• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulations for the Load Characteristics of Internal Solitary Waves on a Vertical Cylinder

    2017-10-11 05:33:16WANGXuLINZhongyiYOUYunxiangYURui
    船舶力學 2017年9期
    關鍵詞:上海交通大學粘性海事局

    WANG Xu,LIN Zhong-yi,YOU Yun-xiang,YU Rui

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University,Shanghai 200240,China;2.CAS Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Beijing 100190,China;3.School of Jiaxing Nanyang Profession and Technology,Jiaxing 314003,China;4.Jiangsu Local Maritime Safety Administration,Nanjing 210004,China)

    Numerical Simulations for the Load Characteristics of Internal Solitary Waves on a Vertical Cylinder

    WANG Xu1,2,LIN Zhong-yi3,YOU Yun-xiang1,YU Rui4

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University,Shanghai 200240,China;2.CAS Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Beijing 100190,China;3.School of Jiaxing Nanyang Profession and Technology,Jiaxing 314003,China;4.Jiangsu Local Maritime Safety Administration,Nanjing 210004,China)

    Abstract:According to the applicability conditions for three types of internal solitary wave theories including KdV,eKdV and MCC,a numerical method based on the Navier-Stokes equations in a twolayer fluid was presented to simulate the strongly nonlinear interaction between internal solitary waves and the vertical cylinder,where the velocity-inlet boundary is applied by using of the depth-averaged velocities in the upper-and lower-layer fluids induced by the internal solitary wave.Numerical results show that the waveform and amplitude of the internal solitary waves are in good agreement with the experimental and theoretical results.The horizontal and vertical forces,as well as torques on the vertical cylinder obtained from the numerical method also agree well with experimental results.Besides,the numerical results indicate that the horizontal and vertical forces on the vertical cylinder due to internal solitary waves can be divided into three components,including the wave and viscous pressure-difference forces,as well as the frictional force,where the fractional force is not significant and can be neglected;for the horizontal force,the orders of the magnitudes between the wave and viscous pressure-difference forces are the same,which shows that the effect of the fluid viscosity is significant;for the vertical force,the component of the viscous pressure-difference force is not significant so that the effect of the fluid viscosity can also be neglected.Moreover,the effects of the vertical cylinder on the waveform and flow field induced by the internal solitary wave are small.Therefore,it is feasible to calculate the horizontal and vertical forces on the vertical cylinder due to internal solitary waves by the Morison and Froude-Krylov formulas respectively.

    Key words:two-layer fluid;internal solitary waves;numerical simulation;load characteristics

    0 Introduction

    As a compliant floating structure,Spar platform is well suited for deep water applicationslike drilling,production,processing,storage and off-loading of ocean deposits[1].In practical applications,ocean conditions have great impacts on the safety of Spar,therefore it is necessary to consider hydrodynamic characteristics of the Spar platform under various ocean conditions.

    A large number of observations showed that internal solitary waves occur frequently and exist widely in the South China Sea[2],which has resulted in severe impact on the operation of ocean engineering structures[3].With the further exploitation of the oil and gas in South China Sea,internal solitary waves have become one fundamental environmental factor which must be considered.

    Nonlinearity and dispersion are two fundamental mechanisms of gravity wave propagation in fluids.As a general rule,it is well known that nonlinearity tends to steepen a given waveform during the course of its evolution,while dispersion has the opposite effect and tends to flatten steep free-surface gradients[4].According to the relative importance of nonlinear and dispersion,internal solitary waves can be generally described as KdV(Korteweg-de Vries)theory,eKdV(extended KdV)theory,MCC(Miyata-Choi-Camassa)theory and others[5-6].In order to quantitatively distinguish the above three theories,Huang[7]summarized the applicability conditions for former three different internal solitary wave models based on a large number of experiments.

    Since the vertical cylinder is the main structure form of the spar platform,it has great importance for both theoretical research and engineering application to study the load characteristics of internal solitary waves on it.Although the load and motion response characteristics of deepwater floating structures due to internal solitary waves have been studied preliminarily by far[8-9],most of hydrodynamic mechanism are not yet clear,including the formation mechanism of various load components,the influence mechanism of viscosity factor on internal solitary wave loads,and the applicability of calculating loads of the floating structure by Morison formulas.The CFD(Computational Fluid Dynamics)simulation provides an effective way to deeply analyze the questions mentioned above.However,the previous simulated waveform and amplitude are often unable to be controlled in varying degrees due to the lack of considering the applicability conditions for solitary wave theories[10-11].Thus one of the key problems is how to select an appropriate internal solitary wave theory as the basis for numerical wave-making in the process of studying the strong nonlinear interaction characteristics between floating structures and internal solitary waves by using the CFD method.

    At the present study we aim to determine the formation mechanism of various load components on the vertical cylinder due to internal solitary waves,as well as the influence mechanism of the vertical cylinder on the waveform and flow field characteristics.The paper is organized as follows:Chap.1 describes the numerical models to be used in this study on the base of considering the applicability conditions for internal solitary wave theories.Chap.2 contains the numerical results,including wave properties such as shape and amplitude,and internal solitary wave loads on the vertical cylinder,in addition,the comparisons between numerical results and experimental results are presented.Finally,some conclusions are given in Chap.3.

    1 Numerical methods

    The present numerical method adopts Navier-Stokes equations to simulate the strongly nonlinear interaction of internal solitary waves with the vertical cylinder,where the velocityinlet boundary uses the depth-averaged velocities of the upper-and lower-layer fluids induced by internal solitary waves.

    1.1 Governing equations

    For an incompressible fluid of density ρi,the velocity componentsu,v,()w in Cartesian coordinates Oxyz and the pressure Pisatisfy the continuity equation and Navier-Stokes equations:

    where g is gravitational acceleration and subscripts with respect to space and time represent partial differentiation.In the equations,stands for the upper(lower)layer fluid.

