• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An analyzing and experimental method based on the resultant motion signals for SCARA manipulator joints①

    2017-09-25 12:53:32XuFengyu徐豐羽YangZhongJiangGuoping
    High Technology Letters 2017年3期

    Xu Fengyu (徐豐羽), Yang Zhong, Jiang Guoping

    (College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China)

    An analyzing and experimental method based on the resultant motion signals for SCARA manipulator joints①

    Xu Fengyu (徐豐羽)②, Yang Zhong, Jiang Guoping

    (College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China)

    Acceleration reflects vibration of a robot, and the vibration signal can reflect the operation state of the robot. Generally, detection of robot mechanical arm failure requires installing sensors on each joint. This study proposes a method to diagnose the fault by single acceleration sensor only, which is installed at the end of the robot. The operation state of the robot is evaluated by analyzing vibration characteristics of its acceleration. First, a data acquisition function of a programmable multi-axis controller is applied to extract practical motion signals of the robot joints during operation, and practical motion signals are analyzed. Second, synthetic methods to determine acceleration of the end joints of SCARA robots in a Cartesian space is used based on the theory of the Jacobian matrix and the frequency domain of final acceleration is investigated. The relationship between end- and joint-vibration frequencies under given speeds is determined. Then, the method is verified by comparing characteristic frequencies of joint acceleration and synthetic acceleration in Cartesian coordinate system at different speeds. Finally, some faults can be diagnosed by comparing the acceleration vibration frequency extracted by a single acceleration sensor installed at the end of robot with the normal running state. Thus, this method can be used to monitor the signal variation of each joint without installing sensors on each robot joint.

    SCARA robot, motion signal, Jacobian matrix

    0 Introduction

    SCARA robots have been widely used by enterprises since they reduce production costs and improve automatic level effectively. Reliability and safety are critical to SCARA robots, thus, a monitoring system or a fault diagnosis method must be developed to enhance these factors and monitor operation status. In line with this objective, fault diagnosis is significant to the use of such robots.

    Researchers have recently recognized the importance of increasing redundancy in SCARA robots. Various sensors have been installed in their actuators and joints to monitor relative motion signals. If a manipulator is kinematically redundant, its end can still complete the tasks with the help of other joints. Similarly, a system operates normally even if a single sensor fails because of redundant sensors. The typical methods for diagnosis are as follows.

    Installation of sensors in the joints. A robot is presumably faulty if the motion signal measured by the sensors deviates strongly from the theoretical system value. In addition, the faultiness of a robot can be judged through a simple threshold. However, this threshold is difficult to be determined because of the erroneous robot model of the sensor[1-3].

    Fault diagnosis method based on moment residuals. This method mainly utilizes the kinetic equation of the entire nonlinear manipulator, which is obtained by estimating the moment of filtering rather than measuring acceleration[4].

    Fault diagnosis method based on parameter separation. This method principally considers the linearization property of the kinetic equation of a robot and constructs displacement or speed observers to monitor dynamic systems[5].

    Regardless of the method used, the analysis of motion signals is highly important. Some researchers have either measured or analyzed motion signals or developed estimated models to predict kinematic errors. Wu[6]analyzed output signals and proposed an anti-interference processing method for force and torque sensors using various signal-processing methods to stabilize control of the ankle of the humanoid robot. To verify the feasibility of this method, he experimented on the dynamic walking motion of the humanoid robot platform. Cheein[7]presented the probability-based workspace scan modes of a robot manipulator, which is governed by a brain-computer interface; users can control the manipulator and reach any specific position in the workspace of the robot through joint signals.

    Motion signal-extraction methods have also been proposed to diagnose the signals of wheeled and other field robots. For instance, Liu[8]integrated Kalman filters and an expert system to diagnose several fault modes in corresponding movement states. Hoang[9]presented a fault diagnosis scheme for wheeled mobile robots. Ferreira[10]proposed a brain-computer interface to control manipulators and to reach any position within its workspace. Fourlas[11]introduced a theoretical approach to diagnose model-based faults in a four-wheel skid-steering mobile robot.

    In addition, Gao[12]designed an unknown input observer (UIO) for the augmented system by decoupling the partial disturbances and attenuating the disturbances. The proposed technique is finally illustrated by the simulation studies of a single-link flexible joint robot. Stavrou[13]took a model-based approach for detecting and identifying actuator faults on differential-drive mobile robots in an indoor environment. Zhao[14]proposed a dual closed-loop trajectory tracking control algorithm on the basis of the Lyapunov stability theory. The failure of actuator is estimated through the proposed decentralized sliding mode observer (DSMO). Zhang[15]proposed a new scheme for estimating the fault for Lipschitz nonlinear systems with unstructured uncertainties using the sliding mode observer (SMO) technique. She[16]analyzed and compared the manipulation capability of SSRMS-type manipulators with joints locked at arbitrary positions, and proposed efficient path planning via a fault-tolerant control method. This proposed method is useful for designing the optimal configuration of a redundant manipulator.

