• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Fully Nonlinear NWT by DBIEM Method with MTF for the Downstream Boundary

    2017-10-11 05:33:14XUGangBAIXuMAXiaojianZHURenqing
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:工程學(xué)院水池波浪

    XU Gang,BAI Xu,MA Xiao-jian,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Numerical Simulation of Fully Nonlinear NWT by DBIEM Method with MTF for the Downstream Boundary

    XU Gang,BAI Xu,MA Xiao-jian,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Abstract:Wave propagation in a three-dimensional nonlinear numerical wave tank(NWT)is studied based on the fully nonlinear velocity potential theory.The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved by using the indirect desingularized boundary integral equation method(DBIEM).The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme(ABM4)and mixed Eulerian-Lagrangian(MEL)method are used for the timestepping integration of the free surface boundary conditions.A smoothing algorithm,B-spline,is applied to eliminate the possible saw-tooth instabilities.An effective Multi-transmitting Formula method for radiation condition is employed to transmit wave out of computational region.The numerical results are compared with analytical solutions.The results show that MTF method can be used for simulating fully nonlinear wave propagation.

    Key words:NWT;DBIEM;Multi-transmitting formula

    0 Introduction

    When simulating the nonlinear wave propagation through an unbounded domain in the time domain,it is necessary to truncate the computational domain into a finite domain in order to reduce computational costs.Thus,non-reflecting radiation condition is required for the truncated surface,however,there is no exact non-reflecting condition in existence.The Sommerfeld-Orlanski’s condition has been widely used for linear simulation,this condition is local in both time and space and dependent on the phase velocity of out-going wave but cannot ensure good results for irregular wave problem.The global matching or shell function method is very accurate for linear irregular wave radiation but with relatively large computational effort on comparing with the local method and can not satisfy the nonlinear condition.Another common used method is Damping Zone(DZ),which can absorb high frequency waves efficiently.It is limited by the length of DZ and therefore not very efficient for low frequency waves.Clément[1]proposed a coupled method(piston-beach hybrid absorber)to absorb outgoing wave.Boo[2]proposed a numerical scheme,which combines an absorbing beach and the stretching technique,to simulate the open boundary.Wang and Wu[3]imposed a radiation condition via a combination of Damping Zone(DZ)and Sommerfeld-Orlanski equation.However,the efficiency of DZ method strongly depends on the ratio of the length of damping zone and wave length.The longer wave length requires a wider beach.It will result in much more meshes on the free surface,especially when dealing with irregular wave problem.

    In this work,the indirect desingularized boundary integral equation method(DBIEM),which has been successfully used previously in solving nonlinear water wave problems such as in the work by Zhang et al[4-5],is employed to solve the boundary value problem at each time step.Compared with the conventional BEM,the integral kernels of the DBIEM are no longer singular as the singularities are placed slightly outside the fluid domain.This is particularly advantageous when the direct differentiation is applied to the integral equation to obtain the velocity.The fourth-order predictor-corrector Adams-Bashforth-Moulton(ABM4)scheme and mixed Eulerian-Lagrangian(MEL)method are used for the time-stepping integration of the free surface boundary conditions.Since wave breaking is not considered in this work,the position of the nodes on free surface is tracked by applying semi-Lagrangian approach[6],in which the nodes on free surface are allowed to move only in vertical direction,with the horizontal motion of the nodes on the free surface held fixed.This approach has the advantage of avoiding the task of re-gridding the free surface at each time step.For stable time-step simulation,a B-spline smoothing scheme is applied in both longitudinal and transverse directions of the tank to prevent saw-tooth instability.During the simulation,Multi-transmitting Formula method[7-10]is employed as radiation condition to minimize wave reflection on the truncated surface.Numerical results obtained by the present method agree fairly with analytical solution and show that the present model is effective in the simulation for 3D fully nonlinear wave propagation.

    1 Mathematical model

    Fig.1 Sketch of a 3D numerical wave tank(left)and radiation condition(right)

    A Cartesian coordinate system oxyz is defined for 3D wave propagation problem,as shown in Fig.1.The origin of oxyz is placed on the plane of the undisturbed free surface with the x-axis positive in the propagation direction of incident waves prescribed at the vertical upstream boundary,and the z-axis positive in the opposite direction of gravity.In Fig.1,D denotes the fluid domain whiledenote the boundaries of instantaneous free surface,side wall,bottom,upstream and downstream,respectively.

    We assume the fluid is incompressible and inviscid,and the flow irrotational,the fluid motion can be described by a velocity potential φ,which satisfies the Laplace equation within the fluid domain D,

    All the boundary conditions can be desribed as follows:

    (1)On the instantaneous free surface ΓF,the dynamic and kinematic conditions can be written as:

    where g is the gravitational acceleration and η is the wave elevation.

