杜春彥,張歡,楊靜,王曉晨,馮澤國(guó),郭全義
1.清華大學(xué)附屬北京清華長(zhǎng)庚醫(yī)院 麻醉科,北京 102218;2.解放軍總醫(yī)院 麻醉手術(shù)中心,北京 100853;3.骨科再生醫(yī)學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,全軍骨科戰(zhàn)創(chuàng)傷重點(diǎn)實(shí)驗(yàn)室,北京 100853
腫瘤壞死因子α對(duì)大鼠骨髓間充質(zhì)干細(xì)胞生物學(xué)特性的影響
杜春彥1,張歡1,楊靜2,王曉晨2,馮澤國(guó)2,郭全義3
1.清華大學(xué)附屬北京清華長(zhǎng)庚醫(yī)院 麻醉科,北京 102218;2.解放軍總醫(yī)院 麻醉手術(shù)中心,北京 100853;3.骨科再生醫(yī)學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,全軍骨科戰(zhàn)創(chuàng)傷重點(diǎn)實(shí)驗(yàn)室,北京 100853
目的:探討不同濃度腫瘤壞死因子α(TNF-α)對(duì)大鼠骨髓間充質(zhì)干細(xì)胞(BMSCs)生物學(xué)特性的影響。方法:采用全骨髓貼壁法分離培養(yǎng)大鼠BMSCs,倒置顯微鏡觀察細(xì)胞形態(tài)學(xué)變化,流式細(xì)胞儀檢測(cè)BMSCs表面標(biāo)記物;分別以10、100、1000 ng/mL的TNF-α完全培養(yǎng)液預(yù)處理P3代BMSCs,并設(shè)置僅含培養(yǎng)基的空白對(duì)照組,24 h后采用ELISA試劑盒檢測(cè)細(xì)胞培養(yǎng)上清液中IL-6、IL-10的表達(dá)水平;胰酶消化細(xì)胞,用PrestoBlue法檢測(cè)10、100、1000 ng/mL TNF-α完全培養(yǎng)液預(yù)處理BMSCs后細(xì)胞增殖活性。結(jié)果:ELISA檢測(cè)結(jié)果顯示,與對(duì)照組相比,各濃度TNF-α干預(yù)組IL-6、IL-10均有不同程度升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),且1000 ng/mL TNF-α干預(yù)組IL-10表達(dá)水平最高,其濃度為170.2±11.9 pg/mL,組間比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05);100 ng/mL TNF-α干預(yù)組IL-6表達(dá)水平最高,其濃度為144.0±18.6 pg/mL,組間比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。PrestoBlue檢測(cè)結(jié)果顯示,與對(duì)照組相比,10、100、1000 ng/mL TNF-α干預(yù)組熒光值均增高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),但組間熒光值比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。結(jié)論:10~1000 ng/mL TNF-α可促進(jìn)BMSCs的增殖,且隨著TNF-α濃度的升高,BMSCs分泌促炎因子IL-6的能力降低,分泌抑炎因子IL-10的能力升高。
骨髓間充質(zhì)干細(xì)胞;促炎因子;抑炎因子;腫瘤壞死因子α
骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchy?mal stem cells,BMSCs)是具有自我更新能力和多向分化潛能的多能干細(xì)胞,因具有低免疫性、易分離擴(kuò)散、免疫調(diào)節(jié)及抗炎等特性,而成為組織工程和再生醫(yī)學(xué)中的理想種子細(xì)胞[1-3]。作為細(xì)胞和基因治療的載體,BMSCs目前已在多種疾病如帕金森病、中風(fēng)、腦干損傷、心肌梗死、脊髓損傷、外周神經(jīng)損傷中得到應(yīng)用[4],但移植到損傷組織的細(xì)胞快速凋亡限制了BMSCs的廣泛應(yīng)用。近年有研究提出BMSCs所處的微環(huán)境是影響細(xì)胞生長(zhǎng)和旁分泌功能的基本因素,干細(xì)胞移植微環(huán)境中炎性因子水平的高低不僅決定BMSCs的生存活性,還顯著影響B(tài)MSCs功能的發(fā)揮[5]。