    Acceleration generally reflects the vibration degree of a robot. Vibration signals are usually extracted to determine the working state of a system in scientific research and engineering applications. Variations in working state are all reflected by vibration signals under different loads. Thus, the current study mainly analyzes displacement signals, speed, and acceleration in the joint and Cartesian spaces of a SCARA robot. The signals are used to analyze time and frequency domains extracted by a single acceleration sensor installed at the end of this robot (Fig.1). Furthermore, the characteristics of these acceleration signals are identified. The acceleration signals are also compared with various typical fault signals to determine the operation state of a robot.

    Especially this paper applys a method to determine the motion signs of the end joint of a selective compliance assembly robot arm (SCARA) by a single acceleration sensor which is organized as follows. Section 1 presents a structure and control system of the SCARA robot. Section 2 analyzes the method of collecting actual motion data regarding the robot. Section 3 presents a method to analyze the resultant motion of the end joints of the SCARA robot. Section 4 introduces the lab experiments on the resultant motion curve of these joints. Section 5 concludes the paper and lists recommendations for future work.

    1 Introduction of the experimental platform

    A SCARA robot is mainly composed of a base, big arm (Joint 1), small arm (Joint 2), and ball screw (Joints 3 and 4). It is driven by a 4-AC servo motor. SCARA exhibits four degrees of freedom, as shown in Fig.1(a).

    Fig.1 SCARA manipulator

    The control system consists of a personal computer (PC), programmable multi-axis controller (PMAC) motion controller, input/output (I/O) board, alternating current (AC) servo motor, and sensors (Fig.1(b)). The PC is designed for man-machine interaction, parameter settings, and inverse kinematics. The PMAC controls the linkage of the servo motor, and the sensor collects various signals in the robot operation and sends them to the PC through the I/O board.

    Under this system by using Cartesian coordinate system position control the point-to-point straight line interpolation and continuous interpolation and arc interpolation can be realized. Specific control process is as follows: first, choosing interpolation type via PC, and then according to different type of interpolation the relevant point is calculated, and through the inverse kinematics solution required for each joint rotation angle, the angle will be converted into pulse number via a serial port to be sent to PMAC, PAMC in a specific movement patterns is driven by servo motor to complete the corresponding action.

    2 Analysis of the motion signals of robot

    2.1 Robot motion data acquisition

    The data acquisition function of PMAC is classified into two main approaches, namely, standard and real-time data acquisition through random-access memory (RAM). The obtained robot motion data can be sent directly to the PC or illustrated as motion curves using the Pmac Plot32 Pro in PMAC for further analysis. Fig.2(a) presents the main interface window of the Pmac Plot32 Pro, and its data analysis window is displayed in Fig.2(b). Thus, displacement, speed, and acceleration are determined through data acquisition.

    2.2 Acquisition of actual joint-motion data

    Fig.3 displays the reference coordinate system of the path planning for a SCARA robot where {O} refers to the absolute coordinate system and {e} is a relative coordinate system. For convenient comparison and analysis, the relative coordinate system is adopted primarily to collect the motion signals of a SCARA robot from point P1(0, 0, 0) to P2(300, 200, -100) at the speeds of 100, 130. In this study, command speed is the rated speed percentage of the robot. The rated speed of each axis is as follows: axis A (Joint 1)is 1.5rad/s, axis B(Joint 2) is 2.0rad/s, axis W(Joint 3) is 3.0rad/s, and axis Z(Joint 4) is 2.4rad/s. The speed of the entire system is controlled by specifying a feed axis during point-to-point movement. If the robot moves from point P1 to point P2, axis Z can act as a feed axis. The command speed of 100 specifies that the operation speed of the robot is ω1=2.4×100%=2.4rad/s. Once the speed of the axis Z is preset, the speeds of the remaining axes can be calculated based on the distance of the corresponding axis and the running time of axis Z. Thus, the four axes arrive at the designated site simultaneously.

    Fig.2 Main interface window of the Pmac Plot32 Pro

    Fig.3 Reference coordinate system of a SCARA robot

    Actual robot motion signals can be obtained by directly receiving the feedback of the incremental encoder through PMAC. Fig.4~Fig.7 display the curves of the actual displacements, speeds, and accelerations of Joints 1 and 2.

    Fig.4 Actual motion curves of Joint 1(ω1=2.4rad/s)

    Fig.5 Actual motion curves of Joint 2 (ω1=2.4rad/s)

    Fig.6 Actual motion curves of Joint 1(ω2=3.12rad/s)

    Fig.7 Actual motion curves of Joint 2(ω2=3.12rad/s)

    2.3 Analysis of joint vibration

    The acceleration curves in Fig.4~Fig.7 are Fourier-transformed to analyze the vibration frequency of joint acceleration at disparate operation speeds. Fig.8 and Fig.9 depict the acceleration spectra of Joints 1 and 2 at operation speeds of v1=2.4rad/s, v2=3.12rad/s. The vibration frequency of Joint 1 basically increases in a fixed ratio with the increase in running speed. As shown in Fig.8(a), (b), Fig.9(a), (b), follow the same law. Moreover, Fig.8 and Fig.9 indicate that the vibration frequencies of Joints 1 and 2 are identical.

