李元元,周文靖,靳婕華,王福生
慢性乙型肝炎新型治療藥物研究進(jìn)展
李元元,周文靖,靳婕華,王福生
慢性乙型肝炎(慢乙肝)治療的理想目標(biāo)是功能性治愈。目前藥物抗病毒治療可以抑制病毒復(fù)制,減輕或消除肝臟病理損害,有效阻止向肝硬化和肝癌的進(jìn)展,但不能清除HBsAg和病毒庫,所以難以達(dá)到臨床治愈(或功能性治愈)。 因此,須要針對(duì)HBV生命周期以及調(diào)節(jié)免疫系統(tǒng)研發(fā)新型抗病毒藥物。近年來,HBV受體的發(fā)現(xiàn)以及HBV感染細(xì)胞體外培養(yǎng)模型的初步建立有利于研發(fā)潛在的抗病毒表面抗原或提高病毒特異性細(xì)胞免疫等宿主抗病毒藥物,包括抑制HBsAg合成和病毒庫的清除等。由此相信未來慢乙肝的功能性治愈可以通過聯(lián)合免疫調(diào)節(jié)、抗病毒(HBV DNA、HBsAg)和共價(jià)閉合環(huán)狀DNA抑制劑等治療方案來現(xiàn)實(shí)。
HBV;慢性乙型肝炎;治療;免疫調(diào)節(jié)
目前全球有2.5億HBV攜帶者,該類人群容易發(fā)生肝硬化、肝衰竭、肝癌等疾病[1]。當(dāng)前有效的抗HBV藥物包括免疫調(diào)節(jié)劑聚乙二醇化干擾素(pegylated interferon, Peg-IFN)和核苷類似物[nucleos(t)ide analogues, NAs][2]。這些藥物雖然可以抑制HBV復(fù)制,甚至使HBsAg轉(zhuǎn)陰,但很難徹底清除肝內(nèi)共價(jià)閉合環(huán)狀DNA(covalently closed circular DNA, cccDNA)[3],這就導(dǎo)致已出現(xiàn)HBsAg轉(zhuǎn)陰的慢性乙型肝炎(chronic hepatitis B, CHB)患者仍會(huì)有發(fā)生肝癌的風(fēng)險(xiǎn)[4-5]。所以現(xiàn)有治療方法很難治愈CHB,功能性治愈成為目前最可行的治療終點(diǎn)。隨著醫(yī)學(xué)水平的不斷提高,今后治愈CHB的方案可能是:NAs或免疫調(diào)節(jié)劑聯(lián)合一種宿主或病毒靶向藥物以及cccDNA抑制劑,目前已有多個(gè)針對(duì)病毒和宿主的靶向治療藥物正在研發(fā)中。本文針對(duì)當(dāng)前CHB臨床治療存在的問題以及國際上最新抗HBV治療臨床試驗(yàn)的研究進(jìn)展進(jìn)行綜述。
CHB治愈的定義尚不統(tǒng)一。目前在多個(gè)國際指南中關(guān)于CHB治愈的定義為HBeAg陽性的患者出現(xiàn)HBeAg/HBsAg轉(zhuǎn)陰或血清學(xué)轉(zhuǎn)換(HBeAb/HBsAb出現(xiàn)),HBeAg陰性的患者出現(xiàn)HBsAg轉(zhuǎn)陰或血清學(xué)轉(zhuǎn)換[2,6-7]。然而,即使出現(xiàn)HBsAg轉(zhuǎn)陰的CHB患者仍有發(fā)生肝癌的風(fēng)險(xiǎn)[4-5],研究表明這可能與肝內(nèi)cccDNA持續(xù)存在有關(guān)[8]。因此,CHB患者出現(xiàn)HBsAg轉(zhuǎn)陰或血清學(xué)轉(zhuǎn)換并不是令人滿意的治療終點(diǎn),CHB患者的徹底治愈應(yīng)該是cccDNA的清除[9],當(dāng)然達(dá)到這一點(diǎn)非常困難,主要是因?yàn)槟壳叭鄙贉y(cè)定cccDNA的生物標(biāo)志物以及直接作用于cccDNA的藥物?;谏鲜銮闆r,專家提出了CHB患者功能性治愈的概念[9],即在降低cccDNA水平的基礎(chǔ)上,使cccDNA轉(zhuǎn)錄失活,在無HBV復(fù)制的同時(shí)使肝臟疾病的進(jìn)展得到緩解。目前認(rèn)為這是評(píng)估抗HBV療效最可行的治療終點(diǎn)。
