• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Fully Nonlinear NWT by DBIEM Method with MTF for the Downstream Boundary

    2017-10-11 05:33:14XUGangBAIXuMAXiaojianZHURenqing
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:工程學(xué)院水池波浪

    XU Gang,BAI Xu,MA Xiao-jian,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Numerical Simulation of Fully Nonlinear NWT by DBIEM Method with MTF for the Downstream Boundary

    XU Gang,BAI Xu,MA Xiao-jian,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Abstract:Wave propagation in a three-dimensional nonlinear numerical wave tank(NWT)is studied based on the fully nonlinear velocity potential theory.The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved by using the indirect desingularized boundary integral equation method(DBIEM).The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme(ABM4)and mixed Eulerian-Lagrangian(MEL)method are used for the timestepping integration of the free surface boundary conditions.A smoothing algorithm,B-spline,is applied to eliminate the possible saw-tooth instabilities.An effective Multi-transmitting Formula method for radiation condition is employed to transmit wave out of computational region.The numerical results are compared with analytical solutions.The results show that MTF method can be used for simulating fully nonlinear wave propagation.

    Key words:NWT;DBIEM;Multi-transmitting formula

    0 Introduction

    When simulating the nonlinear wave propagation through an unbounded domain in the time domain,it is necessary to truncate the computational domain into a finite domain in order to reduce computational costs.Thus,non-reflecting radiation condition is required for the truncated surface,however,there is no exact non-reflecting condition in existence.The Sommerfeld-Orlanski’s condition has been widely used for linear simulation,this condition is local in both time and space and dependent on the phase velocity of out-going wave but cannot ensure good results for irregular wave problem.The global matching or shell function method is very accurate for linear irregular wave radiation but with relatively large computational effort on comparing with the local method and can not satisfy the nonlinear condition.Another common used method is Damping Zone(DZ),which can absorb high frequency waves efficiently.It is limited by the length of DZ and therefore not very efficient for low frequency waves.Clément[1]proposed a coupled method(piston-beach hybrid absorber)to absorb outgoing wave.Boo[2]proposed a numerical scheme,which combines an absorbing beach and the stretching technique,to simulate the open boundary.Wang and Wu[3]imposed a radiation condition via a combination of Damping Zone(DZ)and Sommerfeld-Orlanski equation.However,the efficiency of DZ method strongly depends on the ratio of the length of damping zone and wave length.The longer wave length requires a wider beach.It will result in much more meshes on the free surface,especially when dealing with irregular wave problem.

    In this work,the indirect desingularized boundary integral equation method(DBIEM),which has been successfully used previously in solving nonlinear water wave problems such as in the work by Zhang et al[4-5],is employed to solve the boundary value problem at each time step.Compared with the conventional BEM,the integral kernels of the DBIEM are no longer singular as the singularities are placed slightly outside the fluid domain.This is particularly advantageous when the direct differentiation is applied to the integral equation to obtain the velocity.The fourth-order predictor-corrector Adams-Bashforth-Moulton(ABM4)scheme and mixed Eulerian-Lagrangian(MEL)method are used for the time-stepping integration of the free surface boundary conditions.Since wave breaking is not considered in this work,the position of the nodes on free surface is tracked by applying semi-Lagrangian approach[6],in which the nodes on free surface are allowed to move only in vertical direction,with the horizontal motion of the nodes on the free surface held fixed.This approach has the advantage of avoiding the task of re-gridding the free surface at each time step.For stable time-step simulation,a B-spline smoothing scheme is applied in both longitudinal and transverse directions of the tank to prevent saw-tooth instability.During the simulation,Multi-transmitting Formula method[7-10]is employed as radiation condition to minimize wave reflection on the truncated surface.Numerical results obtained by the present method agree fairly with analytical solution and show that the present model is effective in the simulation for 3D fully nonlinear wave propagation.

    1 Mathematical model

    Fig.1 Sketch of a 3D numerical wave tank(left)and radiation condition(right)

    A Cartesian coordinate system oxyz is defined for 3D wave propagation problem,as shown in Fig.1.The origin of oxyz is placed on the plane of the undisturbed free surface with the x-axis positive in the propagation direction of incident waves prescribed at the vertical upstream boundary,and the z-axis positive in the opposite direction of gravity.In Fig.1,D denotes the fluid domain whiledenote the boundaries of instantaneous free surface,side wall,bottom,upstream and downstream,respectively.

    We assume the fluid is incompressible and inviscid,and the flow irrotational,the fluid motion can be described by a velocity potential φ,which satisfies the Laplace equation within the fluid domain D,

    All the boundary conditions can be desribed as follows:

    (1)On the instantaneous free surface ΓF,the dynamic and kinematic conditions can be written as:

    where g is the gravitational acceleration and η is the wave elevation.