    Fig.8 Acceleration spectra of Joint 1

    Fig.9 Acceleration spectra of Joint 2

    Fig.4~Fig.7 suggest that actual acceleration vibration is mainly induced by speed fluctuation.

    3 Analysis of the resultant motion of the end joints of a SCARA robot

    3.1 Jacobian matrix

    The Jacobian matrix denotes the coefficient matrix used to study the relationship between the speed of the Cartesian space and the torsion angular velocity of each robot joint. The kinematic equation of the SCARA robot is

    x=x(q)

    (1)

    Eq.(1) displays the functional relationship of the spatial coordinate and joint vectors of the SCARA robot. x refers to the six-order vector that describes the position and pose of the end joint and q is a joint vector determined by the degrees of freedom of the robot. By considering the time derivatives on both sides of Eq.(1), Eq.(2) can be obtained:

    (2)

    3.2 Analysis of Jacobian matrix of the SCARA

    The Jacobian matrix of the SCARA robot can be solved using the vector product method. Fig.10 shows the coordinate system and joint parameters of the SCARA robot, and Table 1 lists its joint parameters.

    Fig.10 Coordinate system of a SCARA robot

    LinkVariableαad1θ10002θ20l10300l2d34θ4000

    where l1=0.35m, l2=0.25m

    Given that Joints 1, 2, and 4 of the robot are rotational and that Joint 3 is dynamic, the following expression can be generated using the vector product method.

    Fig.10 indicates that:

    The Jacobian matrix of the SCARA robot is

    (3)

    The resultant speed and acceleration of a SCARA robot can be determined using the actual motion displacement, speed, and acceleration of the robot joint. By substituting l1and l1into Eq.(3), the Jacobian matrix J is rewritten as

    (4)

    By substituting Eq.(4) into Eq.(2), the following is obtained:

    (5)

    For convenient analysis, this study merely explores the displacement, speed, and acceleration of the end joint of the robot in the x and y directions. Therefore, Eq.(5) is simplified as follows:

    (6)

    4 Experiments on the resultant motion curve of the end joint of the robot

    4.1 Resultant speed curve

    Eq.(6) describes the relationship of the speeds in the joint and Cartesian spaces of the robot. It can determine the linear speeds of the robot in the Cartesian space at different operation speeds in the x and y directions. Fig.11 and Fig.12 illustrate the resultant speed curves of the end joints in the x and y directions at operation speeds of ω1=2.4rad/s, ω2=3.12rad/s.

    Fig.11 Final resultant speed of the robot in the x direction

    Fig.12 Final resultant speed of the robot in the y direction

    4.2 Resultant acceleration curve

    Given the time derivate of Eq.(6), the relationships of final acceleration with joint displacement, speed, and acceleration in the Cartesian space can be determined:

    (7)

    The data regarding the motion of the right joint in Eq.(7) can be attained. Hence, the linear acceleration of the robot in the x and y directions can be identified in the Cartesian space. Fig.13 and Fig.14 display the actual final acceleration curves of the robot in the x and y directions at operation speeds of ω1=2.4rad/s, ω2=3.12rad/s.

    Fig.13 Final resultant acceleration of the robot in the x direction

    Fig.14 Final resultant acceleration of the robot in the y direction

    By Fourier-transforming the resultant acceleration, the corresponding spectra in the x and y directions can be obtained as shown in Fig.15 and Fig.16. The characteristic frequencies of the end joint of the robot are basically identical in the x and y directions at a constant operation speed based on a comparison of both figures. Moreover, the characteristic frequency of the resultant acceleration vibration of the end joint of the robot generally agrees with the acceleration vibration frequencies of joint 1 and joint 2. Thus, the final vibration frequency of the robot remains constant in the x and y directions during operation and increases linearly with operation speed.

    5 Conclusion

    This study proposes a method to diagnose fault by a single acceleration sensor and designs a synthetic method for the end joints of a SCARA robot in a Cartesian space based on the theory of the Jacobian matrix. The acceleration signals of the end joint of the robot are collected under different operating conditions by simply using an acceleration sensor installed at the end. By comparing the characteristic frequency of acceleration of joint 1 and joint 2 with synthetic acceleration to illustrate the accuracy of the method. The acceleration vibration signals of robot joints during actual operation are analyzed, and the characteristic frequency of joint acceleration signals is linearly related to a specified speed. Accordingly, the speed and acceleration of the end joint of the robot are deduced in the x, y directions in the Cartesian space. By comparing the results of frequency spectrum analysis on the final acceleration signals and normal running state of robot, the real operation status can be determined.