抗HBV治療主要有以下幾個(gè)難點(diǎn)。首先,cccDNA隱藏在感染肝細(xì)胞核的微染色體中,目前的治療方法很難直接進(jìn)入細(xì)胞核中清除cccDNA。其次,HBV主要感染肝細(xì)胞并復(fù)制DNA,研究表明外源性的DNA進(jìn)入人體后會(huì)強(qiáng)烈刺激天然免疫反應(yīng)產(chǎn)生IFN-Ⅰ,有利于清除病毒,但是肝細(xì)胞先天缺乏這種免疫反應(yīng),從而導(dǎo)致病毒不易清除[10]。再次,HBsAg組成中有大量非感染性亞病毒顆粒,容易導(dǎo)致宿主對(duì)HBV的耐受。最后,HBV有10種基因型,感染后不同基因型的臨床病程和治療反應(yīng)都不相同[11],所以臨床有效治療不僅須要涵蓋最普遍的HBV基因型,也要包括其他少見的HBV基因型。
HBV是雙鏈環(huán)狀DNA病毒,屬于嗜肝病毒。病毒為小的球形結(jié)構(gòu),包括核衣殼、核心蛋白以及構(gòu)成外部脂質(zhì)包膜的病毒表面蛋白(例如HBsAg)。HBV復(fù)制的開始是病毒與細(xì)胞相關(guān)的硫酸乙酰肝素蛋白聚糖連接[12],之后病毒與肝細(xì)胞特異性膽汁酸轉(zhuǎn)運(yùn)蛋白?;悄懰峁厕D(zhuǎn)運(yùn)多肽(Na+/taurocholate cotransporting polypeptide,NTCP)不可逆結(jié)合[13]。結(jié)合后,HBV包膜通過與細(xì)胞膜的融合內(nèi)吞作用進(jìn)入細(xì)胞,脫殼后形成部分雙鏈DNA(partial double-stranded DNA, partial dsDNA)。進(jìn)入細(xì)胞核后形成具有共價(jià)連接聚合酶的松弛環(huán)狀DNA(relaxed circular DNA, rcDNA),之后通過細(xì)胞酶轉(zhuǎn)化為高度穩(wěn)定的cccDNA[14]。cccDNA是一個(gè)編碼3種表面蛋白、HBV X蛋白和前基因組RNA病毒的mRNA轉(zhuǎn)錄模板,通過翻譯產(chǎn)生核心蛋白和聚合酶蛋白,并且用作新生病毒基因組反轉(zhuǎn)錄的RNA模板[15]。細(xì)胞核中cccDNA轉(zhuǎn)錄的病毒RNA釋放到細(xì)胞質(zhì)中并翻譯成病毒蛋白。病毒轉(zhuǎn)錄產(chǎn)物之一的前基因組RNA(pregenomic RNA, pgRNA)會(huì)形成新的病毒衣殼。大、中、小3種HBV包膜蛋白包裹成熟核衣殼和反轉(zhuǎn)錄的rcDNA作為病毒粒子分泌出細(xì)胞,也可轉(zhuǎn)運(yùn)回細(xì)胞核以維持cccDNA庫。這就是HBV復(fù)制周期(見圖1)。
圖1 HBV復(fù)制周期和關(guān)鍵的治療位點(diǎn)Figure 1 HBV replication cycle and key treatment site
目前新的抗HBV治療主要包括針對(duì)減少HBV生成的靶向藥物以及激活抗HBV的免疫治療。以下就從這兩方面進(jìn)行介紹。
3.1 針對(duì)HBV靶向藥物 根據(jù)HBV復(fù)制的特點(diǎn),針對(duì)HBV靶向藥物主要分為3類:抑制HBV進(jìn)入肝細(xì)胞,降解消除cccDNA或抑制HBV產(chǎn)生,抑制HBsAg釋放。