Mi?ettinen等研究發(fā)現(xiàn),急性組織損傷時(shí),靶組織中急性升高的腫瘤壞死因子α(tumor necrosis factor α,TNF-α)水平對(duì)BMSCs的歸巢定植及旁分泌功能均有促進(jìn)作用[6]。Covey等研究發(fā)現(xiàn),TNF-α是炎性反應(yīng)過(guò)程中最早出現(xiàn)且最具有代表性的多功能炎性因子之一,微環(huán)境中TNF-α水平的高低不僅可促進(jìn)白細(xì)胞介素IL-1β、IL-6等炎性因子的瀑布反應(yīng),還促使BMSCs在炎性環(huán)境下發(fā)生表型轉(zhuǎn)換,影響B(tài)MSCs對(duì)疾病的調(diào)控作用[7]。因此,在本研究中,我們擬以大鼠來(lái)源的BMSCs為代表,通過(guò)添加不同濃度的TNF-α模擬BMSCs所處的炎性環(huán)境,探討TNF-α完全培養(yǎng)液預(yù)處理對(duì)大鼠BMSCs活性及旁分泌作用的影響,為BMSCs在臨床上的應(yīng)用提供實(shí)驗(yàn)依據(jù)。
健康清潔級(jí)雄性 SD 大鼠(60~80 g,4~6周齡)由解放軍總醫(yī)院動(dòng)物研究中心提供;SD大鼠BMSCs基礎(chǔ)培養(yǎng)基α-MEM、胎牛血清(FBS)、青鏈霉素雙抗、谷氨酰胺等購(gòu)自Gibco公司;0.25%胰酶購(gòu)自康寧公司;CD29抗體、CD90抗體購(gòu)自BD公司;CD34、CD45購(gòu)自Abcam公司。
選取4~6周齡SD大鼠6只,戊巴比妥鈉50 mg/kg麻醉后處死,切開(kāi)皮膚,暴露肌肉,取股骨、脛骨,于75%酒精中浸泡15 min后移入超凈臺(tái),充分分離附著肌肉,顯露骨髓腔,用α-MEM反復(fù)緩慢沖洗骨髓腔至骨發(fā)白,收集沖洗液移入離心管,1500 r/min離心5 min后棄上清,取α16培養(yǎng)液10 mL重懸,吹打均勻后以2×105/cm2的濃度接種于T25培養(yǎng)瓶中,于37℃、5%CO2培養(yǎng)箱內(nèi)培養(yǎng)。用差異貼壁法分離純化細(xì)胞,待細(xì)胞達(dá)到80%融合時(shí)傳代培養(yǎng)。
將融合率達(dá)到80%的P3代BMSCs常規(guī)消化成細(xì)胞懸液后,離心去上清,加入PBS重懸,細(xì)胞計(jì)數(shù);再次離心去上清,PBS清洗2次,調(diào)整流式管中BSMCs密度至1×106/mL,每管依次加入抗大鼠 CD29-AF647(5 μL)、CD34-PECY7(20 μL)、CD45-PE(10 μL)、CD90-PE(10 μL)抗體和同型對(duì)照抗體,室溫避光孵育30 min后去除未結(jié)合抗體,用300 μL PBS重懸,上機(jī)檢測(cè)前加入700 μL PBS混勻,利用流式細(xì)胞儀對(duì)細(xì)胞表面分子標(biāo)記物進(jìn)行鑒定。
取P3代BMSCs,常規(guī)消化細(xì)胞,離心計(jì)數(shù),以1×105/孔接種于24孔培養(yǎng)板,培養(yǎng)過(guò)夜;次日棄去培養(yǎng)液,分別加入10、100、1000 ng/mL TNF-α完全培養(yǎng)液培養(yǎng),設(shè)0 ng/mL為空白對(duì)照,每組均設(shè)3個(gè)復(fù)孔,置CO2培養(yǎng)箱內(nèi)培養(yǎng)24 h后,吸取培養(yǎng)液上清,4℃、12 000 r/min離心20 min,取上清,用ELISA試劑盒于酶標(biāo)儀上檢測(cè)D450nm值,檢測(cè)后用胰酶消化細(xì)胞,用于后續(xù)試驗(yàn)。
取上述經(jīng) 0、10、100、1000 ng/mL TNF-α 處理過(guò)的BMSCs,胰酶消化、計(jì)數(shù),取96孔板,每孔加入 5×104BMSCs(100 μL),于 37℃、5%CO2培養(yǎng)箱中培養(yǎng)24 h后取出,將PrestoBlue試劑加入孔板,每孔10 μL,37℃孵育10 min,用酶聯(lián)免疫檢測(cè)儀(激發(fā)波長(zhǎng)560 nm,發(fā)射波長(zhǎng)590 nm)測(cè)定每孔熒光值(Fluorescence)。
由骨髓分離的細(xì)胞體外培養(yǎng)2 d后,細(xì)胞呈懸浮樣生長(zhǎng),細(xì)胞形態(tài)以圓形為主,鏡下可見(jiàn)細(xì)胞呈梭形或多角形態(tài),隨著換液和繼續(xù)培養(yǎng),培養(yǎng)瓶中貼壁細(xì)胞數(shù)量逐漸增多,懸浮細(xì)胞數(shù)量減少。原代培養(yǎng)的細(xì)胞在接種1周后細(xì)胞集落達(dá)到80%融合(圖1Α)。傳代后的BMSCs分裂、增殖速度明顯變慢,大部分貼壁細(xì)胞保持長(zhǎng)梭形,培養(yǎng)2~3周后雜質(zhì)細(xì)胞明顯減少,細(xì)胞呈放射狀排列,融合片狀生長(zhǎng),形成典型漩渦狀形態(tài),細(xì)胞純度較高(圖1B)。