    (2)On side wall ΓWand bottom ΓB,the zero-normal flux condition can be expressed as:

    (3)On upstream boundary ΓU,the fluid motion is prescribed by giving the properties(surface elevation and normal velocity)of known incident wave forms.

    (4)For downstream boundary condition,the fluid domain has to be truncated at a finite downstream boundary of ΓDin the NWT.An appropriate radiation condition should be imposed on the ΓDto minimize the wave reflection during the simulation in time domain.In this work,an effective Multi-transmitting formular method(MTF)is employed to simulate downstream boundary condition.

    The above boundary value problem will be solved by the indirect desingularized boundary integral equation method(DBIEM),the details of this method can be found in Ref.[4].In order to obtain the velocity potential and free surface elevation at each time step,the fourthorder predictor-corrector Adams-Bashforth-Moulton scheme(ABM4)and mixed Eulerian-Lagrangian(MEL)method are used.Using the total derivativethe fully nonlinear free surface conditions can be modified as follows in Lagrangian frame,

    ABM4 scheme[4]is selected for integrating Eq.(7)and Eq.(8)over time.

    2 Desingularized boundary integral equation method

    In this study,the indirect DBIEM is employed to solve the boundary value problem for the unknown velocity potentialat each time step.This method obtains the solution by distributing Rankine sources over a surface S outside the fluid domain D.This surface is at a small distance away from the corresponding real boundary of the fluid.The velocity potential in the fluid domain D can be written as follows:

    For the problem considered in this work,we construct the solution using a constantstrength source point within each element over the integration boundary SFand a constantstrength source point over the integration surface SW,where SFis the integration surface above the free surface ΓF,and SWis the integration surface outside the real boundary of the tank.That is

    By applying the boundary conditions,we obtain boundary integral equations for the unknown strength of the singularities,respectively:

    In the desingularized method,the source distribution is outside the fluid domain so that the source points never coincide with the field points and therefore the integrals are non-singular.In addition,because of the desingularization,we can use simple isolated Rankine sources andobtain the equivalent accuracy.This greatly reduces the complexity of the form of the influence coefficients that make up the elements of the kernel matrix[4].Then the integral equations in Eq.(12)and Eq.(13)can be replaced by a discrete summation of N-isolated singularities located at a small distance away from the corresponding control point on the boundaries,

    The desingularized distance between isolated source point and corresponding control point is given by

    where ldand β are constants and Dmis a measure of the local mesh size(typically the square root of the local mesh area).The accuracy and convergence of the solutions are sensitive to the choices of ldand β.Therefore,appropriate ldand β values need to be determined after numerical test.The recommended values are ld=0.5-1.0 and β=0.5.A detailed study with regard to the performance of DBIEM with the desingularization parameters was reported in Ref.[11].ldis fixed at 0.85 in our work.

    Once the above integral equations using isolated Rankine source are solved at each time step,the fluid velocity in Eq.(2)and Eq.(3)can be calculated from direct derivatives,

    3 Multi-transmitting Formula for radiation condition

    Liao[7]described a general expression of one-way wave propagation and developed a system of local non-reflecting boundary conditions using space-time extrapolation.Its initial aim is to deal with the propagation of earthquake wave out of truncated boundary.

    In this section,the MTF method for treating the velocity potential φ in water wave field will be introduced,as shown in Fig.1.Suppose that point O0is on the truncated surface ΓDand j is the point which is away from point O0along its normal vector to the fluid domain.The distance between point j and point O0is jCaΔt along the normal vector of point O0,where Ca,related to physical wave speed Cx,is the artificial wave speed and Δt is the time interval.Usually,we do not need set Caequal to Cx.

    According to the theory of MTF,the velocity potential on ΓDmay be written as

    where integer p represents the time level,N is the order of the MTF method and C is thebinomial coefficient.

    In order to eliminate the effect of the frequencies,which are near to zero including zero,a constant value γ2is used.Thus,the second order MTF can be written as Eq.(18),where γ2is additional factor and set to 0.025;

    4 Numerical results and discussions

    The present model is applied to simulate the wave propagation for linear incident wave and second-order Stokes wave in a fully nonlinear NWT.In our simulation,the length of NWT(L)is 2 m,depth-length ratio h/L=0.5,and breadth-length ratio B/L=0.25.The NWT is divided in x-direction by Nx=40 intervals,in y-direction by Ny=11 intervals and in z-direction by Nz=10 intervals.