    The boundary conditions at the interfaceare the continuity of normal velocity and pressure:

    where ζ is the displacement of the interface.The top and bottom of calculation domain are required to satisfy the following boundary conditions:

    The calculation domain is shown in Fig.1,which consists of two parts:the wave propagation and absorption zones.Internal solitary waves are aroused by using velocity-inlet method,the depth-averaged velocities induced by internal solitary waves on the inlet boundary is defined as

    where c denotes wave phase velocity,is inlet velocity for the upper(lower)fluid at the inlet boundary.

    Fig.1 Sketch of numerical flume for the internal solitary waves

    The VOF(volume of fluid)method is employed for tracking the two-layer fluid interface during the generating and propagating of internal solitary waves.Meanwhile,sponge layer technique is applied to dissipate internal solitary waves at the tail of numerical flume,which is realized by adding a source termto the momentum equation(2).The attenuation coefficient)is determined according to Ref.[12].

    The horizontal forces Fxand vertical forceson the vertical cylinder consist of two parts,the pressure-difference force and the frictional force.

    where S is the wetted surface area of the vertical cylinder,nx,ny,nzare the unit external normal vector of surface.In the formulas,the first term represents the frictional force and the second one represents the pressure-difference force.

    The torque Myon the vertical cylinder is defined as follows:

    According to the applicability conditions for three types of internal solitary wave theories including KdV,eKdV and MCC[7],the inlet velocity is determined as follows:

    For a given internal solitary wave,the nonlinear parameter ε and dispersion parameter μ for the three types of internal solitary wave theories are calculated respectively.The KdV model is selected to calculated the velocity of inlet boundary for ε≤μ and μ< μ0,the eKdV model is selected foras well as the MCC model is selected forμ0(where μ0denotes the critical dispersion parameter summarized by laboratory experiments).

    2 Numerical results and discussions

    The paper carried out a series of experiments for the load characteristics of the vertical cylinder due to internal solitary waves in the large-scale density stratified tank.In order to compare with experimental results,the principal dimension of the numerical flume,upper(lower)layer fluid density,and the depth ratio are consistent with experimental conditions,namely,the length of the numerical flume is 30 m,the depth is 1 m,the diameter of the vertical cylinder D is 0.15 m,the draft of the vertical cylinder d is 0.535 m,the upper layer fluid density ρ1is 998 kg/m3,the lower layer fluid density ρ2is 1 025 kg/m3,and three kinds of depth ratio including h1:h2=1:9,2:8,3:7 are considered.

    2.1 Numerical simulations for internal solitary waves

    In order to analyze the influence of the viscosity on the generation and propagation for internal solitary waves,two different types of numerical models are simulated,including the N-S and Euler simulations.The waveform results for two different methods are shown in Fig.2 when h1:h2=3:7 and ad/h=0.101(Where addenotes the designed amplitude for internal solitary waves,and h=h1+h2).Results indicate that the waveforms generated by the two numerical methods remain stable and the decay of the amplitudes is weak during the propagation of the internal solitary wave,the relative error between the simulated and designed amplitudes is within 5%.Therefore,the two methods to numerically generate internal solitary waves are feasible.Hereinafter,all cases are simulated by N-S model unless special declare.

    Fig.2 The numerical results for the internal solitary wave waveforms when h1:h2=3:7 and ad/h=0.101

    Fig.3 shows the comparisons for internal solitary wave waveforms with theoretical and experimental results under three different cases.According to the applicability conditions for three types of internal solitary wave theories[7],Case A(h1:h2=3:7 and ad/h=0.101)appears weak nonlinear and weak dispersion,the eKdV theory is selected to calculate the velocity of inlet boundary,Case B(h1:h2=2:8 and ad/h=0.052)appears moderate nonlinear and weak dispersion,the KdV theory is selected to calculate the velocity of inlet boundary,Case C(h1:h2=1:9 and ad/h=0.086)appears strong nonlinear and weak dispersion,the MCC theory is selected to calculate the velocity of inlet boundary.Results show that the waveforms are in good agreement with the experimental and theoretical results,which means that the waveform is accurate and controllable for the present numerical method.

    Fig.3 Comparisons for internal solitary wave waveforms with theoretical and experimental ones

    The numerical results of wave amplitudes for the internal solitary waves are shown in Fig.4,where Symbol‘О’ represents the simulated amplitude,and the dotted line represents the designed amplitude.Results show the simulated amplitudes have good agreement with the designed amplitude,and the maximum error is within 5%.

    Fig.4 The numerical results of wave amplitudes for the internal solitary waves

    2.2 Load characteristics on the vertical cylinder

    In order to conveniently explain,the expressionare defined as the dimensionless horizontal and vertical forces,as well as torquesrespectively on the vertical cylinder due to internal solitary waves.Results of numerical and experimental amplitudes for dimensionless loads are shown in Fig.5.Results show that the numerical simulated amplitudes for the horizontal and vertical forces,as well as torques are in good agreement with experimental ones,and the maximum error is within 10%.

    Fig.5 Results of numerical and experimental amplitudes for dimensionless loads

    Fig.6 shows that the time variation characteristics for dimensionless loads for Case A.Results show that the simulated time-variation loads are in good agreement with experimentalresults,which means that it is reasonable and feasible to calculate the loads on the vertical cylinder based on the present numerical method.

    Fig.6 The time-variation characteristics for dimensionless loads for Case A

    From the formulas(8)and(9),it can be seen that the pressure-difference and frictional forces are two components for horizontal and vertical forces due to internal solitary waves.The time-variation characteristics for wave pressure-difference and viscous pressure-difference forces for Case A are shown in Fig.7.The results indicate that frictional forceis not significant comparing with the pressure-difference forceand hence can be neglected,the main component of horizontal and vertical forces is pressure-difference force.