圖1 原代培養(yǎng)BMSCs形態(tài)(×100)
流式細(xì)胞分析技術(shù)顯示CD29(99.59%)、CD90(83.95%)呈陽(yáng)性表達(dá),CD34(0.1%)、CD45(7%)呈陰性表達(dá)。表明分離培養(yǎng)的細(xì)胞在細(xì)胞表面標(biāo)志物方面符合BMSCs的生物學(xué)特性且純度較高,適合實(shí)驗(yàn)需要。
ELISA結(jié)果顯示,與對(duì)照組(13.469±3.717 pg/mL)相比,各濃度TNF-α干預(yù)組IL-6表達(dá)水平均有不同程度升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。其中100 ng/mL TNF-α干預(yù)組IL-6分泌最多,濃度為 143.980±18.639 pg/mL,與 10、1000 ng/mL TNF-α干預(yù)組相比差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。與對(duì)照組(12.967±2.820 pg/mL)相比,各濃度TNF-α干預(yù)組IL-10表達(dá)水平均有不同程度升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。1000 ng/mL TNF-α干預(yù)組IL-10分泌最多,濃度為170.221±11.864 pg/mL,與10、100 ng/mL TNF-α干預(yù)組相比差異有統(tǒng)計(jì)學(xué)意義(P<0.05)
不同濃度TNF-α作用24 h后,BMSCs生長(zhǎng)活性較對(duì)照組增高,其中10 ng/mL TNF-α干預(yù)組細(xì)胞生長(zhǎng)活性最強(qiáng),其熒光值為890.203±75.559,與空白組相比差異有統(tǒng)計(jì)學(xué)意義(P<0.005);100、1000 ng/mL TNF-α組與空白組相比,差異有統(tǒng)計(jì)學(xué)意義,但TNF-α各濃度組間比較無(wú)統(tǒng)計(jì)學(xué)差異(P>0.05)。
BMSCs常被移植到炎癥環(huán)境中,并通過(guò)自分泌、旁分泌功能產(chǎn)生大量炎性因子,調(diào)節(jié)宿主的免疫反應(yīng)。干細(xì)胞因這一特性,已在肺損傷、糖尿病、敗血癥、無(wú)菌模型角膜損傷和中風(fēng)等動(dòng)物模型中取得良好的治療效果[8-9]。由于移植到損傷組織后的BMSCs仍處于炎性微環(huán)境中,炎性介質(zhì)對(duì)BMSCs的生存及疾病調(diào)控作用有重要影響,因此,探索移植后微環(huán)境對(duì)BMSCs的生存及功能的影響具有重要意義。TNF-α是組織損傷后最先釋放的細(xì)胞因子,被認(rèn)為是炎癥信號(hào)級(jí)聯(lián)反應(yīng)的啟動(dòng)因子,極低水平的TNF-α即可與BMSCs表面的Toll樣受體(TLR)結(jié)合,促進(jìn)干細(xì)胞合成和釋放IL-6和IL-10等炎性因子[10-12]。本實(shí)驗(yàn)選用不同濃度的TNF-α模擬BMSCs在體內(nèi)所處的微環(huán)境,采用PrestoBlue方法觀察細(xì)胞活性,ELISA法測(cè)定BMSCs分泌炎性因子IL-6、IL-10的水平,探討B(tài)MSCs在不同炎性環(huán)境下生長(zhǎng)活性及旁分泌功能的變化,為臨床研究打下了基礎(chǔ)。
圖2 流式細(xì)胞儀檢測(cè)BMSCs表面分子標(biāo)記物
圖3 TNF-α刺激下BMSCs分泌IL-6、IL-10含量變化
圖4 TNF-α預(yù)處理后BMSCs的熒光值