    In the MTF method,we need to use an artificial wave speed Cato find the exact position of the inner points corresponding to the control point on the truncated surface,as shown in Fig.1.Normally,we do not need to set Caequal to the physical wave speed Cxand yet we can still get reasonable results when Cais in the certain range of Cx(Ca∈0.8 Cx~1.2Cx).The numerical results for different Caare presented in Fig.2 and Fig.3.We can find that the MTF method is effective to transmit waves out of truncated surface when Cais in the prescribed range.Thus,the MTF method is proposed as radiation condition to also accord greater flexibility for the simulation of fully nonlinear NWT.

    Fig.2 Comparison of wave elevation between linear analytical solution and numerical results with different artificial wave speed(λ=4.0 m)

    Fig.3 Comparison of wave elevation between linear analytical solution and numerical results with different artificial wave speed(λ=8.0 m)

    4.1 Simulation of linear regular incident wave

    The model is next applied to simulate the linear regular incident wave.We consider three cases:wave length λ=1 m,4 m and 8 m.For these simulations,the wave amplitude A is set to 0.02 m,time step Δt is taken as T/100 and Cais equal to Cx[9],where T is wave period.The numerical results are compared with corresponding linearized analytical solution,as shown in Figs.4-6.We can see that the numerical result obtained by present method agrees fairly with the theory after the initial transient effect.This indicates that the method works well with the given problem.It needs to be mentioned that a modulation function is used in the numerical simulation[12].

    Fig.4 Wave elevation for the case of wave length λ=4 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.5 Wave elevation histories for the case of wave length λ=8 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.6 Wave elevation histories for the case of wave length λ=1 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.7 Wave elevation histories at(x=0.475 m,y=0)for λ=1 m and A=0.02 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    4.2 Simulation of second-order stokes incident wave

    The model is finally applied to simulate the wave propogation ofsecond-order Stokes waves,which have the basic characteristic of nonlinear waves of higher and sharper crest,lower and flatter trough.The parameters for simulating second-order Stokes waves propagation are taken as λ=1 m,A=0.02 m and Δt=T/100.Fig.7 shows the wave elevation histories at(x=0.475 m,y=0)and the numerical results are compared with second-order analytical solution.We can find that the results agree with the analytical solution and have strong stability.In order to illustrate the wave propagation,snapshots of free surface are shown in Fig.8 at four different times(t=4T,6T,8T and 10T).

    Fig.8 Free surface profiles(a)t=4T;(b)t=6T;(c)t=8T;(d)t=10T

    5 Conclusions

    In this paper,3D fully nonlinear NWT are solved by using a DBIEM coupled with MEL time marching scheme.The position of instantaneous free surface is tracked by applying semi-Lagrangian approach.An effective MTF method is employed as radiation condition to transmit wave out of truncated surface.It is found that the present model is accurate,numerically stable and can be used for the simulation of 3D fully nonlinear wave propagation due to linear incident wave and second-order incident wave.

    [1]Clément A.Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves[J].Journal of Computational Physics,1996,126:139-151.

    [2]Boo S Y.Linear and nonlinear irregular waves and forces in a numerical wave tank[J].Ocean Engineering,2002,29:475-493.

    [3]Wang C Z,Wu G X.Time domain analysis of second-order wave diffraction by an array of vertical cylinders[J].Journal of Fluids and Structures,2007,23(4):605-631.

    [4]Zhang X T,Khoo B C,Lou J.Wave propagation in a fully nonlinear numerical wave tank:a desingularized method[J].O-cean Engineering,2006,33:2310-2331.

    [5]Zhang X T,Khoo B C,Lou J.Application of desingularized approach to water wave propagation over three-dimensional topography[J].Ocean Engineering,2007,34:1449-1458.

    [6]Koo W C,Kim M H.Fully nonlinear wave-body interactions with surface-piercing bodies[J].Ocean Engineering,2007,34:1000-1012.

    [7]Liao Z P.Extrapolation non reflecting boundary conditions[J].Wave Motion,1996,24:117-138.

    [8]Xu G,Duan W Y.Time domain simulation for water wave radiation by floating structures(Part A)[J].Journal of Marine Science and Application,2008;7:226-235.

    [9]Xu G,Duan W Y.Time-domain simulation of wave-structure interaction based on multi-transmitting formula coupled with damping zone method for radiation boundary condition[J].Applied Ocean Research,2013;42:136-143.

    [10]Duan W Y,Zhang T Y.Non-reflecting simulation for fully-nonlinear irregular wave radiation[C]//Proceedings of the 24th International Workshop on Water Wave and Floating Bodies.Bodies,Russia,2009.