    Fig.7 The time-variation characteristics for pressure-difference and frictional forces for Case A

    Fig.8 The time-variation characteristics for wave and viscous pressure-difference forces for Case A

    Furthermore,the pressure-difference force can be divided into two components,including the wave pressure-difference forceand the viscous pressure-difference forceThe wave pressure-difference force is associated with the fluctuation of water parcel,which can be calculated by the Euler simulation,while the viscous pressure-difference force is associated with the viscosity effect of fluid,which can be calculated by the N-S simulation.The time-variation characteristics for wave and viscous pressure-difference forces due to internal solitary waves for Case A are shown in Fig.8.For the horizontal force,the orders of the magnitudes between the wave and viscous pressure-difference forces are the same,which means that the effect of the fluid viscosity is significant.For the vertical force,the component of the viscous pressure-difference force is not significant,which indicates that the effect of the fluid viscosity can be neglected.

    2.3 Influence of the cylinder on internal solitary waves

    The influence of the vertical cylinder on the internal solitary wave waveform for Case A is shown in Fig.9,where the axis of the vertical cylinder is in front of the wave trough when t=46 s and t=58 s,the axis is located near the wave trough when t=60 s,and the axis is behind the wave trough when t=62 s and t=74 s.Results show that some disturbances of the wave surface happen near the cylinder during the propagation of internal solitary waves,especially,the disturbances of the wave surface are most evident when the internal solitary wave passes right through the axis of the cylinder.Nevertheless,the disturbances are not significant comparing to the amplitude of the internal solitary wave,and hence can be neglected.

    Fig.9 The effect of the cylinder on the internal solitary wave waveform for Case A

    Fig.10 The flow field characteristics induced by the internal solitary wave when t=60 s for Case A

    The flow field characteristics due to the internal solitary waves when t=60 s for Case A are shown in Fig.10.In the propagation process,the internal solitary wave is going in the same direction as the upper fluid,but contrary to the lower fluid.Hence,the shear flow is formed near the interface of the upper and lower fluid.The vertical flow induced by the internal solitary wave also exists,which descends and climbs at the front and rear of the wave trough respectively.In addition,it can be seen from the Fig.10 that the decay rate of the vertical distribution of the horizontal velocity induced by the internal solitary wave is small in different positions.

    Fig.11 The effects of the vertical cylinder on flow field due to the internal solitary waves for Case A

    The effect of the cylinder on the flow field due to the internal solitary wave for Case A is shown in Fig.11.During wave propagation,a pair of opposite trailing vortex forms at the tail of the cylinder due to the detour flow of the vertical cylinder on the induced flow field.The induced horizontal velocity move from left to right when z/h=0.1 and z/h=-0.05,so the trailing vortex is on the right side of the vertical cylinder.Instead,the induced horizontal velocity move from right to left when z/h=-0.12,thus the trailing vortex is on the left side of the vertical cylinder.

    The vortex-induced vibration is a common physical phenomenon in ocean engineering,which is caused by periodic trailing vortex behind the vertical cylinder.Due to the existence of the trailing vortex at the rear of the vertical cylinder,it is necessary to study the effect of trailing vortex on the vertical cylinder.The Fig.12 shows that the dimensionless lifton the vertical cylinder due to the trailing vortex is not significant and can be neglected.

    Fig.12 The time-variation characteristics of the dimensionless lift force for Case A

    For the interaction between the vertical cylinder and surface gravity waves,the character number β=D/λ is usually defined to describe the relative size of the wavelength and the vertical cylinder’s diameter.The diffraction effect of the surface wave can be neglected when β<0.15,therefore,it is feasible that the horizontal and vertical forces on the vertical cylinder due to surface gravity waves can be calculated by the Morison and Froude-Krylov formulas respectively.At the real ocean circumstance,the characteristic wavelength of internal solitary waves can reach several hundreds meters,even thousands of meters,while the diameter of the vertical cylinder is within 40 m in general,hence,the characteristic number β is far lower than 0.15.According to the pervious discussion,the influence of the vertical cylinder on the waveform and the flow field induce by the internal solitary wave can be neglected.Hence,a simplified method for calculating the loads on the vertical cylinder due to internal solitary waves can be presented as follows:the horizontal force is calculated by the Morison formulas and the vertical force is calculated by the Froude-Krylov formulas respectively.Then we will verify the rationality of this simplified method using the numerical method combined with experimental results.

    We denote U1and W1as horizontal and vertical instantaneous velocities of water particles induced by internal solitary waves when ζ< z<h1,U2and W2as horizontal and vertical instantaneous velocities of water particles induced by internal solitary waves when-h2< z< ζ,where Uiand Wiare defined as follows[13]:

    Combined with the formulas(11)and(12),the Morison formulas for calculating the horizontal force on vertical cylinder due to internal solitary waves can be written as follows:

    where Cmis the coefficient of the inertia force,Cdis the coefficient of the drag force,Vnis the normal velocity vector of water parcels,andis the normal acceleration vector of water parcels.

    Based on a series of experiments,Huang[7]summarized a solution for two coefficients in the Morison formula:

    where Re=UmaxD/ν is the Reynolds number,Umaxis maximum velocity of water parcel due to internal solitary waves,ν is the coefficient of the kinematical viscosity.

    The Froude-Krylov formulas for calculating the vertical forces on vertical cylinder due to internal solitary waves can be described as follows:

    According the Bernoulli equation,the dynamic pressure P induced by internal solitary waves can be calculated as

    Results based on the simplified method for amplitudes for dimensionless loads are shown in Fig.13.It can be seen that the load amplitudes based on the simplified method are in good agreement with the numerical results,and the maximum error is within 8%.Hence,it is feasible to calculate the loads on vertical cylinder due to internal solitary waves by using the simplified method.