3.1.1 抑制HBV進(jìn)入肝細(xì)胞 目前認(rèn)為NTCP是HBV特異性受體,可以使HBV進(jìn)入肝細(xì)胞[16]。一種合成肽Myrcludex B可以與preS1結(jié)合從而競(jìng)爭(zhēng)性抑制NTCP,阻止HBV進(jìn)入。通過體內(nèi)、外人感染肝細(xì)胞的實(shí)驗(yàn)已證實(shí)Myrcludex B可以有效的防止病毒進(jìn)入[17-18]。一項(xiàng)評(píng)估Myrcludex B的安全性和耐受性的Ⅱa期臨床試驗(yàn)中,以該藥治療40例HBeAg陰性的CHB非肝硬化患者(HBV DNA> 2000 IU/ml),1次/d,劑量波動(dòng)在0.5~10.0 mg之間,結(jié)果表明在10 mg劑量組的患者中,8例患者有6例(75%)在治療12周時(shí) HBV DNA數(shù)值降低> 1 log10 IU/ml,但是更低劑量組的40例患者中只有7例(17%)出現(xiàn)上述情況[19]。由此提示該藥對(duì)抑制HBV進(jìn)入肝細(xì)胞有一定的療效。但是在長(zhǎng)期使用Myrcludex B治療的過程中,會(huì)出現(xiàn)影響膽汁鹽平衡和一些藥物的代謝導(dǎo)致高膽紅素血癥發(fā)生的問題[20]。當(dāng)然,Myrcludex B對(duì)既往已感染的肝細(xì)胞無明顯作用,但是可以防止新的肝細(xì)胞被感染,所以該藥可能對(duì)于CHB肝移植患者療效更好,因?yàn)樗茴A(yù)防肝移植后再次感染HBV。
3.1.2 降解消除cccDNA或抑制HBV產(chǎn)生 cccDNA的存在導(dǎo)致CHB患者很難被徹底治愈。目前認(rèn)為使用NAs的CHB患者在停止治療后出現(xiàn)HBV再激活的原因也與此有關(guān)[21],所以治愈CHB的關(guān)鍵在于直接破壞cccDNA或抑制rcDNA轉(zhuǎn)化為cccDNA。目前該類藥物(鋅指核酶和非取代的磺酰胺化合物、酪氨酰-DNA-磷酸二酯酶等)還處在早期研發(fā)階段,僅在細(xì)胞培養(yǎng)以及原代鴨肝細(xì)胞中進(jìn)行了研究[22-23]。同時(shí),另一個(gè)有希望的藥物是激活載脂蛋白B mRNA編輯酶催化多肽樣(apolipoprotein B mRNA editing enzyme catalytic polypeptide-like,APOBEC)蛋白,它能與HBV相互作用并移位至細(xì)胞核,隨后脫氨基降解cccDNA。前期研究結(jié)果表明,活化淋巴毒素-β受體(lymphotoxin-β receptor, LTβR)可以上調(diào)APOBEC3B,體內(nèi)、外實(shí)驗(yàn)均證實(shí)激活LTβR可以使HBV DNA數(shù)值和cccDNA數(shù)量降低,而且在停止治療后仍具有抑制病毒的作用,同時(shí)無明顯肝毒性。但是,LTβR激動(dòng)劑的具體作用仍然需要長(zhǎng)期的臨床數(shù)據(jù)去證實(shí),須要注意的是使用該藥持續(xù)治療超過1年可能導(dǎo)致肝癌發(fā)生[24]。靶向cccDNA治療的另一種方法是運(yùn)用基因組編輯技術(shù)CRISPR/Cas9,CRISPR是規(guī)律間隔性成簇短回文重復(fù)序列的簡(jiǎn)稱,Cas是CRISPR相關(guān)蛋白的簡(jiǎn)稱。該方法是使用具有特異性序列的靶向RNA引導(dǎo)Cas9核酸酶在DNA保守區(qū)切割DNA。一些研究已表明,在受HBV感染的細(xì)胞和轉(zhuǎn)基因小鼠中使用CRISPR系統(tǒng)靶向作用于cccDNA的保守區(qū)域,可以有效抑制并清除cccDNA[25]。