    (2)On side wall ΓWand bottom ΓB,the zero-normal flux condition can be expressed as:

    (3)On upstream boundary ΓU,the fluid motion is prescribed by giving the properties(surface elevation and normal velocity)of known incident wave forms.

    (4)For downstream boundary condition,the fluid domain has to be truncated at a finite downstream boundary of ΓDin the NWT.An appropriate radiation condition should be imposed on the ΓDto minimize the wave reflection during the simulation in time domain.In this work,an effective Multi-transmitting formular method(MTF)is employed to simulate downstream boundary condition.

    The above boundary value problem will be solved by the indirect desingularized boundary integral equation method(DBIEM),the details of this method can be found in Ref.[4].In order to obtain the velocity potential and free surface elevation at each time step,the fourthorder predictor-corrector Adams-Bashforth-Moulton scheme(ABM4)and mixed Eulerian-Lagrangian(MEL)method are used.Using the total derivativethe fully nonlinear free surface conditions can be modified as follows in Lagrangian frame,

    ABM4 scheme[4]is selected for integrating Eq.(7)and Eq.(8)over time.

    2 Desingularized boundary integral equation method

    In this study,the indirect DBIEM is employed to solve the boundary value problem for the unknown velocity potentialat each time step.This method obtains the solution by distributing Rankine sources over a surface S outside the fluid domain D.This surface is at a small distance away from the corresponding real boundary of the fluid.The velocity potential in the fluid domain D can be written as follows:

    For the problem considered in this work,we construct the solution using a constantstrength source point within each element over the integration boundary SFand a constantstrength source point over the integration surface SW,where SFis the integration surface above the free surface ΓF,and SWis the integration surface outside the real boundary of the tank.That is

    By applying the boundary conditions,we obtain boundary integral equations for the unknown strength of the singularities,respectively:

    In the desingularized method,the source distribution is outside the fluid domain so that the source points never coincide with the field points and therefore the integrals are non-singular.In addition,because of the desingularization,we can use simple isolated Rankine sources andobtain the equivalent accuracy.This greatly reduces the complexity of the form of the influence coefficients that make up the elements of the kernel matrix[4].Then the integral equations in Eq.(12)and Eq.(13)can be replaced by a discrete summation of N-isolated singularities located at a small distance away from the corresponding control point on the boundaries,

    The desingularized distance between isolated source point and corresponding control point is given by

    where ldand β are constants and Dmis a measure of the local mesh size(typically the square root of the local mesh area).The accuracy and convergence of the solutions are sensitive to the choices of ldand β.Therefore,appropriate ldand β values need to be determined after numerical test.The recommended values are ld=0.5-1.0 and β=0.5.A detailed study with regard to the performance of DBIEM with the desingularization parameters was reported in Ref.[11].ldis fixed at 0.85 in our work.

    Once the above integral equations using isolated Rankine source are solved at each time step,the fluid velocity in Eq.(2)and Eq.(3)can be calculated from direct derivatives,

    3 Multi-transmitting Formula for radiation condition

    Liao[7]described a general expression of one-way wave propagation and developed a system of local non-reflecting boundary conditions using space-time extrapolation.Its initial aim is to deal with the propagation of earthquake wave out of truncated boundary.

    In this section,the MTF method for treating the velocity potential φ in water wave field will be introduced,as shown in Fig.1.Suppose that point O0is on the truncated surface ΓDand j is the point which is away from point O0along its normal vector to the fluid domain.The distance between point j and point O0is jCaΔt along the normal vector of point O0,where Ca,related to physical wave speed Cx,is the artificial wave speed and Δt is the time interval.Usually,we do not need set Caequal to Cx.

    According to the theory of MTF,the velocity potential on ΓDmay be written as

    where integer p represents the time level,N is the order of the MTF method and C is thebinomial coefficient.

    In order to eliminate the effect of the frequencies,which are near to zero including zero,a constant value γ2is used.Thus,the second order MTF can be written as Eq.(18),where γ2is additional factor and set to 0.025;

    4 Numerical results and discussions

    The present model is applied to simulate the wave propagation for linear incident wave and second-order Stokes wave in a fully nonlinear NWT.In our simulation,the length of NWT(L)is 2 m,depth-length ratio h/L=0.5,and breadth-length ratio B/L=0.25.The NWT is divided in x-direction by Nx=40 intervals,in y-direction by Ny=11 intervals and in z-direction by Nz=10 intervals.