    Fig.15 Resultant acceleration spectra of the end joint of the robot in the x direction

    Fig.16 Resultant acceleration spectra of the end joint of the robot in the y direction

    Reference

    [ 1] Shin J H, Lee J J. Fault detection and robust fault recovery control for robot manipulators with actuator failures. In: Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, USA, 1999. 861-866

    [ 2] Ting Y, Tosunoglu S, Tesar D. A control structure for fault tolerant operation of robotic manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, USA, 1993. 684-690

    [ 3] Wu E C, Hwang J C, Chladek J T. Fault tolerant joint development for the space shuttle remote manipulator system: Analysis and development. IEEE Transactions on Robotics and Automation, 1993, 9(5): 675-684

    [ 4] Zanaty F. Consistency checking techniques for the space shuttle remote manipulator system. SPAR Journal of Engineering Technology, 1993, 2(1): 40-49

    [ 5] Visinsky M L, Cavallaro J R, Walker I D. Dynamic sensor-based fault detection for robots. In: Proceedings of the 1993 SPIE Conference on Telemanipulator Technology and Space Robotics,Boston, USA, 1993. 385-396

    [ 6] Wu B Y, Yan Q Q, Luo J F, et al. Signal processing and application of six-axis force/torque sensor integrated in humanoid robot foot. Journal of Signal Processing Systems for Signal Image and Video Technology, 2014, 74(2): 263-271

    [ 7] Cheein F A A, Sciascio F, Carelli R, et al. Probabilistic workspace scan modes of a robot manipulator commanded by EEG signals. In: Proceedings of the 1st International Conference on Biomedical Electronics and Devices, Funchal, Portugal, 2008, 2:3-8

    [ 8] Liu Y T, Chen J A. Integrated fault diagnosis method of mobile robot. In: Proceedings of the 2nd International Conference on Theoretical and Mathematical Foundations of Computer Science (ICTMF 2011), Singapore, 2011,164: 372-379

    [ 9] Hoang N B, Kang H J. A model-based fault diagnosis scheme for wheeled mobile robots. International Journal of Control Automation and Systems, 2014, 12(3): 637-651

    [10] Ferreira A, Bastos T F, Sarcinelli M, et al. Teleoperation of an industrial manipulator through a TCP/IP channel using EEG signals. In: Proceedings of the IEEE International Symposium on Industrial Electronics, Montreal, Canada, 2006. 3066-3071

    [11] Fourlas G K. Theoretical approach of model based fault diagnosis for a 4-wheel skid steering mobile robot. In: Proceeding of the 21st Mediterranean Conference on Control and Automation, Platanias, Greece, 2013. 597-602

    [12] Gao Z W, Liu X X, Chen Michael Z Q. Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2537-2547

    [13] Stavrou D, Eliades D G. Fault detection for service mobile robots using model-based method. Autonomous Robots, 2016,40(2): 383-394

    [14] Zhao B, Li C H, Liu D R. Decentralized sliding mode observer based dual closed-loop fault tolerant control for reconfigurable manipulator against actuator failure. PLOS One, 2015, 10(7): e0129315

    [15] Zhang J, Swain A K, Nguang S K. Robust sliding mode observer based fault estimation for certain class of uncertain nonlinear systems. Asian Journal of Control, 2015,17(4):1296-1309

    [16] She Y, Xu W F, Su H J. Fault-tolerant analysis and control of SSRMS-type manipulators with single-joint failure. Acta Astronautica, 2016,120:270-286

    the Ph.D. degree from Southeast University in 2009 and his M.S. degree from Hefei University of Technology in 2005. He was an associate professor of the Automation Engineering of Nanjing University of Posts and Telecommunications. His current research interests include robotics and dynamics.

    10.3772/j.issn.1006-6748.2017.03.008

    Supported by the National Natural Science Foundation of China (No. 51775284), Natural Science Foundation of Jiangsu Province(BK20151505), and Joint Research Fund for Overseas Chinese, Hong Kong and Macao Young Scholars (61728302).