PrestoBlue檢測(cè)結(jié)果提示,10~1000 ng/mL的TNF-α促進(jìn)BMSCs增殖,但隨著TNF-α濃度的增加,BMSCs增殖幅度逐漸降低,提示高濃度的TNF-α可抑制BMSCs的增殖幅度。ELISA檢測(cè)發(fā)現(xiàn),隨著TNF-α刺激濃度的升高,IL-6的增加幅度逐漸降低,BMSCs分泌促炎因子IL-6的能力逐漸下降;IL-10的增加幅度逐漸提高,BMSCs分泌抑炎因子IL-10的能力逐漸升高,提示BMSCs的旁分泌功能受炎性微環(huán)境環(huán)境的影響。LI等研究發(fā)現(xiàn),在急性炎癥反應(yīng)期,低水平的促炎因子TNF-α、LPS、GM-CSF可誘導(dǎo)BMSCs向M1方向極化[13]。BMSCs分泌大量促炎因子,主要參與體內(nèi)炎性反應(yīng),有促進(jìn)炎癥發(fā)展的作用[14],并分泌CX?CL9、CXCL10等趨化因子吸引BMSCs到達(dá)損傷部位[15]。在炎癥反應(yīng)晚期,高水平的的促炎因子TNF-α、IFN-γ可刺激BMSCs向M2型轉(zhuǎn)化,抑制中性粒細(xì)胞的增殖、活化并阻止中性粒細(xì)胞遷移到損傷組織中,同時(shí)BMSCs可增強(qiáng)單核細(xì)胞和巨噬細(xì)胞中IL-10的產(chǎn)生[14,16]。國(guó)內(nèi)學(xué)者在探討TNF-α對(duì)小鼠BMSCs免疫抑制作用時(shí)發(fā)現(xiàn),用25和50 ng/mL TNF-α干預(yù)BMSCs時(shí),處理組上清液中的抑炎因子IL-10的表達(dá)和對(duì)照組相比并無(wú)明顯增加,而在100 ng/mL TNF-α刺激時(shí),上清液中的IL-10含量較對(duì)照組明顯增加,與本實(shí)驗(yàn)結(jié)果相符[17]。Liu等研究發(fā)現(xiàn),10 ng/mL TNF-α或100 ng/mL LPS處理BMSCs時(shí),BMSCs上清液中的IL-6含量大幅度升高[18]。諸多研究表明炎性環(huán)境中IL-6的變化不僅和免疫炎癥有關(guān),其表達(dá)水平的高低可能與TNF-α逆轉(zhuǎn)BMSCs的促炎表型相關(guān)[19-20]。
我們用 10~1000 ng/mL TNF-α 處理 BMSCs,從細(xì)胞上清IL-6的分泌量增加來(lái)看,經(jīng)TNF-α刺激后的BMSCs已發(fā)生M1極化,TNF-α濃度進(jìn)一步增加后IL-10表達(dá)水平增加,提示BMSCs可進(jìn)一步發(fā)生M2極化偏移,M1型和M2型BMSCs的極化代表了細(xì)胞一個(gè)廣泛的連續(xù)的功能狀態(tài)。關(guān)于TNF-α是通過(guò)何種途徑激活BMSCs的表型轉(zhuǎn)化的,有文獻(xiàn)報(bào)道M1向M2的轉(zhuǎn)化取決于MSC表面的TLR,極化到M1的狀態(tài)受TLR3的影響,而M2狀態(tài)受TLR4的影響[13-14],低濃度促炎環(huán)境下,BMSCs表面的TLR3被激活,進(jìn)一步促進(jìn)MAPK激酶磷酸化,活化NF-κB,誘導(dǎo)IL-1β、IL-6的表達(dá);NF-κB的激活可介導(dǎo)釋放更多的促炎因子,激活BMSCs表面的TLR4,同時(shí)介導(dǎo)釋放IL-10、IL-12等抗炎因子[21-22]。BMSCs對(duì)炎性因子的記憶作用使得越來(lái)越多的研究集中于干細(xì)胞的預(yù)處理,近年來(lái),病毒轉(zhuǎn)染、缺氧休克、高密度脂蛋白、脂多糖、TNF-α等在BMSCs的瞬時(shí)處理方面取得很大進(jìn)展[18,21]。預(yù)處理可增強(qiáng)細(xì)胞存活,促使細(xì)胞遷移到靶器官,顯著改善細(xì)胞在組織修復(fù)中的作用。但本該實(shí)驗(yàn)也存在不足,移植后BMSCs的生存微環(huán)境比體外情況下模擬的炎性環(huán)境復(fù)雜得多,并且BMSCs在不同的炎性環(huán)境下發(fā)生極化的方向也有可能不同,實(shí)驗(yàn)利用不同濃度的TNF-α來(lái)模擬炎性環(huán)境仍須改善。另外,用TNF-α預(yù)處理BMSCs后,移植到體內(nèi)的BMSCs對(duì)疾病的有效性有待研究。
綜上所述,TNF-α作為一種安全、簡(jiǎn)便、可靠、準(zhǔn)確的預(yù)處理方式,可提高BMSCs的生物學(xué)功能及分泌炎性因子的能力,較高濃度的TNF-α可逆轉(zhuǎn)BMSCs的促炎表型,促使BMSCs分泌更多的抑炎因子,進(jìn)而更好地發(fā)揮治療作用。目前針對(duì)BMSCs干預(yù)措施的研究仍在進(jìn)行中,需要進(jìn)一步明確BMSCs發(fā)揮治療作用的機(jī)制及影響這一機(jī)制的炎性環(huán)境,這可優(yōu)化BMSCs的治療作用,為臨床應(yīng)用提供理論依據(jù)。
[1]Pittenger M F,Mackay A M,Beck S C,et al.Multi?lineage potential of adult human mesenchymal stem cells[J].Science,1999,284(5411):143-147.