    In the MTF method,we need to use an artificial wave speed Cato find the exact position of the inner points corresponding to the control point on the truncated surface,as shown in Fig.1.Normally,we do not need to set Caequal to the physical wave speed Cxand yet we can still get reasonable results when Cais in the certain range of Cx(Ca∈0.8 Cx~1.2Cx).The numerical results for different Caare presented in Fig.2 and Fig.3.We can find that the MTF method is effective to transmit waves out of truncated surface when Cais in the prescribed range.Thus,the MTF method is proposed as radiation condition to also accord greater flexibility for the simulation of fully nonlinear NWT.

    Fig.2 Comparison of wave elevation between linear analytical solution and numerical results with different artificial wave speed(λ=4.0 m)

    Fig.3 Comparison of wave elevation between linear analytical solution and numerical results with different artificial wave speed(λ=8.0 m)

    4.1 Simulation of linear regular incident wave

    The model is next applied to simulate the linear regular incident wave.We consider three cases:wave length λ=1 m,4 m and 8 m.For these simulations,the wave amplitude A is set to 0.02 m,time step Δt is taken as T/100 and Cais equal to Cx[9],where T is wave period.The numerical results are compared with corresponding linearized analytical solution,as shown in Figs.4-6.We can see that the numerical result obtained by present method agrees fairly with the theory after the initial transient effect.This indicates that the method works well with the given problem.It needs to be mentioned that a modulation function is used in the numerical simulation[12].

    Fig.4 Wave elevation for the case of wave length λ=4 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.5 Wave elevation histories for the case of wave length λ=8 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.6 Wave elevation histories for the case of wave length λ=1 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.7 Wave elevation histories at(x=0.475 m,y=0)for λ=1 m and A=0.02 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    4.2 Simulation of second-order stokes incident wave

    The model is finally applied to simulate the wave propogation ofsecond-order Stokes waves,which have the basic characteristic of nonlinear waves of higher and sharper crest,lower and flatter trough.The parameters for simulating second-order Stokes waves propagation are taken as λ=1 m,A=0.02 m and Δt=T/100.Fig.7 shows the wave elevation histories at(x=0.475 m,y=0)and the numerical results are compared with second-order analytical solution.We can find that the results agree with the analytical solution and have strong stability.In order to illustrate the wave propagation,snapshots of free surface are shown in Fig.8 at four different times(t=4T,6T,8T and 10T).

    Fig.8 Free surface profiles(a)t=4T;(b)t=6T;(c)t=8T;(d)t=10T

    5 Conclusions

    In this paper,3D fully nonlinear NWT are solved by using a DBIEM coupled with MEL time marching scheme.The position of instantaneous free surface is tracked by applying semi-Lagrangian approach.An effective MTF method is employed as radiation condition to transmit wave out of truncated surface.It is found that the present model is accurate,numerically stable and can be used for the simulation of 3D fully nonlinear wave propagation due to linear incident wave and second-order incident wave.

    [1]Clément A.Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves[J].Journal of Computational Physics,1996,126:139-151.

    [2]Boo S Y.Linear and nonlinear irregular waves and forces in a numerical wave tank[J].Ocean Engineering,2002,29:475-493.

    [3]Wang C Z,Wu G X.Time domain analysis of second-order wave diffraction by an array of vertical cylinders[J].Journal of Fluids and Structures,2007,23(4):605-631.

    [4]Zhang X T,Khoo B C,Lou J.Wave propagation in a fully nonlinear numerical wave tank:a desingularized method[J].O-cean Engineering,2006,33:2310-2331.

    [5]Zhang X T,Khoo B C,Lou J.Application of desingularized approach to water wave propagation over three-dimensional topography[J].Ocean Engineering,2007,34:1449-1458.

    [6]Koo W C,Kim M H.Fully nonlinear wave-body interactions with surface-piercing bodies[J].Ocean Engineering,2007,34:1000-1012.

    [7]Liao Z P.Extrapolation non reflecting boundary conditions[J].Wave Motion,1996,24:117-138.

    [8]Xu G,Duan W Y.Time domain simulation for water wave radiation by floating structures(Part A)[J].Journal of Marine Science and Application,2008;7:226-235.

    [9]Xu G,Duan W Y.Time-domain simulation of wave-structure interaction based on multi-transmitting formula coupled with damping zone method for radiation boundary condition[J].Applied Ocean Research,2013;42:136-143.

    [10]Duan W Y,Zhang T Y.Non-reflecting simulation for fully-nonlinear irregular wave radiation[C]//Proceedings of the 24th International Workshop on Water Wave and Floating Bodies.Bodies,Russia,2009.