    To whom correspondence should be addressed. E-mail: xufengyu598@163.com

    on May 6, 2016

    欧美亚洲日本最大视频资源| 天堂√8在线中文| 国产午夜精品久久久久久| 亚洲性夜色夜夜综合| 一边摸一边抽搐一进一小说| 精品无人区乱码1区二区| 国产激情久久老熟女| 成人18禁在线播放| 久久国产精品影院| 久久久国产欧美日韩av| 丝袜美腿诱惑在线| 中文字幕人妻熟女乱码| av国产精品久久久久影院| 午夜两性在线视频| 国产精品国产av在线观看| 国产伦人伦偷精品视频| 视频区图区小说| 亚洲avbb在线观看| 国产乱人伦免费视频| 国产亚洲精品第一综合不卡| 啦啦啦 在线观看视频| www.www免费av| 国产亚洲欧美精品永久| 日韩国内少妇激情av| 纯流量卡能插随身wifi吗| a级片在线免费高清观看视频| 欧美成人性av电影在线观看| 欧美中文日本在线观看视频| 热99国产精品久久久久久7| 午夜免费成人在线视频| 日本免费a在线| 国产成人一区二区三区免费视频网站| 韩国av一区二区三区四区| 女人被躁到高潮嗷嗷叫费观| 人人妻人人爽人人添夜夜欢视频| 18禁裸乳无遮挡免费网站照片 | 啪啪无遮挡十八禁网站| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩瑟瑟在线播放| 久久天堂一区二区三区四区| 视频在线观看一区二区三区| 9色porny在线观看| 悠悠久久av| 亚洲成av片中文字幕在线观看| 啪啪无遮挡十八禁网站| 在线播放国产精品三级| 亚洲中文字幕日韩| 亚洲精品美女久久av网站| 中文欧美无线码| 黄色丝袜av网址大全| 少妇 在线观看| 久热这里只有精品99| 男女下面插进去视频免费观看| 9热在线视频观看99| 国产xxxxx性猛交| 亚洲av第一区精品v没综合| 亚洲成a人片在线一区二区| 一级毛片高清免费大全| 久久欧美精品欧美久久欧美| 丝袜美腿诱惑在线| 久久精品国产99精品国产亚洲性色 | 在线观看免费午夜福利视频| 久久国产亚洲av麻豆专区| 午夜视频精品福利| 天堂动漫精品| 免费在线观看黄色视频的| 99精品在免费线老司机午夜| www.自偷自拍.com| 国产亚洲精品久久久久5区| 操美女的视频在线观看| 岛国在线观看网站| 国产av一区二区精品久久| 电影成人av| 国产精品 欧美亚洲| 欧美日韩av久久| avwww免费| 啪啪无遮挡十八禁网站| 高潮久久久久久久久久久不卡| 99久久久亚洲精品蜜臀av| 久久久水蜜桃国产精品网| 久久香蕉激情| 脱女人内裤的视频| 亚洲伊人色综图| 国产一区二区三区在线臀色熟女 | 国产高清激情床上av| av超薄肉色丝袜交足视频| 久久伊人香网站| 一级黄色大片毛片| 老汉色av国产亚洲站长工具| 日韩一卡2卡3卡4卡2021年| 日韩免费高清中文字幕av| 精品久久久久久,| 日日干狠狠操夜夜爽| 亚洲国产中文字幕在线视频| 亚洲专区国产一区二区| 91精品三级在线观看| 久久久国产成人免费| 亚洲色图综合在线观看| 欧美av亚洲av综合av国产av| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 一边摸一边做爽爽视频免费| www.999成人在线观看| 久9热在线精品视频| 日日爽夜夜爽网站| 韩国精品一区二区三区| 亚洲av熟女| 国产精品 欧美亚洲| 动漫黄色视频在线观看| 久久中文字幕人妻熟女| 免费av中文字幕在线| 丰满饥渴人妻一区二区三| 在线天堂中文资源库| 极品人妻少妇av视频| 国产免费男女视频| 欧美老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 成年版毛片免费区| 亚洲精品一二三| 欧美乱妇无乱码| 日日爽夜夜爽网站| 国产精品香港三级国产av潘金莲| 日韩人妻精品一区2区三区| 国产人伦9x9x在线观看| 午夜视频精品福利| 欧美日韩乱码在线| 国产亚洲欧美精品永久| 欧美日韩亚洲高清精品| 免费观看人在逋| 校园春色视频在线观看| 老司机靠b影院| 成人亚洲精品一区在线观看| 狂野欧美激情性xxxx| 亚洲av五月六月丁香网| 99热只有精品国产| 在线av久久热| 黄网站色视频无遮挡免费观看| 久久香蕉国产精品| 亚洲一区高清亚洲精品| 欧美日韩精品网址| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| 曰老女人黄片| 视频区欧美日本亚洲| 大码成人一级视频| 午夜两性在线视频| 日本免费a在线| 男女高潮啪啪啪动态图| 久久欧美精品欧美久久欧美| 