    Fig.13 Results based on the simplified method for amplitudes for dimensionless loads due to internal solitary waves

    3 Conclusions

    According to the applicability conditions for three types of internal solitary wave theories,including KdV,eKdV and MCC,a numerical method based on the Navier-Stokes equation in a two-layer fluid is presented to simulate the strongly nonlinear interaction of internal solitary waves with a vertical cylinder,where the velocity-inlet boundary is applied by using of the depth-averaged velocities in the upper-and lower-layer fluids induced by the internal solitary wave.The conclusions can be summarized as follows:

    (1)The waveform and amplitude of the internal solitary wave based on the present numerical method are in good agreement with the experimental and theoretical results.Also,numerical results for the horizontal and vertical forces,as well as torques on the vertical cylinder due to the internal solitary wave have a good agreement with experimental results.Hence,it is feasible to simulate the strongly nonlinear interaction of internal solitary waves with a vertical cylinder by using the present numerical method.

    (2)The horizontal and vertical forces on the vertical cylinder due to internal solitary wavescan be divided into three components,including the wave and viscous pressure-difference forces,as well as the frictional force,where the frictional force is not significant and can be negligible;for the horizontal force,the orders of the magnitudes between the wave and viscous pressure-difference forces are the same,which means that the effect of the fluid viscosity is significant;for the vertical force,the component of the viscous pressure-difference force is not significant,which means that the effect of the fluid viscosity can be neglected.

    (3)The effects of the vertical cylinder on the waveform and flow field induced by the internal solitary wave are small.Therefore,it is feasible to calculate the horizontal and vertical forces on the vertical cylinder due to internal solitary waves by the Morison and Froude-Krylov formulas respectively.

    [1]Jameel M,Ahmad S,Islam M K A B M S.Fully coupled nonlinear dynamic response of spar platform under random loads[C]//The Twenty-second International Offshore and Polar Engineering Conference.International Society of Offshore and Polar Engineers,2012:1004-1011.

    [2]Cai S,Xie J,He J.An overview of internal solitary waves in the South China Sea[J].Surveys in Geophysics,2012,33(5):927-943.

    [3]Bole J B,Ebbesmeyer C C,Romea R D.Soliton currents in the South China Sea:Measurements and theoretical modeling[C]//The 16th Offshore Technology Conference.Houston,1994:367-376.

    [4]Choi W,Camassa R.Fully nonlinear internal waves in a two-fluid system[J].J Fluid Mech.,1999,396:1-36.

    [5]Helfrich K R,Melville W K.Long nonlinear internal waves[J].Ann.Rev.Fluid Mech.,2006,38:395-425.

    [6]Choi W,Camassa R.Weakly nonlinear internal waves in a two-fluid system[J].J Fluid Mech.,1996,313:83-103.

    [7]Huang Wenhao,You Yunxiang,Wang Xu,et al.Wave-making experiments and theoretical models for internal solitary waves in a two-layer fluid of finite depth[J].Acta Phys.Sin.,2013,62(8),084705:1-14.(in Chinese)

    [8]Cai Shuqun,Xu Jiexin,Chen Zhiwu,et al.The effect of a seasonal stratification variation on the load exerted by internal solitary waves on a cylindrical pile[J].Acta Oceanologica Sinica,2014,33(7):21-26.

    [9]Xie J S,Jiang Y J,et al.Strongly nonlinear internal solution load on a small vertical cylinder in two-layer fluids[J].Applied Mathematical Modelling,2010,34(8):2089-2101.

    [10]Li Xiaomin,Zhang Lin,Guo Haiyan,et al.Comparison of numerical wave-generating methods for internal solitary waves with theoretical and experimental results[J].Oceanologia Et Limnologia Sinica,2016,47(5):898-905.(in Chinese)

    [11]Miao Desheng,Guo Haiyan,Zhao Jing,et al.Study of numerical simulation method of internal solitary waves[J].Journal of Ocean University of China,2016,46(10):123-128.(in Chinese)

    [12]Han Peng.The study of damping absorber for irregular waves based on VOF method[D].Dalian:Dalian University of Technology,2008:38-47.(in Chinese)

    [13]Camassa R,Choi W,Michallet H,et al.On the realm of validity of strongly nonlinear asymptotic approximations for internal waves[J].J Fluid Mech.,2006,549:1-23.

    直立圓柱體內(nèi)孤立波載荷特性數(shù)值模擬

    王 旭1,2, 林忠義3, 尤云祥1, 於 銳4
    (1.上海交通大學 海洋工程國家重點實驗室,上海200240;2.中國科學院 力學研究所 流固耦合系統(tǒng)力學重點實驗室,北京100190;3.嘉興南洋職業(yè)技術學院,浙江 嘉興314003;4.江蘇省地方海事局,南京 210004)

    以三類內(nèi)孤立波理論(KdV、eKdV和MCC)的適用性條件為依據(jù),將內(nèi)孤立波誘導上下層深度平均水平速度作為入口條件,采用Navier-Stokes方程為流場控制方程,建立了兩層流體中內(nèi)孤立波對直立圓柱體強非線性作用的數(shù)值模擬方法。結果表明,數(shù)值模擬所得內(nèi)孤立波波形及其振幅與相應理論和實驗結果一致,并且直立圓柱體內(nèi)孤立波水平力、垂向力及其力矩數(shù)值模擬結果與實驗結果吻合。直立圓柱體內(nèi)孤立波載荷由波浪壓差力、粘性壓差力和摩擦力構成,其中摩擦力很小,可以忽略;對于水平力,其波浪壓差力與粘性壓差力量級相當,流體粘性的影響顯著;對于垂向力,粘性壓差力很小,流體粘性影響可以忽略。此外,直立圓柱體對內(nèi)孤立波的波形及其誘導流場的影響很小,因此采用Morison公式和傅汝德—克雷洛夫力分別計算其內(nèi)孤立波水平力和垂向力是可行的。