目前影響并抑制HBV復(fù)制合成的新技術(shù)包括RNA干擾(interfering RNAs, RNAi)、基因沉默以及抑制病毒組裝。①RNAi是結(jié)合宿主或病毒的mRNA使其失活,從而阻止蛋白質(zhì)翻譯。目前RNAi技術(shù)已經(jīng)發(fā)展到能將小的RNA導(dǎo)入細(xì)胞中。對(duì)小鼠和黑猩猩模型的研究發(fā)現(xiàn),穩(wěn)定的RNAi靶向HBV mRNA中間體可以減少上述模型中HBsAg和HBeAg病毒蛋白的表達(dá)[26]。一項(xiàng)Ⅱa期的臨床試驗(yàn)中,18例接受恩替卡韋治療的HBeAg陰性的亞洲CHB患者,同時(shí)給予單次靜脈注射不同劑量穩(wěn)定的RNAi混合物ARC-520(1 mg、2 mg或3 mg),結(jié)果表明在2 mg/kg組中HBsAg定量較基線水平平均下降22%,在隨訪85 d內(nèi)未見與治療相關(guān)的不良反應(yīng)[27]。但其確切療效仍須要進(jìn)一步地研究。②基因沉默可以通過引入與RNA靶標(biāo)互補(bǔ)的短的反義核苷酸實(shí)現(xiàn)。Billioud等[28]研究發(fā)現(xiàn)在HBV感染小鼠和細(xì)胞模型中,通過上述方法治療4周后HBsAg定量下降≥2個(gè)log值。然而,該方法與恩替卡韋聯(lián)合治療的效果并不優(yōu)于單獨(dú)使用恩替卡韋治療。③組裝抑制劑是通過阻斷RNA組裝產(chǎn)生沒有遺傳信息的空衣殼進(jìn)而影響HBV生成[29]。多項(xiàng)臨床前研究發(fā)現(xiàn)雜合二氫嘧啶(Bay 41-4109和GLS4)和苯丙醇酰胺(AT-61和AT-130)系列化合物通過誤導(dǎo)組裝導(dǎo)致核衣殼不穩(wěn)定,產(chǎn)生無功能的病毒顆粒進(jìn)行反轉(zhuǎn)錄,從而抑制HBV復(fù)制[30-31]。另一種是直接作用于HBV核心蛋白和衣殼蛋白的抑制劑NVR 3-778。一項(xiàng)Ⅱ期臨床試驗(yàn)中采用該抑制劑治療40例白人男性,結(jié)果證實(shí)該藥物無明顯不良反應(yīng)[32]。但是關(guān)于該藥的抗病毒療效目前正在進(jìn)行臨床試驗(yàn)。
3.1.3 抑制HBsAg釋放 HBsAg可以抑制細(xì)胞因子的產(chǎn)生并誘導(dǎo)T細(xì)胞耐受及耗竭[33],因此,控制HBsAg分泌有利于恢復(fù)HBV特異性T細(xì)胞免疫功能。目前,該類藥物(三唑并嘧啶抑制劑組藥物)的作用機(jī)制仍在研究中[34]。HBsAg可能對(duì)T細(xì)胞具有直接的免疫調(diào)節(jié)作用,但HBV可以通過HBsAg亞病毒顆粒來影響宿主免疫系統(tǒng)并介導(dǎo)免疫耐受[35]。關(guān)于抑制受感染的肝細(xì)胞釋放亞病毒顆粒藥物EP 2139-Ca的臨床研究表明,12例HBeAg陽性的無肝硬化患者使用該藥后再予以Peg-IFN或胸腺肽α,患者HBV DNA數(shù)值和HBsAg定量下降,有4例患者出現(xiàn)HBsAg轉(zhuǎn)陰[36]。并且目前有許多基于此結(jié)果的研究計(jì)劃正在準(zhǔn)備中。
3.2 激活對(duì)HBV的抗病毒免疫調(diào)節(jié)藥物 除了針對(duì)HBV的靶向治療,提高宿主免疫功能也有利于清除HBV,包括通過治療性疫苗產(chǎn)生新的T細(xì)胞;刺激抗病毒效應(yīng)細(xì)胞(T、B細(xì)胞和樹突狀細(xì)胞)以及恢復(fù)慢性HBV感染后功能衰竭的T細(xì)胞等。