    [11]Cao Y,Schultz W W,Beck R F.Three dimensional desingularized boundary integral methods for potential problems[J].International Journal for Numerical Methods in Fluids,1991,12:785-803.

    [12]Xu G.Time-domain simulation of second-order hydrodynamic force on floating bodies in irregular waves[D].Harbin:College of Shipbuilding Engineering,Harbin Engineering University,2010.(in Chinese)

    基于多次透射公式和無奇異邊界元法模擬全非線性數(shù)值波浪水池

    徐 剛,白 旭,馬小劍,朱仁慶
    (江蘇科技大學(xué) 船舶與海洋工程學(xué)院,江蘇 鎮(zhèn)江 212003)

    文章基于勢流理論對全非線性的三維數(shù)值水池進(jìn)行了模擬,其控制方程由無奇異邊界積分方程法(Desingularized Boundary Integral Equation Method,DBIEM)進(jìn)行離散求解,在求解全非線性的自由面微分方程時,文中采用混合歐拉—拉格朗日法(Mixed Eulerian-Lagrangian,MEL)和四階Adams-Bashforth-Moulton(ABM4)預(yù)報—修正方法,為了避免結(jié)果發(fā)散即增強數(shù)值穩(wěn)定性,文中采用B樣條法來光順波面。同時,在遠(yuǎn)方輻射控制面上采用多次透射公式方法(Multitransmitting Formula,MTF)來進(jìn)行消波,文中得到的結(jié)果與理論解進(jìn)行了比較,結(jié)果表明該方法可用來有效模擬全非線性的數(shù)值波浪水池。

    數(shù)值波浪水池;無奇異邊界積分法;多次透射公式

    O35 U661.71

    A

    國家自然科學(xué)基金資助項目(51309125,51409128,51379094,51179077);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目資助

    徐 剛(1981-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院副教授;白 旭(1984-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院講師;馬小劍(1982-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院講師;朱仁慶(1965-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院教授。

    10.3969/j.issn.1007-7294.2017.09.002

    Article ID: 1007-7294(2017)09-1062-09

    Received date:2017-03-28

    Foundation item:Supported by the National Natural Science Foundation of China(Grant No.51309125,51409128,51379094,51179077)and the Project Founded by Priority Academic Program Development of Jiangsu Higher Education Institutions

    Biography:XU Gang(1981-),male,Ph.D.,associate prof.of Jiangsu University of Science and Technology,E-mail:me_xug@qq.com;BAI Xu(1984-),male,Ph.D.,lecturer.