    兩層流體;內(nèi)孤立波;數(shù)值模擬;載荷特性

    P751

    A

    國家自然科學基金資助項目(11372184,11602274,11232012,11572332);高等學校博士點基金資助項目(20110073130003)

    王 旭(1985-),男,上海交通大學博士研究生;林忠義(1959-),男,嘉興南洋職業(yè)技術學院副教授;尤云祥(1963-),男,上海交通大學教授,博士生導師;於 銳(1984-),男,江蘇省地方海事局工程師。

    10.3969/j.issn.1007-7294.2017.09.003

    Article ID: 1007-7294(2017)09-1071-15

    Received date:2017-06-10

    Foundation item:Supported by the National Natural Science Foundation of China(11372184,11602274,11232012,11572332);The Specialized Research Foundation for the Doctoral Program of Higher Education of China(20110073130003)

    Biography:WANG Xu(1985-),male,Ph.D.student of Shanghai Jiao Tong University;LIN Zhong-yi(1959-),male,professor,School of Jiaxing Nanyang Profession and Technology;YOU Yun-xiang(1963-),male,professor/tutor,corresponding author,E-mail:youyx@sjtu.edu.cn.

    猜你喜歡
    上海交通大學粘性海事局
    上海交通大學
    電氣自動化(2022年2期)2023-01-07 03:51:56
    一類具有粘性項的擬線性拋物型方程組
    交通運輸部海事局“新一代衛(wèi)星AIS驗證載荷”成功發(fā)射
    水上消防(2022年2期)2022-07-22 08:45:00
    交通運輸部海事局公布第二批可在線辦理的電子證照清單
    水上消防(2022年1期)2022-06-16 08:07:28
    中方將在渤海執(zhí)行軍事任務
    帶粘性的波動方程組解的逐點估計
    上海交通大學參加機器人比賽
    實地考察強交流
    珠江水運(2018年21期)2018-12-20 23:17:38
    粘性非等熵流體方程平衡解的穩(wěn)定性
    家庭醫(yī)生增強基層首診粘性
    国产亚洲欧美在线一区二区| 丁香欧美五月| av在线蜜桃| 国产一区二区三区视频了| 免费在线观看影片大全网站| 村上凉子中文字幕在线| 少妇人妻一区二区三区视频| 欧美日本亚洲视频在线播放| 一级a爱片免费观看的视频| 村上凉子中文字幕在线| 日韩欧美国产一区二区入口| 国产黄片美女视频| 国产激情欧美一区二区| 国产v大片淫在线免费观看| 18禁裸乳无遮挡免费网站照片| 国产一区二区激情短视频| 亚洲成人中文字幕在线播放| 精品国产亚洲在线| 国产精品98久久久久久宅男小说| 久久久久精品国产欧美久久久| 国产精品美女特级片免费视频播放器| 亚洲av第一区精品v没综合| 久久中文看片网| 少妇人妻一区二区三区视频| 国内少妇人妻偷人精品xxx网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产v大片淫在线免费观看| av女优亚洲男人天堂| 欧美性猛交╳xxx乱大交人| 宅男免费午夜| 亚洲精品亚洲一区二区| 国产精品99久久99久久久不卡| 国产伦在线观看视频一区| 国产成人av激情在线播放| 久久草成人影院| 男人和女人高潮做爰伦理| 香蕉丝袜av| 欧美黑人欧美精品刺激| ponron亚洲| 免费av不卡在线播放| 免费在线观看影片大全网站| 国产午夜福利久久久久久| 人妻夜夜爽99麻豆av| 在线观看66精品国产| 国产亚洲精品av在线| 成人欧美大片| 校园春色视频在线观看| 国产麻豆成人av免费视频| 性色avwww在线观看| 欧美性感艳星| 亚洲av成人av| 亚洲成人中文字幕在线播放| 人人妻人人澡欧美一区二区| 大型黄色视频在线免费观看| 一个人看的www免费观看视频| 亚洲欧美日韩东京热| 成人欧美大片| 欧美一级a爱片免费观看看| 国产v大片淫在线免费观看| 97超级碰碰碰精品色视频在线观看| a在线观看视频网站| 99国产精品一区二区蜜桃av| 国产精品精品国产色婷婷| 综合色av麻豆| 国产高清视频在线观看网站| 亚洲乱码一区二区免费版| 丁香欧美五月| 亚洲乱码一区二区免费版| 又紧又爽又黄一区二区| 国产探花极品一区二区| 天堂av国产一区二区熟女人妻| 啦啦啦韩国在线观看视频| 亚洲国产中文字幕在线视频| 久久久久精品国产欧美久久久| 久久伊人香网站| 亚洲人成网站在线播| 校园春色视频在线观看| 