久久精品91无色码中文字幕| 日日爽夜夜爽网站| 婷婷六月久久综合丁香| av片东京热男人的天堂| 亚洲三区欧美一区| 国产一区二区激情短视频| 国产97色在线日韩免费| 国产视频一区二区在线看| 国产精品九九99| 97超级碰碰碰精品色视频在线观看| 国产精品国产高清国产av| 国产成年人精品一区二区 | 亚洲国产看品久久| 制服诱惑二区| www日本在线高清视频| 亚洲精品一二三| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 男女床上黄色一级片免费看| 很黄的视频免费| www日本在线高清视频| 精品乱码久久久久久99久播| 热99re8久久精品国产| 亚洲一区中文字幕在线| 国产一区二区在线av高清观看| 国产97色在线日韩免费| 中文亚洲av片在线观看爽| 国产三级黄色录像| 免费av中文字幕在线| 老熟妇仑乱视频hdxx| 亚洲七黄色美女视频| 成人影院久久| 午夜视频精品福利| 国产黄色免费在线视频| 不卡av一区二区三区| 午夜福利,免费看| 国产成人一区二区三区免费视频网站| 曰老女人黄片| 亚洲精品粉嫩美女一区| 精品久久久久久成人av| 日韩欧美国产一区二区入口| 国产色视频综合| 91在线观看av| 亚洲成人国产一区在线观看| 十分钟在线观看高清视频www| 777久久人妻少妇嫩草av网站| 亚洲精品粉嫩美女一区| 制服人妻中文乱码| 亚洲成人精品中文字幕电影 | 在线观看免费高清a一片| 免费少妇av软件| 欧美日韩视频精品一区| 亚洲av五月六月丁香网| 俄罗斯特黄特色一大片| 窝窝影院91人妻| 天天影视国产精品| 无人区码免费观看不卡| 精品少妇一区二区三区视频日本电影| 久久久久久大精品| 亚洲欧美日韩高清在线视频| 国产野战对白在线观看| 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 国产黄a三级三级三级人| 久久久久国产一级毛片高清牌| 日韩中文字幕欧美一区二区| 久久精品国产亚洲av高清一级| 黄片播放在线免费| 国产不卡一卡二| 国产欧美日韩一区二区精品| 国产视频一区二区在线看| 极品教师在线免费播放| 精品国内亚洲2022精品成人| 国产又色又爽无遮挡免费看| 一进一出抽搐动态| 国产精品1区2区在线观看.| 欧美激情极品国产一区二区三区| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 久久久久国内视频| 在线十欧美十亚洲十日本专区| 天堂√8在线中文| 亚洲精品国产一区二区精华液| 好男人电影高清在线观看| av超薄肉色丝袜交足视频| 亚洲国产欧美网| 亚洲,欧美精品.| 欧美丝袜亚洲另类 | 长腿黑丝高跟| 少妇的丰满在线观看| 超碰97精品在线观看| 亚洲av熟女| 精品高清国产在线一区| 久久中文看片网| 女人精品久久久久毛片| 亚洲 国产 在线| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久中文| 亚洲精品一二三| 亚洲成国产人片在线观看| 亚洲一区二区三区色噜噜 | 黑人操中国人逼视频| 免费在线观看完整版高清| 女人被狂操c到高潮| 每晚都被弄得嗷嗷叫到高潮| 国产精品成人在线| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜制服| 99国产精品99久久久久| 在线天堂中文资源库| www.熟女人妻精品国产| 91成人精品电影| 一区在线观看完整版| 又黄又爽又免费观看的视频| 欧美日韩乱码在线| 女人爽到高潮嗷嗷叫在线视频| 人人妻人人爽人人添夜夜欢视频| 天堂影院成人在线观看| 日韩成人在线观看一区二区三区| 精品国产一区二区久久| 亚洲中文字幕日韩| 一边摸一边抽搐一进一小说| 97人妻天天添夜夜摸| 免费高清在线观看日韩| 中文字幕av电影在线播放| 久久精品国产清高在天天线| 欧美日韩亚洲国产一区二区在线观看| 美女大奶头视频| 99热国产这里只有精品6| 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 国产免费男女视频| 日韩欧美免费精品| 亚洲av片天天在线观看| 亚洲熟妇熟女久久| 久久久久久久久免费视频了| 一a级毛片在线观看| 操美女的视频在线观看| 午夜免费成人在线视频| 精品无人区乱码1区二区| 久久婷婷成人综合色麻豆| 夜夜爽天天搞| www日本在线高清视频| 午夜福利在线免费观看网站| 一级毛片精品| 免费在线观看完整版高清| √禁漫天堂资源中文www| 亚洲国产毛片av蜜桃av| 日本vs欧美在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 