    猜你喜歡
    工程學(xué)院水池波浪
    福建工程學(xué)院
    波浪谷和波浪巖
    福建工程學(xué)院
    小區(qū)的水池
    波浪谷隨想
    福建工程學(xué)院
    去看神奇波浪谷
    福建工程學(xué)院
    把住醫(yī)?;鹚亻l門
    找水池
    欧美成人免费av一区二区三区| 中文字幕人妻丝袜一区二区| www.www免费av| 性欧美人与动物交配| 一区二区三区国产精品乱码| 午夜视频精品福利| 国产一区二区激情短视频| 18禁裸乳无遮挡免费网站照片| 成人三级做爰电影| 国产亚洲精品一区二区www| 国产精品综合久久久久久久免费| 亚洲国产欧美人成| av福利片在线| 国产激情欧美一区二区| 久久久久久九九精品二区国产 | 国产精品美女特级片免费视频播放器 | bbb黄色大片| 很黄的视频免费| 最近最新中文字幕大全电影3| 久久伊人香网站| 欧美日韩瑟瑟在线播放| 午夜福利在线在线| 91av网站免费观看| 欧美一级毛片孕妇| 欧美 亚洲 国产 日韩一| 日本黄大片高清| 亚洲,欧美精品.| 午夜福利在线观看吧| 精品欧美一区二区三区在线| 亚洲一区中文字幕在线| 国产成人系列免费观看| 国产成人精品无人区| 少妇的丰满在线观看| 欧美日本视频| 国产在线观看jvid| 久久人妻福利社区极品人妻图片| 精品一区二区三区av网在线观看| 免费在线观看影片大全网站| 亚洲无线在线观看| xxxwww97欧美| 欧美精品啪啪一区二区三区| av在线播放免费不卡| 日本a在线网址| 可以免费在线观看a视频的电影网站| 久久久久免费精品人妻一区二区| www.自偷自拍.com| 国内毛片毛片毛片毛片毛片| 亚洲欧美精品综合久久99| 欧美绝顶高潮抽搐喷水| 久久精品夜夜夜夜夜久久蜜豆 | 色综合婷婷激情| 日本免费一区二区三区高清不卡| 久久久精品欧美日韩精品| 久久久精品国产亚洲av高清涩受| 欧美高清成人免费视频www| 欧美一区二区精品小视频在线| 天堂√8在线中文| 欧美色视频一区免费| 精品一区二区三区av网在线观看| 男人舔奶头视频| 久久久久久久午夜电影| 国产69精品久久久久777片 | 亚洲美女视频黄频| 国产亚洲av嫩草精品影院| 国产在线精品亚洲第一网站| 亚洲一区二区三区色噜噜| 美女高潮喷水抽搐中文字幕| 久久久久九九精品影院| 午夜精品一区二区三区免费看| 亚洲精品在线美女| 国产亚洲欧美在线一区二区| 日本一区二区免费在线视频| 无限看片的www在线观看| 亚洲成人精品中文字幕电影| 国产黄色小视频在线观看| 欧美中文日本在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久人人做人人爽| 久久天躁狠狠躁夜夜2o2o| 欧美另类亚洲清纯唯美| 亚洲欧美精品综合一区二区三区| 老汉色av国产亚洲站长工具| 国产区一区二久久| 成人国产综合亚洲| 黄片小视频在线播放| 亚洲五月婷婷丁香| 国产成人精品久久二区二区免费| 美女大奶头视频| 亚洲七黄色美女视频| 欧美一级毛片孕妇| 国产99白浆流出| 免费高清视频大片| 美女 人体艺术 gogo| 人人妻人人看人人澡| 欧美又色又爽又黄视频| 亚洲一码二码三码区别大吗| 国产精品永久免费网站| 一区二区三区高清视频在线| 我要搜黄色片| 国产av一区在线观看免费| 中文亚洲av片在线观看爽| 美女黄网站色视频| 热99re8久久精品国产| 91九色精品人成在线观看| 丁香欧美五月| 高清毛片免费观看视频网站| 窝窝影院91人妻| 国产三级中文精品| 欧美在线一区亚洲| 正在播放国产对白刺激| 999久久久国产精品视频| 九九热线精品视视频播放| 国产69精品久久久久777片 | 88av欧美| 夜夜夜夜夜久久久久| 欧美 亚洲 国产 日韩一| 国产精品av视频在线免费观看| 久久精品成人免费网站| 亚洲在线自拍视频| 国产精品久久久av美女十八| 男人的好看免费观看在线视频 | 国产亚洲精品久久久久5区| 欧美一级毛片孕妇| 日本成人三级电影网站| 久久久久久国产a免费观看| 免费在线观看亚洲国产| 婷婷亚洲欧美| 免费电影在线观看免费观看| 狂野欧美白嫩少妇大欣赏| 国产熟女xx| 中文字幕人成人乱码亚洲影| 一本一本综合久久| 色综合婷婷激情| 巨乳人妻的诱惑在线观看| 男女视频在线观看网站免费 | a级毛片a级免费在线| 久久精品国产99精品国产亚洲性色| 日韩精品中文字幕看吧| 五月玫瑰六月丁香| 欧美黄色淫秽网站| 亚洲成人免费电影在线观看| 舔av片在线| 色综合欧美亚洲国产小说| av福利片在线观看| 国产三级黄色录像| 国产v大片淫在线免费观看| 黄色成人免费大全| 亚洲国产欧美人成| 亚洲第一电影网av| 国产爱豆传媒在线观看 | 国产亚洲av高清不卡| 日韩三级视频一区二区三区| 精品一区二区三区四区五区乱码| 