    [11]Cao Y,Schultz W W,Beck R F.Three dimensional desingularized boundary integral methods for potential problems[J].International Journal for Numerical Methods in Fluids,1991,12:785-803.

    [12]Xu G.Time-domain simulation of second-order hydrodynamic force on floating bodies in irregular waves[D].Harbin:College of Shipbuilding Engineering,Harbin Engineering University,2010.(in Chinese)

    基于多次透射公式和無奇異邊界元法模擬全非線性數(shù)值波浪水池

    徐 剛,白 旭,馬小劍,朱仁慶
    (江蘇科技大學(xué) 船舶與海洋工程學(xué)院,江蘇 鎮(zhèn)江 212003)

    文章基于勢流理論對全非線性的三維數(shù)值水池進(jìn)行了模擬,其控制方程由無奇異邊界積分方程法(Desingularized Boundary Integral Equation Method,DBIEM)進(jìn)行離散求解,在求解全非線性的自由面微分方程時,文中采用混合歐拉—拉格朗日法(Mixed Eulerian-Lagrangian,MEL)和四階Adams-Bashforth-Moulton(ABM4)預(yù)報—修正方法,為了避免結(jié)果發(fā)散即增強數(shù)值穩(wěn)定性,文中采用B樣條法來光順波面。同時,在遠(yuǎn)方輻射控制面上采用多次透射公式方法(Multitransmitting Formula,MTF)來進(jìn)行消波,文中得到的結(jié)果與理論解進(jìn)行了比較,結(jié)果表明該方法可用來有效模擬全非線性的數(shù)值波浪水池。

    數(shù)值波浪水池;無奇異邊界積分法;多次透射公式

    O35 U661.71

    A

    國家自然科學(xué)基金資助項目(51309125,51409128,51379094,51179077);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目資助

    徐 剛(1981-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院副教授;白 旭(1984-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院講師;馬小劍(1982-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院講師;朱仁慶(1965-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院教授。

    10.3969/j.issn.1007-7294.2017.09.002

    Article ID: 1007-7294(2017)09-1062-09

    Received date:2017-03-28

    Foundation item:Supported by the National Natural Science Foundation of China(Grant No.51309125,51409128,51379094,51179077)and the Project Founded by Priority Academic Program Development of Jiangsu Higher Education Institutions

    Biography:XU Gang(1981-),male,Ph.D.,associate prof.of Jiangsu University of Science and Technology,E-mail:me_xug@qq.com;BAI Xu(1984-),male,Ph.D.,lecturer.