国产av又大| 女同久久另类99精品国产91| 免费搜索国产男女视频| 成年版毛片免费区| 亚洲av第一区精品v没综合| 99久久99久久久精品蜜桃| 久久久水蜜桃国产精品网| 成人18禁高潮啪啪吃奶动态图| 一级a爱片免费观看的视频| 99久久国产精品久久久| 老熟妇仑乱视频hdxx| 超色免费av| 国产精品98久久久久久宅男小说| 电影成人av| 欧美精品啪啪一区二区三区| 亚洲国产精品一区二区三区在线| 在线十欧美十亚洲十日本专区| 黄色视频,在线免费观看| 国产1区2区3区精品| 免费在线观看完整版高清| 国内久久婷婷六月综合欲色啪| 天天躁狠狠躁夜夜躁狠狠躁| 夜夜夜夜夜久久久久| 91字幕亚洲| 如日韩欧美国产精品一区二区三区| 欧美精品亚洲一区二区| 一级,二级,三级黄色视频| 超碰成人久久| 满18在线观看网站| 久久久久国产精品人妻aⅴ院| 精品国产乱码久久久久久男人| 丝袜美足系列| 久久久久久大精品| 丁香六月欧美| 国产一区二区激情短视频| 日韩大尺度精品在线看网址 | 中文欧美无线码| 精品少妇一区二区三区视频日本电影| 国产成人影院久久av| av免费在线观看网站| 高清黄色对白视频在线免费看| 中文字幕精品免费在线观看视频| 18禁美女被吸乳视频| 亚洲午夜理论影院| 色综合站精品国产| 亚洲午夜理论影院| 精品国产乱码久久久久久男人| 欧美日韩国产mv在线观看视频| 午夜福利免费观看在线| 国产成人精品久久二区二区免费| videosex国产| 精品久久久精品久久久| 性色av乱码一区二区三区2| 午夜91福利影院| 琪琪午夜伦伦电影理论片6080| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 人人澡人人妻人| 亚洲精品一二三| 国产精品一区二区在线不卡| 99精品欧美一区二区三区四区| 伦理电影免费视频| 亚洲,欧美精品.| 精品第一国产精品| 岛国视频午夜一区免费看| 国产日韩一区二区三区精品不卡| 久久中文看片网| 久久影院123| 亚洲视频免费观看视频| 亚洲在线自拍视频| 久久精品影院6| 淫妇啪啪啪对白视频| 日本精品一区二区三区蜜桃| 国产精品电影一区二区三区| 午夜福利在线观看吧| 777久久人妻少妇嫩草av网站| av网站免费在线观看视频| 9热在线视频观看99| 电影成人av| 国产精品一区二区精品视频观看| 超色免费av| 日本黄色视频三级网站网址| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品综合久久久久久久免费 | 狂野欧美激情性xxxx| 国产精品久久久av美女十八| 欧美成人免费av一区二区三区| 午夜福利欧美成人| 人妻久久中文字幕网| 精品一品国产午夜福利视频| www国产在线视频色| 色在线成人网| 美女扒开内裤让男人捅视频| 国产av一区二区精品久久| 亚洲精品国产色婷婷电影| 亚洲第一青青草原| 国产激情欧美一区二区| videosex国产| 欧美人与性动交α欧美软件| 母亲3免费完整高清在线观看| 亚洲专区国产一区二区| 成年人黄色毛片网站| 国产成人欧美| bbb黄色大片| 成人国产一区最新在线观看| 日本vs欧美在线观看视频| 色在线成人网| 成人亚洲精品av一区二区 | 国产成人免费无遮挡视频| 午夜福利免费观看在线| 欧美性长视频在线观看| 午夜福利在线观看吧| 夜夜看夜夜爽夜夜摸 | 亚洲精品一卡2卡三卡4卡5卡| 一边摸一边抽搐一进一小说| 黄色 视频免费看| 99精品久久久久人妻精品| 纯流量卡能插随身wifi吗| 亚洲人成伊人成综合网2020| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久| 91麻豆精品激情在线观看国产 | 少妇裸体淫交视频免费看高清 | 欧美激情高清一区二区三区| 色老头精品视频在线观看| 一级,二级,三级黄色视频| 一区二区三区激情视频| 麻豆国产av国片精品| 国产高清视频在线播放一区| 亚洲免费av在线视频| 国产成人系列免费观看| 国产av一区在线观看免费| 久久中文看片网| 久久青草综合色| 色综合站精品国产| 在线十欧美十亚洲十日本专区| 日韩人妻精品一区2区三区| 亚洲中文字幕日韩| 国产国语露脸激情在线看| 91成人精品电影| 高清av免费在线| 国产免费av片在线观看野外av| 91老司机精品| 午夜福利免费观看在线| 日韩精品中文字幕看吧| 两性夫妻黄色片| 嫩草影视91久久| 国产区一区二久久| 精品一品国产午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 国产av一区二区精品久久| 熟女少妇亚洲综合色aaa.