3.2.1 治療性疫苗 既往治療性疫苗主要是合并前S1、S2和T細(xì)胞肽疫苗,盡管在動(dòng)物實(shí)驗(yàn)中發(fā)現(xiàn)該疫苗可以減少HBV復(fù)制,但是在臨床試驗(yàn)中卻無明顯抗病毒療效[37]。HBV治療性疫苗面臨的主要挑戰(zhàn)是克服免疫耗竭,因此新疫苗的策略是針對(duì)不同HBV蛋白或腺病毒疫苗載體進(jìn)行研究[38-39]。GS-4774(tarmogen)是一種重組熱滅活全酵母疫苗,表達(dá)包括HBV X,HBV S和HBcAg,可以誘導(dǎo)CD4+和CD8+T細(xì)胞應(yīng)答。在單中心安全性試驗(yàn)中發(fā)現(xiàn),試驗(yàn)期間受試者對(duì)GS-4774耐受性良好,無不良事件。在治療結(jié)束后85 d內(nèi)檢測(cè)發(fā)現(xiàn)大多數(shù)患者至少有1項(xiàng)結(jié)果體現(xiàn)出對(duì)T細(xì)胞有反應(yīng)[40]。一項(xiàng)關(guān)于評(píng)估GS-4774單用或聯(lián)合替諾福韋治療CHB患者的Ⅱ期臨床試驗(yàn)(NCT019433799)正在進(jìn)行中[41]。
同時(shí),古巴研制出第一種包括HBsAg和HBcAg組合的鼻腔疫苗用于抗HBV治療,其機(jī)理是通過激活B細(xì)胞并協(xié)同誘導(dǎo)T細(xì)胞的激活,使其能夠作用抗原呈遞細(xì)胞,進(jìn)一步抑制HBV。19例健康男性的Ⅰ期雙盲、安慰劑對(duì)照隨機(jī)臨床試驗(yàn)證實(shí)了其良好的安全性和耐受性[42]。2013年在EASL會(huì)議中760號(hào)摘要報(bào)道了nasvac疫苗的Ⅲ期臨床試驗(yàn),初步證實(shí)了其抗病毒的有效性,但后續(xù)研究仍在進(jìn)行中。
3.2.2 刺激抗病毒效應(yīng)細(xì)胞 Toll樣受體(Tolllike receptor, TLR)是重要的病原體識(shí)別受體,其在暴露于特定配體時(shí)會(huì)刺激天然和適應(yīng)性免疫應(yīng)答。 HBV可能會(huì)下調(diào)TLR逃避天然性免疫應(yīng)答,所以TLR激動(dòng)劑可以誘導(dǎo)產(chǎn)生內(nèi)源性干擾素以及其他天然免疫反應(yīng),從而抑制HBV復(fù)制[43]。目前的數(shù)據(jù)表明最有希望的藥物是口服TLR-7激動(dòng)劑,在TLR-7激動(dòng)劑GS 9620誘導(dǎo)黑猩猩長(zhǎng)期成功抑制HBV DNA并刺激IFN-α產(chǎn)生后,GS 9620被用于75例健康者,口服單次劑量為3 mg~12 mg[44]。由于該藥激活發(fā)生在胃腸道中,因此能夠通過門靜脈循環(huán)快速被肝臟吸收,研究表明藥物在人體中吸收及耐受性均良好。該藥物的主要不良反應(yīng)與其他外源性IFN相似,主要是流感樣癥狀,有研究發(fā)現(xiàn)僅在接受8 mg或12 mg劑量的患者中才可見上述不良反應(yīng),進(jìn)一步研究仍在進(jìn)行中。
3.2.3 恢復(fù)HBV特異性細(xì)胞免疫功能 HBV持續(xù)復(fù)制主要是因?yàn)門細(xì)胞功能下調(diào),出現(xiàn)功能障礙甚至耗竭的情況。程序性死亡分子-1(programmed death-1, PD-1)和其配體PD-L1/2均在T細(xì)胞上表達(dá),并在T細(xì)胞調(diào)節(jié)中起作用[45]。在體內(nèi)或體外的研究中發(fā)現(xiàn),PD-1和PD-L1/2拮抗劑無論是被單獨(dú)使用還是與NAs或疫苗聯(lián)合治療均會(huì)增強(qiáng)HBV特異性T細(xì)胞的反應(yīng)。