    猜你喜歡
    工程學(xué)院水池波浪
    福建工程學(xué)院
    波浪谷和波浪巖
    福建工程學(xué)院
    小區(qū)的水池
    波浪谷隨想
    福建工程學(xué)院
    去看神奇波浪谷
    福建工程學(xué)院
    把住醫(yī)?;鹚亻l門
    找水池
    成人鲁丝片一二三区免费| 久久中文看片网| av中文乱码字幕在线| 日本与韩国留学比较| 国产精品久久久久久亚洲av鲁大| 波野结衣二区三区在线| 精品日产1卡2卡| 成人鲁丝片一二三区免费| 亚洲久久久久久中文字幕| 国产又黄又爽又无遮挡在线| 韩国av一区二区三区四区| 国产黄片美女视频| 日本熟妇午夜| 我的老师免费观看完整版| 亚洲精品日韩av片在线观看| 亚洲精品粉嫩美女一区| 亚洲av第一区精品v没综合| 日韩亚洲欧美综合| 亚洲国产色片| 亚洲精华国产精华精| 可以在线观看的亚洲视频| 91麻豆av在线| 女的被弄到高潮叫床怎么办 | 国产精品不卡视频一区二区| 人妻制服诱惑在线中文字幕| 在线a可以看的网站| 99久久久亚洲精品蜜臀av| 午夜福利18| 国产免费av片在线观看野外av| 亚洲熟妇熟女久久| 听说在线观看完整版免费高清| 亚洲欧美日韩卡通动漫| 桃红色精品国产亚洲av| 欧美色欧美亚洲另类二区| 欧美丝袜亚洲另类 | 亚洲乱码一区二区免费版| 在线免费观看的www视频| 久久午夜福利片| 成人二区视频| 久久久久国产精品人妻aⅴ院| 91av网一区二区| 免费观看人在逋| 97超级碰碰碰精品色视频在线观看| 天堂av国产一区二区熟女人妻| 国产爱豆传媒在线观看| 丰满乱子伦码专区| 97超级碰碰碰精品色视频在线观看| 日韩欧美在线乱码| 日本色播在线视频| 最近最新免费中文字幕在线| 国内久久婷婷六月综合欲色啪| 99久久九九国产精品国产免费| av国产免费在线观看| 69人妻影院| 成人二区视频| 日韩,欧美,国产一区二区三区 | 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 久久这里只有精品中国| 嫁个100分男人电影在线观看| 级片在线观看| 在线天堂最新版资源| 亚洲av.av天堂| 欧美xxxx黑人xx丫x性爽| 色尼玛亚洲综合影院| 99精品久久久久人妻精品| 中文在线观看免费www的网站| 日本成人三级电影网站| 日本精品一区二区三区蜜桃| 国产精品一区www在线观看 | 丝袜美腿在线中文| 一本精品99久久精品77| 国产高清视频在线播放一区| 88av欧美| 99热6这里只有精品| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站| 很黄的视频免费| 久久久久免费精品人妻一区二区| www日本黄色视频网| 嫩草影院精品99| 一边摸一边抽搐一进一小说| 春色校园在线视频观看| 成人毛片a级毛片在线播放| 亚洲第一区二区三区不卡| 嫩草影视91久久| 亚洲欧美日韩无卡精品| 国产成年人精品一区二区| 精品免费久久久久久久清纯| 久久九九热精品免费| 蜜桃亚洲精品一区二区三区| 国产色婷婷99| 免费无遮挡裸体视频| 91午夜精品亚洲一区二区三区 | 亚洲人成伊人成综合网2020| 最近最新中文字幕大全电影3| 亚洲国产日韩欧美精品在线观看| 日本黄色视频三级网站网址| 国产伦精品一区二区三区视频9| 嫩草影院新地址| 18禁黄网站禁片午夜丰满| 国产伦精品一区二区三区四那| 国产三级中文精品| 欧美激情在线99| 国内久久婷婷六月综合欲色啪| 亚洲电影在线观看av| 国产高清视频在线观看网站| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 国产精品,欧美在线| 国产精品嫩草影院av在线观看 | 亚洲av.av天堂| 毛片女人毛片| 国产精品亚洲美女久久久| av在线观看视频网站免费| 欧美日韩乱码在线| 久久精品国产亚洲av天美| 欧美区成人在线视频| 天堂√8在线中文| 51国产日韩欧美| 在线国产一区二区在线| 搡女人真爽免费视频火全软件 | 两人在一起打扑克的视频| 熟妇人妻久久中文字幕3abv| 99久久中文字幕三级久久日本| 男人和女人高潮做爰伦理| 看片在线看免费视频| 99国产极品粉嫩在线观看| 欧美日韩乱码在线| 别揉我奶头 嗯啊视频| 亚洲成人免费电影在线观看| 九色成人免费人妻av| 久久久久性生活片| 老熟妇乱子伦视频在线观看| 色哟哟·www| 日本撒尿小便嘘嘘汇集6| 日本熟妇午夜| 国产av不卡久久| 亚洲成a人片在线一区二区| 欧美激情国产日韩精品一区| 久久久久久久久大av| 亚洲四区av| 国产色婷婷99| 婷婷色综合大香蕉| 国产淫片久久久久久久久| 