老司机在亚洲福利影院| 国产精品九九99| 99久久国产精品久久久| 国语自产精品视频在线第100页| 国产91精品成人一区二区三区| 国产熟女午夜一区二区三区| 国产精品一区二区三区四区免费观看 | 色老头精品视频在线观看| 国产免费av片在线观看野外av| 午夜精品久久久久久毛片777| 9191精品国产免费久久| 国产欧美日韩一区二区三| 久9热在线精品视频| 一本综合久久免费| 亚洲精品美女久久久久99蜜臀| 两人在一起打扑克的视频| 欧美激情久久久久久爽电影| 亚洲av成人av| xxxwww97欧美| 国产一级毛片七仙女欲春2| 成在线人永久免费视频| 国产精品亚洲美女久久久| 午夜a级毛片| 午夜精品在线福利| 欧美激情久久久久久爽电影| 亚洲中文av在线| 狂野欧美激情性xxxx| 国产亚洲精品久久久久久毛片| 麻豆国产97在线/欧美 | 女人高潮潮喷娇喘18禁视频| 男插女下体视频免费在线播放| 黑人操中国人逼视频| av欧美777| 最近在线观看免费完整版| 欧美日本视频| 十八禁网站免费在线| 桃色一区二区三区在线观看| av福利片在线观看| 亚洲狠狠婷婷综合久久图片| 国产高清videossex| 午夜福利高清视频| 18美女黄网站色大片免费观看| 国产精品电影一区二区三区| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| 女同久久另类99精品国产91| 亚洲人成77777在线视频| 人妻久久中文字幕网| 亚洲国产高清在线一区二区三| 亚洲性夜色夜夜综合| 日本三级黄在线观看| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 国内精品久久久久精免费| 亚洲国产精品sss在线观看| 桃红色精品国产亚洲av| 久久久久免费精品人妻一区二区| 久久久水蜜桃国产精品网| 久久草成人影院| 精品一区二区三区视频在线观看免费| 大型av网站在线播放| 亚洲精品av麻豆狂野| 一a级毛片在线观看| 一本一本综合久久| 一级黄色大片毛片| 性色av乱码一区二区三区2| 两个人看的免费小视频| 午夜福利欧美成人| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 搡老妇女老女人老熟妇| 精品久久久久久久人妻蜜臀av| 国内揄拍国产精品人妻在线| e午夜精品久久久久久久| 黑人巨大精品欧美一区二区mp4| 成在线人永久免费视频| 国产精品电影一区二区三区| 国产精品久久久人人做人人爽| 老司机午夜十八禁免费视频| 999久久久精品免费观看国产| 一个人免费在线观看电影 | 老汉色∧v一级毛片| 最近最新中文字幕大全免费视频| 亚洲国产欧美网| 丰满的人妻完整版| 国产v大片淫在线免费观看| 一进一出抽搐gif免费好疼| 亚洲一码二码三码区别大吗| 一本综合久久免费| 国产精品爽爽va在线观看网站| 伦理电影免费视频| 一区福利在线观看| 可以免费在线观看a视频的电影网站| 麻豆久久精品国产亚洲av| 国产成人精品久久二区二区91| 两个人看的免费小视频| 色综合亚洲欧美另类图片| 亚洲人成伊人成综合网2020| 日韩中文字幕欧美一区二区| 色播亚洲综合网| 黑人操中国人逼视频| 深夜精品福利| 成熟少妇高潮喷水视频| 成人国产一区最新在线观看| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 中文字幕久久专区| 18禁国产床啪视频网站| 91麻豆av在线| 国产野战对白在线观看| 好男人在线观看高清免费视频| 免费无遮挡裸体视频| 欧美黄色片欧美黄色片| 黄色丝袜av网址大全| 久久久国产欧美日韩av| 非洲黑人性xxxx精品又粗又长| 欧美三级亚洲精品| 一本久久中文字幕| 在线观看免费视频日本深夜| 18禁美女被吸乳视频| 波多野结衣巨乳人妻| 久久国产乱子伦精品免费另类| 欧美色视频一区免费| av免费在线观看网站| 91av网站免费观看| 香蕉久久夜色| 欧美性猛交╳xxx乱大交人| 怎么达到女性高潮| 五月玫瑰六月丁香| 99热这里只有是精品50| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| 亚洲精品一区av在线观看| 最近在线观看免费完整版| 精品少妇一区二区三区视频日本电影| 久久精品国产亚洲av高清一级| 国产亚洲精品综合一区在线观看 | 国产亚洲精品av在线| 亚洲av成人av| 一本精品99久久精品77| 丰满的人妻完整版| 国产片内射在线| 国产在线观看jvid| 中出人妻视频一区二区| 97人妻精品一区二区三区麻豆| 久久久精品国产亚洲av高清涩受| 嫩草影视91久久| 午夜福利视频1000在线观看| 欧美成人午夜精品| a在线观看视频网站| 久久久久国产精品人妻aⅴ院| 久久久久久大精品| 成人一区二区视频在线观看| 