99热这里只有精品一区| 亚洲国产精品久久男人天堂| 成人18禁在线播放| 欧美日韩亚洲国产一区二区在线观看| 校园春色视频在线观看| 日本在线视频免费播放| 欧美黄色淫秽网站| 色av中文字幕| 成人鲁丝片一二三区免费| 好男人在线观看高清免费视频| 啪啪无遮挡十八禁网站| 日韩av在线大香蕉| 日本a在线网址| 亚洲av成人av| 天堂√8在线中文| 男女做爰动态图高潮gif福利片| 成年版毛片免费区| 两性午夜刺激爽爽歪歪视频在线观看| aaaaa片日本免费| 亚洲最大成人手机在线| 我要搜黄色片| 国产欧美日韩一区二区精品| 99久久成人亚洲精品观看| 好看av亚洲va欧美ⅴa在| 精品一区二区三区人妻视频| 国产爱豆传媒在线观看| 全区人妻精品视频| 一个人看的www免费观看视频| 亚洲午夜理论影院| 啦啦啦韩国在线观看视频| 亚洲人成网站高清观看| 精品久久久久久成人av| 国产亚洲欧美98| 在线观看免费午夜福利视频| 午夜福利视频1000在线观看| 啪啪无遮挡十八禁网站| 性色av乱码一区二区三区2| 露出奶头的视频| 亚洲熟妇熟女久久| 亚洲,欧美精品.| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久亚洲av鲁大| 97碰自拍视频| 日韩欧美 国产精品| 久久香蕉精品热| 黄色日韩在线| 亚洲国产精品合色在线| 老司机深夜福利视频在线观看| 少妇的逼水好多| 国产探花在线观看一区二区| 国产aⅴ精品一区二区三区波| 亚洲国产中文字幕在线视频| 女人被狂操c到高潮| 免费在线观看亚洲国产| 可以在线观看的亚洲视频| 欧美乱妇无乱码| 桃红色精品国产亚洲av| 中国美女看黄片| 老鸭窝网址在线观看| 亚洲欧美日韩卡通动漫| 亚洲av熟女| 亚洲七黄色美女视频| 69人妻影院| 69人妻影院| 最近最新中文字幕大全免费视频| 在线观看美女被高潮喷水网站 | 在线观看66精品国产| 亚洲成人中文字幕在线播放| 国产一区在线观看成人免费| 成人三级黄色视频| 国产午夜精品久久久久久一区二区三区 | 久久久久久久久大av| 国产伦精品一区二区三区视频9 | 乱人视频在线观看| 深爱激情五月婷婷| 在线观看美女被高潮喷水网站 | 日韩人妻高清精品专区| 免费av毛片视频| 久久久久久久午夜电影| 十八禁人妻一区二区| www.www免费av| 禁无遮挡网站| 久久久精品大字幕| 亚洲av不卡在线观看| 91麻豆av在线| 亚洲av电影不卡..在线观看| 亚洲久久久久久中文字幕| 亚洲久久久久久中文字幕| 亚洲国产中文字幕在线视频| 国产久久久一区二区三区| 欧美国产日韩亚洲一区| 天堂影院成人在线观看| 久久久久久久亚洲中文字幕 | 免费看日本二区| 欧美成人免费av一区二区三区| 级片在线观看| h日本视频在线播放| 在线观看免费视频日本深夜| 国产一区二区三区视频了| 一区二区三区激情视频| 国产乱人伦免费视频| 97碰自拍视频| 深夜精品福利| 国产成人影院久久av| 一级毛片女人18水好多| 国产高清视频在线播放一区| 床上黄色一级片| 精品熟女少妇八av免费久了| av黄色大香蕉| 国产成人a区在线观看| 午夜免费男女啪啪视频观看 | 国产探花在线观看一区二区| 免费av观看视频| 91在线观看av| 又粗又爽又猛毛片免费看| 日本精品一区二区三区蜜桃| 香蕉丝袜av| av女优亚洲男人天堂| 在线观看日韩欧美| 国产中年淑女户外野战色| 精品午夜福利视频在线观看一区| 熟女人妻精品中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 夜夜躁狠狠躁天天躁| 天堂网av新在线| av黄色大香蕉| 人人妻人人看人人澡| 婷婷精品国产亚洲av| 又粗又爽又猛毛片免费看| 亚洲自拍偷在线| 国产精品日韩av在线免费观看| 香蕉丝袜av| 久久九九热精品免费| 午夜激情福利司机影院| 99久国产av精品| 高潮久久久久久久久久久不卡| 亚洲成av人片在线播放无| 一本综合久久免费| 麻豆成人av在线观看| 亚洲一区二区三区色噜噜| 亚洲av成人不卡在线观看播放网| 欧美日本亚洲视频在线播放| 日韩 欧美 亚洲 中文字幕| 他把我摸到了高潮在线观看| 男女床上黄色一级片免费看| 露出奶头的视频| 亚洲欧美日韩卡通动漫| 午夜老司机福利剧场| 毛片女人毛片| 非洲黑人性xxxx精品又粗又长| 亚洲精品456在线播放app | 人人妻,人人澡人人爽秒播| www日本黄色视频网| 丰满的人妻完整版| 亚洲国产欧美人成| 免费人成视频x8x8入口观看| 亚洲成av人片免费观看| 午夜激情福利司机影院| 欧美一级毛片孕妇| 亚洲精品乱码久久久v下载方式 | 国产主播在线观看一区二区| 长腿黑丝高跟| 欧美一区二区亚洲| 欧美zozozo另类| 亚洲最大成人手机在线| 精品熟女少妇八av免费久了| 国产成人aa在线观看| 午夜精品久久久久久毛片777| 欧美极品一区二区三区四区| 窝窝影院91人妻| 欧美乱色亚洲激情| 午夜福利高清视频| avwww免费| 午夜福利免费观看在线| 久久九九热精品免费| 国产v大片淫在线免费观看| 久久国产精品人妻蜜桃| 久久久久免费精品人妻一区二区| 欧美最新免费一区二区三区 | 高清在线国产一区| 真实男女啪啪啪动态图| 国产精品1区2区在线观看.