亚洲中文日韩欧美视频| 搡女人真爽免费视频火全软件 | 精品无人区乱码1区二区| 日韩在线高清观看一区二区三区 | 我要看日韩黄色一级片| 国产精品久久久久久av不卡| 国产一级毛片七仙女欲春2| 免费不卡的大黄色大毛片视频在线观看 | 色吧在线观看| 久久亚洲真实| 亚洲精品乱码久久久v下载方式| 两性午夜刺激爽爽歪歪视频在线观看| 99国产极品粉嫩在线观看| 欧美日韩中文字幕国产精品一区二区三区| 成人特级av手机在线观看| 一区二区三区免费毛片| 欧美色欧美亚洲另类二区| 国产在线精品亚洲第一网站| 黄色日韩在线| 少妇人妻一区二区三区视频| 99九九线精品视频在线观看视频| 亚洲成人久久爱视频| 成人美女网站在线观看视频| 亚洲专区国产一区二区| 深夜a级毛片| 国产精品自产拍在线观看55亚洲| 成人av在线播放网站| 最近最新中文字幕大全电影3| av天堂中文字幕网| 国产精品av视频在线免费观看| а√天堂www在线а√下载| 一级黄片播放器| 国产精品国产高清国产av| 在线免费观看的www视频| 精品无人区乱码1区二区| 欧美不卡视频在线免费观看| 久久精品影院6| 成年女人毛片免费观看观看9| 国产精品亚洲一级av第二区| 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 草草在线视频免费看| 老熟妇乱子伦视频在线观看| 久久久精品欧美日韩精品| 日本三级黄在线观看| 欧美一区二区精品小视频在线| 搡老妇女老女人老熟妇| 国产欧美日韩精品一区二区| 一进一出好大好爽视频| 久久精品国产99精品国产亚洲性色| 欧美区成人在线视频| 亚洲熟妇中文字幕五十中出| 91麻豆av在线| 1000部很黄的大片| 欧美激情在线99| 可以在线观看毛片的网站| 色噜噜av男人的天堂激情| 一本一本综合久久| 国语自产精品视频在线第100页| 床上黄色一级片| 精品日产1卡2卡| 九九在线视频观看精品| 久久99热这里只有精品18| 我要看日韩黄色一级片| 国产精品久久久久久亚洲av鲁大| 色吧在线观看| 午夜福利在线观看吧| 成年免费大片在线观看| 午夜视频国产福利| 久久精品人妻少妇| 亚洲av免费在线观看| 禁无遮挡网站| 99热这里只有是精品50| 亚洲电影在线观看av| 国产精品一区二区三区四区久久| 久久久色成人| 日日夜夜操网爽| 在线观看av片永久免费下载| a级毛片a级免费在线| x7x7x7水蜜桃| 搞女人的毛片| 丰满的人妻完整版| 在现免费观看毛片| 联通29元200g的流量卡| 久久99热这里只有精品18| 很黄的视频免费| 全区人妻精品视频| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添小说| 日韩精品有码人妻一区| 国产单亲对白刺激| 久久精品人妻少妇| 欧美色视频一区免费| 又黄又爽又免费观看的视频| 国产男人的电影天堂91| 色尼玛亚洲综合影院| 午夜免费成人在线视频| 简卡轻食公司| 日韩中文字幕欧美一区二区| 69人妻影院| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影| 桃色一区二区三区在线观看| 午夜福利高清视频| 99riav亚洲国产免费| 国产成人一区二区在线| 淫秽高清视频在线观看| 成人欧美大片| 亚洲自偷自拍三级| 国产又黄又爽又无遮挡在线| 久久99热这里只有精品18| 最新在线观看一区二区三区| 97碰自拍视频| 精品一区二区三区视频在线| 在线天堂最新版资源| 亚洲七黄色美女视频| 国产av麻豆久久久久久久| avwww免费| 久久久久九九精品影院| 中出人妻视频一区二区| 久久午夜福利片| 亚洲欧美清纯卡通| 久久国产精品人妻蜜桃| 在线天堂最新版资源| 九色成人免费人妻av| 亚洲欧美激情综合另类| 国产精品亚洲美女久久久| 国产不卡一卡二| 日韩欧美精品免费久久| av在线老鸭窝| 22中文网久久字幕| 在线观看美女被高潮喷水网站| 亚洲精品456在线播放app | 精品午夜福利在线看| 能在线免费观看的黄片| 国产精品不卡视频一区二区| 一a级毛片在线观看| 99riav亚洲国产免费| 久久精品国产亚洲av涩爱 | 国产精品一及| 成人亚洲精品av一区二区| av中文乱码字幕在线| 亚洲国产色片| 国产极品精品免费视频能看的| 免费搜索国产男女视频| 欧美+日韩+精品| 国产黄a三级三级三级人| 日本三级黄在线观看| 成人毛片a级毛片在线播放| 长腿黑丝高跟| 亚洲欧美日韩高清在线视频| 午夜福利欧美成人| 在现免费观看毛片| 在线观看66精品国产| 国产精品女同一区二区软件 | 国产一区二区在线av高清观看| 国产久久久一区二区三区| 美女大奶头视频| 久久久国产成人免费| 白带黄色成豆腐渣| av视频在线观看入口| 