[2]Aggarwal S,Pittenger M F.Human mesenchymal stem cells modulate all ogeneic immune cellresponses[J].Blood,2005,105(4):1815-1822.
[3]王慧娜,杜麗欣,宋亞昆,等.人臍帶間充質(zhì)干細(xì)胞體內(nèi)移植的安全性研究[J].生物技術(shù)通訊,2015,26(1):85-87.
[4]Lindvall O,Kokaia Z.Stem cells for the treatment of neurological disorders[J].Nature,2006,441(7097):1094-1096.
[5]De Becker A,Riet I V,et al.Homing and migration of mesenchymal stromal cells:How to improve the effi?cacy of cell therapy[J].World J Stem Cells,2016,8(3):73-87.
[6]Miettinen J A,Pietil? M,Salonen R J,et al.Tumor necrosis factor alpha promotes the expression of immu?nosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture[J].Exp Cell Res,2010,317(6):791-801.
[7]Covey W C,Ignatowski T A,Knight P R,et al.Brain?derived TNFα:involvement in neuroplastic changes im?plicated in the conscious perception of persistent pain[J].Brain Res,2000,859(1):113-122.
[8]Prockop D J, Oh J Y. Mesenchymal stem/stromal cells(MSCs): role as guardians of inflammation[J]. Mol Ther, 2012,20(1):14-20.
[9]Choi H,Lee R H,Bazhanov N,et al.Anti-inflamma?tory protein TSG-6 secreted by activated MSCs attenu?ates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macro phages[J].Blood,2011,118(2):330-338.
[10]English K,Barry F P,Fieldcorbett C,et al.IFN-gam?ma and TNF-alpha differentially regulate immunomodu?lation by murine mesenchymal stem cells[J].Immunol Lett,2007,110(2):91-100.
[11]Gnecchi M,Zhang Z,Ni A,et al.Paracrine mecha?nisms in adult stem cell signaling and therapy[J].Circ Res,2008,103(11):1204-1219.
[12]Vega-Letter A M,Kurte M,Fernández-O'Ryan C,et al.Differential TLR activation of murine mesenchymal stem cells generates distinct immunomodulatory effects in EAE[J].Stem Cell Res Ther,2016,7(1):150.
[13]Li W,Ren G,Huang Y,et al.Mesenchymal stem cells:a double-edged sword in regulating immune re?sponses[J].Cell Death Differ,2012,19(9):1505-1513.
[14]Gazdic M,Volarevic V,Arsenijevic N,et al.Mesen?chymal stem cells:a friend or foe in immune-mediat?ed diseases[J].Stem Cell Rev Rep,2015,11(2):280-287.