| 国产91精品成人一区二区三区| 亚洲色图综合在线观看| 国产亚洲精品久久久久5区| 女性被躁到高潮视频| 日韩大码丰满熟妇| 好男人电影高清在线观看| 久久精品国产99精品国产亚洲性色 | 好男人电影高清在线观看| 成人国语在线视频| 精品国产美女av久久久久小说| 精品一区二区三区av网在线观看| videosex国产| 手机成人av网站| 高清毛片免费观看视频网站 | 国产黄色免费在线视频| 天天躁夜夜躁狠狠躁躁| 老司机福利观看| 久久天堂一区二区三区四区| 成人精品一区二区免费| 99国产精品一区二区蜜桃av| 999精品在线视频| 亚洲成a人片在线一区二区| 在线观看免费视频网站a站| 淫妇啪啪啪对白视频| 免费高清在线观看日韩| 九色亚洲精品在线播放| 波多野结衣一区麻豆| 男女午夜视频在线观看| 欧美中文综合在线视频| 十八禁网站免费在线| 好看av亚洲va欧美ⅴa在| 欧美在线一区亚洲| 不卡一级毛片| 日本撒尿小便嘘嘘汇集6| 欧美黑人精品巨大| 免费观看精品视频网站| 18禁美女被吸乳视频| 亚洲三区欧美一区| 操美女的视频在线观看| 亚洲视频免费观看视频| 精品卡一卡二卡四卡免费| 交换朋友夫妻互换小说| 久久久久久人人人人人| 亚洲成国产人片在线观看| 午夜免费观看网址| 男男h啪啪无遮挡| 狠狠狠狠99中文字幕| 精品国产亚洲在线| 国产国语露脸激情在线看| 日韩 欧美 亚洲 中文字幕| 久久国产精品人妻蜜桃| 叶爱在线成人免费视频播放| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻熟女乱码| 一a级毛片在线观看| 看免费av毛片| 高清黄色对白视频在线免费看| 国产无遮挡羞羞视频在线观看| e午夜精品久久久久久久| 在线永久观看黄色视频| 在线国产一区二区在线| 18美女黄网站色大片免费观看| 欧美日韩亚洲高清精品| 高清av免费在线| 久久久水蜜桃国产精品网| 免费日韩欧美在线观看| 99在线视频只有这里精品首页| 国产成人系列免费观看| 我的亚洲天堂| 亚洲七黄色美女视频| 999精品在线视频| 精品久久蜜臀av无| 男女床上黄色一级片免费看| 欧美 亚洲 国产 日韩一| 午夜免费激情av| 新久久久久国产一级毛片| 国产精品一区二区在线不卡| 99国产综合亚洲精品| 亚洲人成网站在线播放欧美日韩| 日本wwww免费看| 一区福利在线观看| 精品高清国产在线一区| 国产精品久久视频播放| 婷婷精品国产亚洲av在线| 色尼玛亚洲综合影院| 免费高清视频大片| 亚洲va日本ⅴa欧美va伊人久久| 午夜精品在线福利| 久久国产精品男人的天堂亚洲| 一级毛片女人18水好多| 69av精品久久久久久| ponron亚洲| 久久久国产一区二区| 欧美日本中文国产一区发布| 欧美日韩av久久| 美女 人体艺术 gogo| 精品国产美女av久久久久小说| 午夜91福利影院| 黄片大片在线免费观看| 亚洲美女黄片视频| 亚洲情色 制服丝袜| 一夜夜www| 女人被躁到高潮嗷嗷叫费观| 法律面前人人平等表现在哪些方面| 久久久国产精品麻豆| 亚洲精品成人av观看孕妇| 国产区一区二久久| 亚洲精品一二三| 午夜福利影视在线免费观看| 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 黄色毛片三级朝国网站| 电影成人av| 人人妻,人人澡人人爽秒播| 久久影院123| 精品免费久久久久久久清纯| 国产成人欧美| 欧洲精品卡2卡3卡4卡5卡区| 亚洲狠狠婷婷综合久久图片| 一边摸一边做爽爽视频免费| 亚洲成国产人片在线观看| 久久精品影院6| 水蜜桃什么品种好| 操美女的视频在线观看| www.999成人在线观看| 手机成人av网站| x7x7x7水蜜桃| 亚洲成人国产一区在线观看| 免费在线观看视频国产中文字幕亚洲| 制服诱惑二区| 欧美黑人精品巨大| 美国免费a级毛片| 69精品国产乱码久久久| 天天影视国产精品| 一级毛片精品| 夜夜爽天天搞| 国产三级在线视频| 制服人妻中文乱码| 欧美成人性av电影在线观看| 嫩草影视91久久| 亚洲情色 制服丝袜| 久久久久久久精品吃奶| 久久久久久人人人人人| 黄色丝袜av网址大全| 欧美日韩乱码在线| 日本免费一区二区三区高清不卡 | 在线观看www视频免费| 亚洲第一欧美日韩一区二区三区| 五月开心婷婷网| 麻豆成人av在线观看| 精品久久蜜臀av无| 成人亚洲精品一区在线观看| 热re99久久精品国产66热6| 亚洲专区中文字幕在线| 亚洲精品成人av观看孕妇| 日本vs欧美在线观看视频| 在线观看一区二区三区| 欧美大码av| 亚洲九九香蕉| 国产欧美日韩一区二区三区在线| 成人影院久久| 大型av网站在线播放| 99国产极品粉嫩在线观看| 人人澡人人妻人|