| 国产男靠女视频免费网站| 国产一区二区在线av高清观看| 久久久色成人| 欧美丝袜亚洲另类 | 舔av片在线| 亚洲最大成人手机在线| 校园春色视频在线观看| 脱女人内裤的视频| 欧美不卡视频在线免费观看| 1000部很黄的大片| 精品国产三级普通话版| 欧美一区二区国产精品久久精品| 天美传媒精品一区二区| 在线观看免费午夜福利视频| 淫妇啪啪啪对白视频| 亚洲最大成人中文| 91麻豆精品激情在线观看国产| 久久天躁狠狠躁夜夜2o2o| av黄色大香蕉| 欧美日韩瑟瑟在线播放| 12—13女人毛片做爰片一| 国产精品免费一区二区三区在线| 69av精品久久久久久| 国产v大片淫在线免费观看| 伊人久久精品亚洲午夜| 一级a爱片免费观看的视频| 综合色av麻豆| www.www免费av| 久久午夜亚洲精品久久| 国产精品久久久久久人妻精品电影| 一夜夜www| 在线观看午夜福利视频| 日韩高清综合在线| 18禁在线播放成人免费| 午夜福利在线在线| 一本综合久久免费| 午夜视频国产福利| 久久精品综合一区二区三区| 3wmmmm亚洲av在线观看| 国产野战对白在线观看| 制服人妻中文乱码| 99精品久久久久人妻精品| 麻豆成人午夜福利视频| 久久久久九九精品影院| 噜噜噜噜噜久久久久久91| 亚洲av日韩精品久久久久久密| 19禁男女啪啪无遮挡网站| 亚洲精品色激情综合| 在线视频色国产色| 亚洲自拍偷在线| 色噜噜av男人的天堂激情| 99久久精品热视频| 十八禁网站免费在线| 国产国拍精品亚洲av在线观看 | 99久久99久久久精品蜜桃| 韩国av一区二区三区四区| 午夜日韩欧美国产| 久久久久国产精品人妻aⅴ院| 亚洲内射少妇av| 91字幕亚洲| 国产黄片美女视频| 成人一区二区视频在线观看| 午夜免费激情av| 国产精品免费一区二区三区在线| 12—13女人毛片做爰片一| 免费一级毛片在线播放高清视频| 日本 欧美在线| 男女之事视频高清在线观看| 免费在线观看成人毛片| 欧美高清成人免费视频www| 一级黄色大片毛片| 99精品欧美一区二区三区四区| 亚洲最大成人手机在线| 欧美最黄视频在线播放免费| 久久久久久人人人人人| 欧美性猛交╳xxx乱大交人| 亚洲不卡免费看| 亚洲成人免费电影在线观看| 亚洲内射少妇av| 精品熟女少妇八av免费久了| 99久久成人亚洲精品观看| 国产毛片a区久久久久| 午夜影院日韩av| 观看美女的网站| 亚洲久久久久久中文字幕| 我的老师免费观看完整版| 久久久久久久久久黄片| 精品久久久久久久末码| 99久国产av精品| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 欧美日韩中文字幕国产精品一区二区三区| 久久九九热精品免费| 久久久久久久亚洲中文字幕 | 午夜福利欧美成人| 国产成年人精品一区二区| 久久久久九九精品影院| 国产成人a区在线观看| 在线观看66精品国产| 91字幕亚洲| 婷婷六月久久综合丁香| 99国产精品一区二区蜜桃av| 亚洲av电影不卡..在线观看| 波野结衣二区三区在线 | 超碰av人人做人人爽久久 | 亚洲真实伦在线观看| 操出白浆在线播放| 欧美又色又爽又黄视频| 精品无人区乱码1区二区| 久久精品人妻少妇| 国产视频内射| 女人高潮潮喷娇喘18禁视频| 亚洲一区高清亚洲精品| 97人妻精品一区二区三区麻豆| 在线免费观看不下载黄p国产 | 国产精品久久久久久久电影 | 男人舔奶头视频| 一进一出抽搐动态| 99国产极品粉嫩在线观看| 在线免费观看不下载黄p国产 | 免费在线观看影片大全网站| 亚洲人成电影免费在线| 国产精品影院久久| 亚洲一区高清亚洲精品| 欧美bdsm另类| 黄色丝袜av网址大全| 亚洲美女视频黄频| 欧美大码av| 欧美黄色片欧美黄色片| 看免费av毛片| 九九热线精品视视频播放| 精品久久久久久久人妻蜜臀av| 久久香蕉国产精品| 欧美日本视频| 深爱激情五月婷婷| 亚洲最大成人中文| 夜夜爽天天搞| 亚洲中文字幕日韩| 好男人在线观看高清免费视频| 国产99白浆流出| 免费看十八禁软件| 欧美日韩黄片免| 99在线视频只有这里精品首页| 国产免费一级a男人的天堂| 精品一区二区三区视频在线 | 91麻豆av在线| 国产伦精品一区二区三区视频9 | 在线观看一区二区三区| 内地一区二区视频在线| 18禁国产床啪视频网站| 国产成人av激情在线播放| 亚洲熟妇中文字幕五十中出| 成人欧美大片| 黄色视频,在线免费观看| 久久久久免费精品人妻一区二区| 亚洲欧美一区二区三区黑人| 黄色日韩在线| 亚洲欧美日韩高清专用| 中文字幕av成人在线电影| 女警被强在线播放| 午夜影院日韩av| 成熟少妇高潮喷水视频| 亚洲激情在线av| 两个人看的免费小视频| 国产亚洲欧美在线一区二区| 亚洲无线观看免费| 欧美在线一区亚洲| 久久精品91蜜桃| 欧美日韩一级在线毛片| 伊人久久大香线蕉亚洲五| xxxwww97欧美| 日韩 欧美 亚洲 中文字幕| 日本三级黄在线观看| 91麻豆精品激情在线观看国产| 国产精品一区二区免费欧美| 麻豆国产97在线/欧美| 日韩欧美在线乱码| 一夜夜www| 成年版毛片免费区| 男人的好看免费观看在线视频| 