚洲国产精品成人综合色| 九九爱精品视频在线观看| 人妻制服诱惑在线中文字幕| 99久久精品热视频| 国产亚洲精品久久久com| 天堂av国产一区二区熟女人妻| 只有这里有精品99| 日日摸夜夜添夜夜爱| 中文在线观看免费www的网站| 三级国产精品欧美在线观看| 中国国产av一级| 久久久久久久国产电影| 插逼视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| 2021天堂中文幕一二区在线观| av在线天堂中文字幕| 国产麻豆成人av免费视频| 岛国毛片在线播放| 最新中文字幕久久久久| 卡戴珊不雅视频在线播放| 欧美一级a爱片免费观看看| 午夜福利在线在线| 亚洲欧美日韩高清专用| 国语自产精品视频在线第100页| 五月玫瑰六月丁香| 色视频www国产| 在线a可以看的网站| a级毛片免费高清观看在线播放| 国产精品伦人一区二区| 免费观看在线日韩| 国产精品精品国产色婷婷| 欧美成人免费av一区二区三区| 插逼视频在线观看| 成人特级av手机在线观看| 成人亚洲精品av一区二区| 成年女人看的毛片在线观看| 九色成人免费人妻av| 日本黄色片子视频| 伦理电影大哥的女人| 七月丁香在线播放| 99热6这里只有精品| 国产精品国产高清国产av| 亚洲国产精品专区欧美| 日韩 亚洲 欧美在线| www.av在线官网国产| 国产欧美另类精品又又久久亚洲欧美| 能在线免费观看的黄片| 少妇熟女aⅴ在线视频| 国产成人免费观看mmmm| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 久久精品久久久久久噜噜老黄 | 国产精品.久久久| 99久久精品热视频| 乱系列少妇在线播放| 久久久久国产网址| 久久人人爽人人爽人人片va| 久久99热6这里只有精品| 精品国产露脸久久av麻豆 | 久久欧美精品欧美久久欧美| 久久亚洲精品不卡| 在线a可以看的网站| 亚洲av男天堂| 成人二区视频| 边亲边吃奶的免费视频| 久久韩国三级中文字幕| 啦啦啦韩国在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 日韩av不卡免费在线播放| 少妇猛男粗大的猛烈进出视频 | 七月丁香在线播放| 干丝袜人妻中文字幕| 麻豆久久精品国产亚洲av| 美女xxoo啪啪120秒动态图| 乱码一卡2卡4卡精品| 国产亚洲5aaaaa淫片| 亚洲欧美日韩高清专用| 免费无遮挡裸体视频| 久久综合国产亚洲精品| 亚洲av成人精品一区久久| 精华霜和精华液先用哪个| 少妇人妻精品综合一区二区| 中文亚洲av片在线观看爽| 最近中文字幕高清免费大全6| 免费人成在线观看视频色| 热99在线观看视频| 免费黄色在线免费观看| 日本黄色视频三级网站网址| 国产高清有码在线观看视频| 成人美女网站在线观看视频| 草草在线视频免费看| 如何舔出高潮| 亚洲精品自拍成人| 春色校园在线视频观看| 亚洲无线观看免费| av免费在线看不卡| 国产一级毛片在线| av播播在线观看一区| 水蜜桃什么品种好| 亚洲欧美精品自产自拍| 久久精品久久精品一区二区三区| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 晚上一个人看的免费电影| 91aial.com中文字幕在线观看| 国产真实乱freesex| 一个人看的www免费观看视频| 搡老妇女老女人老熟妇| 18+在线观看网站| 国产成人精品婷婷| 亚洲国产精品国产精品| 精品久久久久久久久亚洲| 人妻系列 视频| 亚洲精品aⅴ在线观看| 亚洲五月天丁香| 黄色配什么色好看| 搡老妇女老女人老熟妇| 麻豆成人av视频| 亚洲av福利一区| 国产av一区在线观看免费| 亚洲精品日韩av片在线观看| 国产片特级美女逼逼视频| 日本黄色视频三级网站网址| 91久久精品国产一区二区成人| av在线亚洲专区| or卡值多少钱| 久久这里有精品视频免费| 亚洲熟妇中文字幕五十中出| 欧美极品一区二区三区四区| 天天躁夜夜躁狠狠久久av| 男插女下体视频免费在线播放| 国产精品1区2区在线观看.| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添av毛片| 男女国产视频网站| 一级毛片aaaaaa免费看小| 一边亲一边摸免费视频| 男女那种视频在线观看| 97超视频在线观看视频| 国产中年淑女户外野战色| 国内少妇人妻偷人精品xxx网站| 男插女下体视频免费在线播放| 国产免费福利视频在线观看| 毛片女人毛片| 欧美一区二区精品小视频在线| 久久久久网色| 天天躁夜夜躁狠狠久久av| 精品一区二区三区视频在线| 我的老师免费观看完整版| 能在线免费观看的黄片| 永久免费av网站大全| 国产美女午夜福利| 欧美一区二区精品小视频在线| 一级毛片我不卡| 老司机影院毛片| 毛片一级片免费看久久久久| 欧美不卡视频在线免费观看| 我要搜黄色片| www.av在线官网国产| 亚洲婷婷狠狠爱综合网| 免费av不卡在线播放| 国内精品宾馆在线| 精品不卡国产一区二区三区| 男女视频在线观看网站免费| 九草在线视频观看| 一二三四中文在线观看免费高清| 欧美潮喷喷水| 欧美bdsm另类| 午夜精品国产一区二区电影 | 国产成人免费观看mmmm| 免费黄网站久久成人精品| 精品熟女少妇av免费看| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av涩爱| 精品免费久久久久久久清纯| 亚洲成av人片在线播放无| 国产视频首页在线观看| 免费一级毛片在线播放高清视频| 亚洲国产欧洲综合997久久,| 国产一区有黄有色的免费视频 | 亚洲最大成人中文| 青春草亚洲视频在线观看| 欧美高清成人免费视频www| 成年女人永久免费观看视频| 99久久精品一区二区三区| 日韩强制内射视频| 久久鲁丝午夜福利片| 一级毛片我不卡| 天天躁夜夜躁狠狠久久av| 国产69精品久久久久777片| 男人舔女人下体高潮全视频| 乱码一卡2卡4卡精品| 亚洲内射少妇av| 91狼人影院| 久久午夜福利片| 亚洲第一区二区三区不卡| 久久久久性生活片| 国产不卡一卡二| 亚洲国产精品国产精品| АⅤ资源中文在线天堂| 中国美白少妇内射xxxbb| 视频中文字幕在线观看| 高清视频免费观看一区二区 | 国产亚洲精品久久久com| 日韩精品青青久久久久久| 欧美成人免费av一区二区三区| 免费电影在线观看免费观看| 久久人妻av系列| 国产国拍精品亚洲av在线观看| 欧美97在线视频| 亚洲自偷自拍三级| 亚洲欧美成人精品一区二区| 日韩av在线大香蕉| 我的老师免费观看完整版| 成年免费大片在线观看| 91av网一区二区| 国产在视频线在精品| 九色成人免费人妻av| 中国美白少妇内射xxxbb| 99国产精品一区二区蜜桃av| 九九在线视频观看精品| 人妻少妇偷人精品九色| 国产极品天堂在线| 久久99热6这里只有精品|