[15]Honczarenko M,Le Y,Swierkowski M,et al.Human bone marrow stromal cells express a distinct set of bi?ologically functional chemokine receptors[J]. Stem Cells,2006,24(4):1030-1041.
[16]Waterman R S,Tomchuck S L,Henkle S L,et al.A new mesenchymal stem cell(MSC)paradigm:polariza?tion into a pro-inflammatory MSC1 or an immunosup?pressive MSC2 phenotype[J].PLoS One,2010,5(4):e10088.
[17]亓俊華,吳梅,徐祥,等.TNF-α對(duì)小鼠骨髓間充質(zhì)干細(xì)胞免疫抑制作用影響[J].青島大學(xué)醫(yī)學(xué)院學(xué)報(bào),2015(2):169-171.
[18]Liu G Y,Liu Y,Lu Y,et al.Short-term memory of danger signals or environmental stimuli in mesenchy?mal stem cells:implications for therapeutic potential[J].Cell Mol Immunol,2016,13(3):369-378.
[19]Ranganath S H,Levy O,Inamdar M S,et al.Harness?ing the mesenchymal stem cell secretome for the treat?ment of cardiovascular disease[J].CellStem Cell,2012,10(3):244-258.
[20]Prockop D J.Concise review:two negative feedback loops place mesenchymal stem/stromal cells at the cen?ter of early regulators of inflammation[J].Stem Cells,2013,31(10):2042-2046.
[21]Choi H,Lee R H,Bazhanov N,et al.Anti-inflamma?tory protein TSG-6 secreted by activated MSCs attenu?ates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages[J].Blood,2011,118(2):330-338.
[22]B?cker W,Docheva D,Prall W C,et al.IKK-2 is re?quired for TNF-α-induced invasion and proliferation of human mesenchymal stem cells[J].J Mol Med,2008,
Effects of TNF-α on Biological Properties in Bone Marrow Mesenchymal Stem Cells
DU Chun-Yan1,ZHANG Huan1,YANG Jing2,WANG Xiao-Chen2,FENG Ze-Guo2*,GUO Quan-Yi3
1.Department of Anesthesiology,Beijing Tsinghua Changgung Hospital Tsinghua University,Beijing 102218;2.An?esthesia and Operation Center,General Hospital of PLA,Beijing 100853;3.Beijing Key Lab of Regenerative Medi?cine in Orthopaedics,Key Lab of Musculoskeletal Trauma&War Injuries,PLA,Beijing 100853;China
Objective:To investigate the effects of different concentrations of tumor necrosis factor-α(TNF-α)on the release of interleukin-6(IL-6) and interleukin-10(IL-10) from rat bone marrow mesenchymal stem cells(BMSCs).Methods:BMSCs were isolated and cultivated by whole bone marrow adherent culture method.Morpho?logical changes of BMSCs were observed by inverted phase contrast microscope,the surface markers of BMSCs were detected by flow cytometry.The BMSCs were treated with 10,100 and 1000 ng/mL TNF-α complete culturemedium respectively,the control group containing medium only,24 hours later,IL-6 and IL-10 in the cell cul?ture supernatants were detected by ELISA kit.Then the cells were treated with trypsin to detect the cell viability with PrestoBlue method.Results:The levels of IL-6 and IL-10 in the supernatants of TNF-α treated group were significantly higher than those in the control group(P<0.05).And IL-10(170.2±11.9 pg/mL) was the highest in 1000 ng/mL TNF-α intervention group,IL-6(144.0±18.6 pg/mL) was the highest in 100 ng/mL TNF-α interven?tion group,the difference was statistically significant among groups(P<0.05).PrestoBlue test showed that the fluo?rescence values of 10,100 and 1000 ng/mL TNF-α groups were all higher than those of the control group but there was no significant difference in fluorescence between groups(P>0.05).Conclusion:TNF-α may influence the proliferation of BMSCs and the secretion of IL-6 and IL-10.With the increase of TNF-α concentration,the BMSCs can increase the level of proinflammatory cytokine IL-6 and decrease anti-inflammatory cytokine IL-10.
bone marrow mesenchymal stem cells;proinflammatory cytokines;anti-inflammatory cytokines;tu?mor necrosis factor α
R329.28
A
1009-0002(2017)05-0584-06
10.3969/j.issn.1009-
*Corresponding author,E-mail:beijing_301@sina.com
2017-03-01
杜春彥(1991- ),女,碩士研究生,(E-mail)duchunyan1991@163.com
馮澤國(guó),(E-mail)beijing_301@sina.com