哪里可以看免费的av片| 国产人伦9x9x在线观看| 午夜a级毛片| 亚洲第一欧美日韩一区二区三区| 色在线成人网| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线观看免费| 久久性视频一级片| 成人特级黄色片久久久久久久| 亚洲国产精品成人综合色| 亚洲专区字幕在线| 一个人免费在线观看电影 | 一二三四在线观看免费中文在| 性色av乱码一区二区三区2| 亚洲国产日韩欧美精品在线观看 | 亚洲成人国产一区在线观看| 国产av一区在线观看免费| 午夜a级毛片| 婷婷丁香在线五月| 精华霜和精华液先用哪个| 非洲黑人性xxxx精品又粗又长| 久久久久久人人人人人| 久久午夜亚洲精品久久| 亚洲中文字幕一区二区三区有码在线看 | 麻豆国产av国片精品| 亚洲熟女毛片儿| 久久亚洲真实| 一级黄色大片毛片| 桃红色精品国产亚洲av| 精品国产亚洲在线| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 给我免费播放毛片高清在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲五月婷婷丁香| 亚洲精品中文字幕在线视频| 精品久久久久久成人av| 国产又色又爽无遮挡免费看| 亚洲精品国产一区二区精华液| 久久久国产欧美日韩av| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 日本一区二区免费在线视频| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类 | 最近视频中文字幕2019在线8| 可以在线观看毛片的网站| 亚洲18禁久久av| 精品一区二区三区av网在线观看| АⅤ资源中文在线天堂| 国产精品野战在线观看| 九九热线精品视视频播放| 99国产精品99久久久久| 中文字幕熟女人妻在线| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久久毛片微露脸| 精品高清国产在线一区| 国产一区二区三区在线臀色熟女| 国产精品亚洲美女久久久| 丝袜美腿诱惑在线| 欧美 亚洲 国产 日韩一| 黄频高清免费视频| 欧美精品啪啪一区二区三区| 国产精品 国内视频| 成人国产综合亚洲| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女| 一本久久中文字幕| 两个人的视频大全免费| bbb黄色大片| 男人舔奶头视频| 很黄的视频免费| 亚洲真实伦在线观看| 99久久精品国产亚洲精品| 国产av在哪里看| 欧美丝袜亚洲另类 | cao死你这个sao货| 一二三四在线观看免费中文在| av超薄肉色丝袜交足视频| 欧美日韩精品网址| 嫁个100分男人电影在线观看| 一区二区三区激情视频| 欧美成狂野欧美在线观看| 欧美日韩黄片免| 后天国语完整版免费观看| 999久久久精品免费观看国产| 亚洲欧美日韩高清专用| 此物有八面人人有两片| 成年女人毛片免费观看观看9| 18禁黄网站禁片免费观看直播| 免费看日本二区| 啦啦啦免费观看视频1| 熟女少妇亚洲综合色aaa.| 久久这里只有精品中国| xxx96com| 亚洲精品国产精品久久久不卡| 日日爽夜夜爽网站| 欧美日韩亚洲综合一区二区三区_| 搡老熟女国产l中国老女人| 黄频高清免费视频| 一二三四在线观看免费中文在| a在线观看视频网站| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 成人三级黄色视频| 法律面前人人平等表现在哪些方面| 色综合亚洲欧美另类图片| 欧美大码av| 老汉色av国产亚洲站长工具| 亚洲成av人片在线播放无| 久久中文字幕人妻熟女| 又黄又爽又免费观看的视频| av超薄肉色丝袜交足视频| 亚洲熟女毛片儿| 久久香蕉激情| 亚洲乱码一区二区免费版| 欧美丝袜亚洲另类 | 一级片免费观看大全| 亚洲欧美精品综合一区二区三区| 这个男人来自地球电影免费观看| 亚洲 欧美 日韩 在线 免费| 99精品久久久久人妻精品| 18禁观看日本| 国产69精品久久久久777片 | 丝袜人妻中文字幕| 老熟妇仑乱视频hdxx| 欧美色欧美亚洲另类二区| 啦啦啦免费观看视频1| 在线播放国产精品三级| 男女床上黄色一级片免费看| 精品久久久久久久人妻蜜臀av| 久久中文字幕一级| av福利片在线观看| 久9热在线精品视频| 欧美又色又爽又黄视频| 亚洲avbb在线观看| 丰满人妻一区二区三区视频av | 国产精品美女特级片免费视频播放器 | 一区福利在线观看| 精品一区二区三区av网在线观看| 亚洲av电影在线进入| 天天一区二区日本电影三级| 18禁裸乳无遮挡免费网站照片| 黄色 视频免费看| 免费在线观看成人毛片| 国产一区在线观看成人免费| 