搡老熟女国产l中国老女人| 久久久久久久午夜电影| 美女被艹到高潮喷水动态| 高清日韩中文字幕在线| 直男gayav资源| 村上凉子中文字幕在线| 女人被狂操c到高潮| 久久久午夜欧美精品| 99在线视频只有这里精品首页| 又紧又爽又黄一区二区| 日韩高清综合在线| 婷婷精品国产亚洲av| 亚洲av熟女| 不卡视频在线观看欧美| 亚洲av第一区精品v没综合| 人人妻人人看人人澡| 少妇的逼好多水| 亚洲在线观看片| 久久久久久伊人网av| 国产久久久一区二区三区| 久久精品国产自在天天线| 亚洲精品456在线播放app | 国内久久婷婷六月综合欲色啪| 精品久久久久久久久亚洲 | 日韩欧美三级三区| 国产精品一区二区免费欧美| 亚洲av免费在线观看| 级片在线观看| 日韩欧美三级三区| 午夜精品一区二区三区免费看| 日日撸夜夜添| 国产精品一区二区免费欧美| 亚洲熟妇中文字幕五十中出| 成人欧美大片| 露出奶头的视频| 免费一级毛片在线播放高清视频| 男女边吃奶边做爰视频| 村上凉子中文字幕在线| x7x7x7水蜜桃| 村上凉子中文字幕在线| 91麻豆av在线| 国产主播在线观看一区二区| 色尼玛亚洲综合影院| 久久这里只有精品中国| 日韩欧美国产在线观看| 在线免费观看的www视频| 天堂影院成人在线观看| 国产精品国产三级国产av玫瑰| 色尼玛亚洲综合影院| 亚洲美女视频黄频| 尤物成人国产欧美一区二区三区| 日韩欧美三级三区| 男女那种视频在线观看| 长腿黑丝高跟| 联通29元200g的流量卡| 九九热线精品视视频播放| 麻豆一二三区av精品| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩高清在线视频| 男女边吃奶边做爰视频| 欧美高清成人免费视频www| 狂野欧美激情性xxxx在线观看| 小蜜桃在线观看免费完整版高清| 露出奶头的视频| 国产精品不卡视频一区二区| 男女之事视频高清在线观看| 国内精品一区二区在线观看| 色精品久久人妻99蜜桃| 黄色配什么色好看| 色精品久久人妻99蜜桃| 欧美三级亚洲精品| 麻豆成人午夜福利视频| 男人舔奶头视频| 久久精品国产亚洲网站| 日本色播在线视频| 内地一区二区视频在线| 在线免费观看的www视频| 又黄又爽又刺激的免费视频.| 亚洲一级一片aⅴ在线观看| 国产 一区 欧美 日韩| 久久久久久久久久黄片| 国产色爽女视频免费观看| 久久久久久久久久黄片| 99久久精品一区二区三区| 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜添小说| 欧美性猛交黑人性爽| 在线播放无遮挡| 国产精品女同一区二区软件 | 男人的好看免费观看在线视频| 亚洲第一区二区三区不卡| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 亚洲人成伊人成综合网2020| 日本与韩国留学比较| 久久草成人影院| 一a级毛片在线观看| 直男gayav资源| 我的女老师完整版在线观看| 高清在线国产一区| av国产免费在线观看| 午夜激情欧美在线| 999久久久精品免费观看国产| 欧美成人性av电影在线观看| 国内精品久久久久精免费| 搡女人真爽免费视频火全软件 | 99热这里只有是精品50| 亚洲熟妇熟女久久| 久久久久免费精品人妻一区二区| 亚洲国产精品成人综合色| av天堂中文字幕网| 99在线视频只有这里精品首页| 22中文网久久字幕| 女人被狂操c到高潮| 少妇丰满av| 日本在线视频免费播放| 亚洲一级一片aⅴ在线观看| 啦啦啦观看免费观看视频高清| 琪琪午夜伦伦电影理论片6080| 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| 免费无遮挡裸体视频| 一本久久中文字幕| 大型黄色视频在线免费观看| 成年女人毛片免费观看观看9| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 欧美三级亚洲精品| 我要看日韩黄色一级片| 精品久久久久久久人妻蜜臀av| 少妇的逼好多水| 黄色欧美视频在线观看| 亚洲av免费在线观看| 级片在线观看| 男女下面进入的视频免费午夜| 亚洲欧美精品综合久久99| 成人三级黄色视频| 美女高潮的动态| 又粗又爽又猛毛片免费看| 免费搜索国产男女视频| 91在线精品国自产拍蜜月| 97热精品久久久久久| 久久久久久久久中文| 国产精品一区二区三区四区久久| 99久久无色码亚洲精品果冻| 看十八女毛片水多多多| www.www免费av| av.