亚洲国产高清在线一区二区三| 真人一进一出gif抽搐免费| 大型黄色视频在线免费观看| 最新在线观看一区二区三区| 国内揄拍国产精品人妻在线| 国产色爽女视频免费观看| 熟女人妻精品中文字幕| 99国产极品粉嫩在线观看| 亚洲精品456在线播放app | 无遮挡黄片免费观看| 婷婷丁香在线五月| 国产精品久久久久久精品电影| 观看免费一级毛片| 成人特级av手机在线观看| 亚洲一区二区三区不卡视频| 母亲3免费完整高清在线观看| 女同久久另类99精品国产91| 在线观看日韩欧美| 成人三级黄色视频| 久久伊人香网站| 国产不卡一卡二| 级片在线观看| 99精品欧美一区二区三区四区| 亚洲第一电影网av| 热99在线观看视频| 99久久成人亚洲精品观看| 88av欧美| 男女那种视频在线观看| 丰满人妻一区二区三区视频av | 尤物成人国产欧美一区二区三区| 国产主播在线观看一区二区| 免费观看精品视频网站| 香蕉丝袜av| 黄色成人免费大全| 欧美日韩一级在线毛片| 亚洲精品日韩av片在线观看 | 在线视频色国产色| 国产综合懂色| 国产一区二区亚洲精品在线观看| 日韩国内少妇激情av| www.www免费av| 午夜福利高清视频| 亚洲第一欧美日韩一区二区三区| 国产精品,欧美在线| 可以在线观看毛片的网站| 免费大片18禁| 夜夜看夜夜爽夜夜摸| 国产成人av教育| www日本黄色视频网| 制服人妻中文乱码| 国产精品自产拍在线观看55亚洲| 国产精品98久久久久久宅男小说| 在线观看日韩欧美| 色噜噜av男人的天堂激情| xxx96com| 天天添夜夜摸| 在线观看免费视频日本深夜| 三级毛片av免费| 3wmmmm亚洲av在线观看| 日韩大尺度精品在线看网址| av在线天堂中文字幕| 国产精品1区2区在线观看.| 久9热在线精品视频| 久久欧美精品欧美久久欧美| 精品日产1卡2卡| 国产精品,欧美在线| 欧美高清成人免费视频www| 色播亚洲综合网| 欧美日韩黄片免| 又爽又黄无遮挡网站| 久久精品国产清高在天天线| 午夜日韩欧美国产| 国模一区二区三区四区视频| 伊人久久大香线蕉亚洲五| 校园春色视频在线观看| 中文字幕人妻丝袜一区二区| 日韩国内少妇激情av| 久久九九热精品免费| 亚洲乱码一区二区免费版| 亚洲第一电影网av| or卡值多少钱| 三级男女做爰猛烈吃奶摸视频| 熟女人妻精品中文字幕| av欧美777| 99精品在免费线老司机午夜| 欧美成人性av电影在线观看| 色哟哟哟哟哟哟| 狂野欧美激情性xxxx| 亚洲,欧美精品.| 国产熟女xx| 久久久久国内视频| 久久久久亚洲av毛片大全| 日本在线视频免费播放| 中文字幕熟女人妻在线| 九九在线视频观看精品| 亚洲欧美激情综合另类| 日韩欧美一区二区三区在线观看| 麻豆一二三区av精品| 久久亚洲真实| 成人国产一区最新在线观看| 成人18禁在线播放| 成人特级av手机在线观看| 免费av不卡在线播放| 无人区码免费观看不卡| 免费av毛片视频| 欧美乱码精品一区二区三区| 99riav亚洲国产免费| 国产av在哪里看| 观看免费一级毛片| 男女之事视频高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久久久九九精品影院| 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 成年版毛片免费区| 91麻豆精品激情在线观看国产| or卡值多少钱| 网址你懂的国产日韩在线| 午夜精品在线福利| 好男人电影高清在线观看| e午夜精品久久久久久久| 18禁黄网站禁片免费观看直播| 亚洲人成网站在线播| 丰满人妻一区二区三区视频av | 在线观看66精品国产| 最近在线观看免费完整版| 亚洲精品一区av在线观看| 免费看日本二区| 男女下面进入的视频免费午夜| 国产aⅴ精品一区二区三区波| 久久久久久久久久黄片| 美女被艹到高潮喷水动态| 久久久国产精品麻豆| 欧美+日韩+精品| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 国产精华一区二区三区| 1000部很黄的大片| 无人区码免费观看不卡| 欧美av亚洲av综合av国产av| 色av中文字幕| 午夜免费观看网址| 国产欧美日韩精品一区二区| 国产一区二区三区在线臀色熟女| 又黄又粗又硬又大视频| 日本 欧美在线| av在线蜜桃| 在线看三级毛片| 国产一区在线观看成人免费| 国产精品 欧美亚洲| 一二三四社区在线视频社区8| 中文字幕av在线有码专区| 观看美女的网站| 欧美区成人在线视频| 亚洲成人久久爱视频| 亚洲精品日韩av片在线观看 | 一区二区三区激情视频| 别揉我奶头~嗯~啊~动态视频| 国产男靠女视频免费网站| 午夜福利成人在线免费观看| 免费电影在线观看免费观看| 亚洲欧美日韩高清在线视频| 天天添夜夜摸| 麻豆久久精品国产亚洲av| 国内久久婷婷六月综合欲色啪| 在线观看美女被高潮喷水网站 | 国产一区在线观看成人免费| 中文字幕av在线有码专区| 亚洲最大成人手机在线| 国产主播在线观看一区二区| 亚洲一区二区三区不卡视频| 在线观看免费午夜福利视频| 宅男免费午夜| 老熟妇乱子伦视频在线观看| e午夜精品久久久久久久| 欧美黑人欧美精品刺激|