亚洲欧洲精品一区二区精品久久久| 国产成年人精品一区二区| 一区二区三区国产精品乱码| 成人午夜高清在线视频| 国产午夜福利久久久久久| 欧美日韩一级在线毛片| 国产成人系列免费观看| 制服人妻中文乱码| 淫秽高清视频在线观看| 亚洲欧美日韩东京热| 色精品久久人妻99蜜桃| 欧美一区二区精品小视频在线| 成年免费大片在线观看| 色综合亚洲欧美另类图片| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密| 欧美 亚洲 国产 日韩一| 一边摸一边抽搐一进一小说| 91字幕亚洲| 又爽又黄无遮挡网站| 久久精品国产亚洲av香蕉五月| 男女那种视频在线观看| 午夜福利免费观看在线| 欧美日韩精品网址| 欧美日韩一级在线毛片| 18禁黄网站禁片免费观看直播| 一本精品99久久精品77| 淫秽高清视频在线观看| 777久久人妻少妇嫩草av网站| 后天国语完整版免费观看| 人人妻人人澡欧美一区二区| 国产高清videossex| 国产一区二区激情短视频| 日韩国内少妇激情av| 一本久久中文字幕| 亚洲真实伦在线观看| svipshipincom国产片| 日本精品一区二区三区蜜桃| 国产伦一二天堂av在线观看| a在线观看视频网站| www.自偷自拍.com| 亚洲国产精品久久男人天堂| 国产一区二区激情短视频| 国产精品乱码一区二三区的特点| 在线观看免费日韩欧美大片| 男女午夜视频在线观看| 久久久久精品国产欧美久久久| 日韩三级视频一区二区三区| 国内精品一区二区在线观看| 国产亚洲av嫩草精品影院| 午夜免费成人在线视频| 久久伊人香网站| 两个人免费观看高清视频| 欧美极品一区二区三区四区| 深夜精品福利| 国产午夜精品论理片| 国产亚洲精品久久久久5区| 亚洲自偷自拍图片 自拍| 国产成人精品无人区| 黄色 视频免费看| 免费看日本二区| 深夜精品福利| 日韩国内少妇激情av| 给我免费播放毛片高清在线观看| 无遮挡黄片免费观看| 级片在线观看| 极品教师在线免费播放| 午夜两性在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲,欧美精品.| 欧美日韩国产亚洲二区| 青草久久国产| 男女午夜视频在线观看| 欧美久久黑人一区二区| 久久中文字幕人妻熟女| 亚洲电影在线观看av| 女人被狂操c到高潮| 深夜精品福利| 亚洲最大成人中文| 精品熟女少妇八av免费久了| 99re在线观看精品视频| 人妻丰满熟妇av一区二区三区| 亚洲av第一区精品v没综合| 亚洲精品中文字幕在线视频| 精品日产1卡2卡| 亚洲精品美女久久久久99蜜臀| 日本熟妇午夜| av福利片在线| 国产精品av视频在线免费观看| 一区二区三区国产精品乱码| 欧美zozozo另类| 99久久久亚洲精品蜜臀av| 亚洲av电影不卡..在线观看| 久久久久久国产a免费观看| 欧美精品亚洲一区二区| 很黄的视频免费| 宅男免费午夜| 好看av亚洲va欧美ⅴa在| 国产精华一区二区三区| 国产成+人综合+亚洲专区| 精品久久久久久久末码| 亚洲av成人不卡在线观看播放网| 级片在线观看| 露出奶头的视频| 亚洲欧美精品综合一区二区三区| 久久这里只有精品19| 久久精品国产清高在天天线| 亚洲专区字幕在线| 欧美人与性动交α欧美精品济南到| 在线观看一区二区三区| 亚洲中文日韩欧美视频| 免费看十八禁软件| 色在线成人网| 欧美最黄视频在线播放免费| 亚洲国产精品成人综合色| www.自偷自拍.com| 最新美女视频免费是黄的| 性色av乱码一区二区三区2| 12—13女人毛片做爰片一| 亚洲国产精品久久男人天堂| 亚洲性夜色夜夜综合| 999久久久精品免费观看国产| 人妻久久中文字幕网| 欧美日韩中文字幕国产精品一区二区三区| 麻豆成人av在线观看| xxxwww97欧美| 亚洲av成人av| 国产精品1区2区在线观看.| av片东京热男人的天堂| www.999成人在线观看| 757午夜福利合集在线观看| 狂野欧美白嫩少妇大欣赏| 免费电影在线观看免费观看| 欧美性长视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产私拍福利视频在线观看| 天天一区二区日本电影三级| 国产麻豆成人av免费视频| 国产精品一及| www日本在线高清视频| 在线观看日韩欧美| 久久这里只有精品中国| 女人爽到高潮嗷嗷叫在线视频| 欧美色视频一区免费| 久久婷婷人人爽人人干人人爱| 91九色精品人成在线观看| 麻豆国产av国片精品| 丰满的人妻完整版| 老司机深夜福利视频在线观看| 麻豆成人午夜福利视频| 精品国产美女av久久久久小说| 超碰成人久久| 国产成人一区二区三区免费视频网站| 在线免费观看的www视频| 曰老女人黄片| 精品无人区乱码1区二区| 天堂动漫精品| 欧美精品亚洲一区二区| 成人国语在线视频| 琪琪午夜伦伦电影理论片6080|