在线天堂| 高清毛片免费观看视频网站| 中文亚洲av片在线观看爽| 精品久久久久久久末码| 在线观看免费视频日本深夜| 欧美一级a爱片免费观看看| 国产国拍精品亚洲av在线观看| 天堂网av新在线| 深夜精品福利| 亚洲三级黄色毛片| 男女边吃奶边做爰视频| 国产免费男女视频| 91久久精品国产一区二区成人| 看十八女毛片水多多多| 成人午夜高清在线视频| 男女那种视频在线观看| 日韩精品青青久久久久久| 一个人观看的视频www高清免费观看| 国内精品久久久久精免费| 一进一出抽搐gif免费好疼| 国产精品日韩av在线免费观看| 国产精品伦人一区二区| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清| 中文在线观看免费www的网站| 波多野结衣高清无吗| 欧美xxxx黑人xx丫x性爽| 精品人妻一区二区三区麻豆 | 日本黄色视频三级网站网址| av在线天堂中文字幕| 欧美国产日韩亚洲一区| 91久久精品电影网| 欧美黑人巨大hd| 欧美日本视频| 久久中文看片网| 欧美极品一区二区三区四区| ponron亚洲| 亚洲人成伊人成综合网2020| 国产主播在线观看一区二区| 大又大粗又爽又黄少妇毛片口| 欧美日韩中文字幕国产精品一区二区三区| 一个人看视频在线观看www免费| 亚洲精品影视一区二区三区av| 精品一区二区三区人妻视频| 日本黄色片子视频| 丰满的人妻完整版| 联通29元200g的流量卡| 免费大片18禁| 在线a可以看的网站| 最近在线观看免费完整版| 久久久午夜欧美精品| 欧美日韩亚洲国产一区二区在线观看| 88av欧美| 久久久久免费精品人妻一区二区| 性插视频无遮挡在线免费观看| 精品一区二区三区人妻视频| 亚洲精品456在线播放app | 国产欧美日韩精品一区二区| 一夜夜www| 国产精品亚洲一级av第二区| 中文字幕精品亚洲无线码一区| 精华霜和精华液先用哪个| 亚洲天堂国产精品一区在线| 91久久精品国产一区二区三区| 色综合色国产| 别揉我奶头~嗯~啊~动态视频| 日韩欧美精品v在线| 一本精品99久久精品77| 日韩强制内射视频| av福利片在线观看| 狂野欧美白嫩少妇大欣赏| 色噜噜av男人的天堂激情| 大又大粗又爽又黄少妇毛片口| 嫩草影院新地址| 日韩中文字幕欧美一区二区| 99热这里只有是精品在线观看| 99热网站在线观看| 国产亚洲精品综合一区在线观看| 性插视频无遮挡在线免费观看| 日本免费一区二区三区高清不卡| 人妻久久中文字幕网| 91av网一区二区| 97超级碰碰碰精品色视频在线观看| 久久精品国产99精品国产亚洲性色| 色综合色国产| 噜噜噜噜噜久久久久久91| 直男gayav资源| 身体一侧抽搐| 最近中文字幕高清免费大全6 | 91狼人影院| 国产黄a三级三级三级人| 又爽又黄无遮挡网站| 国内精品美女久久久久久| 乱人视频在线观看| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 两人在一起打扑克的视频| av在线蜜桃| www.www免费av| 亚洲精品一卡2卡三卡4卡5卡| 校园人妻丝袜中文字幕| netflix在线观看网站| 淫秽高清视频在线观看| 国产精品电影一区二区三区| 99在线人妻在线中文字幕| 久久久久久久亚洲中文字幕| 哪里可以看免费的av片| 亚洲avbb在线观看| 九九久久精品国产亚洲av麻豆| 成人欧美大片| 欧美zozozo另类| 我的老师免费观看完整版| 又爽又黄无遮挡网站| 美女高潮喷水抽搐中文字幕| 国产精品99久久久久久久久| 春色校园在线视频观看| 欧美日本亚洲视频在线播放| 观看免费一级毛片| 中文字幕熟女人妻在线| 婷婷精品国产亚洲av| 亚洲成人久久爱视频| 日本 av在线| 国产精品野战在线观看| 亚洲黑人精品在线| 成人av一区二区三区在线看| 99久国产av精品| 国产精品一区二区三区四区久久| 国产探花极品一区二区| 高清毛片免费观看视频网站| 国产精品福利在线免费观看| 日韩欧美国产在线观看| 听说在线观看完整版免费高清| av天堂中文字幕网| 国产中年淑女户外野战色| 亚洲av.av天堂| 欧美日韩国产亚洲二区| 真人一进一出gif抽搐免费| 欧美日韩精品成人综合77777| 99精品在免费线老司机午夜| 岛国在线免费视频观看| 国产精品一区二区性色av| 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| 国产乱人伦免费视频| 精品人妻熟女av久视频| 最新中文字幕久久久久| 亚洲中文日韩欧美视频| 最后的刺客免费高清国语| 日本五十路高清| 十八禁国产超污无遮挡网站| 亚洲性夜色夜夜综合| 亚洲午夜理论影院| 亚洲国产欧美人成| 国产探花在线观看一区二区| 99热只有精品国产| 日日摸夜夜添夜夜添小说| 啪啪无遮挡十八禁网站| 91午夜精品亚洲一区二区三区 | 久久精品国产清高在天天线| 尾随美女入室| 久久久久九九精品影院|