在一項(xiàng)土撥鼠模型的研究中也證實(shí)了上述結(jié)論,通過增強(qiáng)特異性T細(xì)胞的反應(yīng),抑制病毒復(fù)制同時(shí)清除cccDNA[46]。盡管PD-1拮抗劑還沒有應(yīng)用于CHB患者的臨床試驗(yàn),但是在腫瘤患者中已初步顯示出良好的治療效果。須要注意的是,在腫瘤患者臨床試驗(yàn)中該藥不良反應(yīng)率偏高,9%的患者出現(xiàn)3級(jí)或4級(jí)不良反應(yīng)[47]。因此,PD-1拮抗劑的不良反應(yīng)會(huì)影響該藥用于病情平穩(wěn)的CHB患者。當(dāng)然,第二代PD-1抑制劑可能會(huì)有更多的選擇性及治療的希望。
在過去20年中,隨著乙型肝炎疫苗接種的廣泛推廣以及抗HBV治療方法的不斷進(jìn)步,HBV的預(yù)防和治療都取得了長(zhǎng)足的改進(jìn)。但是對(duì)于CHB患者而言,目前治療的不足是抗病毒藥物不能達(dá)到徹底治愈,同時(shí)還受到藥物不良反應(yīng)的限制。雖然我們?nèi)圆荒軓氐坠タ薍BV,但隨著針對(duì)HBV復(fù)制周期和提高宿主免疫治療新藥的不斷涌現(xiàn),最終將能徹底治愈CHB患者。
[1] Schweitzer A, Horn J, Mikolajczyk RT, et al. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013[J].Lancet, 2015, 386(10003):1546-1555.
[2] Terrault NA, Bzowej NH, Chang KM, et al. A ASLD guidelines for treatment of chronic hepatitis B[J]. Hepatology, 2016,63(1):261-283.
[3] Lin CL, Kao JH. Perspectives and control of hepatitis B virus infection in Taiwan[J]. J Formos Med Assoc, 2015,114(12):901-909.
[4] Kim GA, Lee HC, Kim MJ, et al. Incidence of hepatocellularcarcinoma after HBsAg seroclearance in chronic hepatitis B patients: a need for surveillance[J]. J Hepatol, 2015,62(5):1092-1099.
[5] Gounder PP, Bulkow LR, Snowball M, et al. Nested case-control study: hepatocellular carcinoma risk after hepatitis B surface antigen seroclearance[J]. Aliment Pharmacol Ther, 2016,43(11):1197-1207.
[6] Sarin SK, Kumar M, Lau GK, et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update[J].Hepatol Int, 2016, 10(1):1-98.
[7] European Association for the Study of the Liver. EASL clinical practice guidelines: management of chronic hepatitis B virus infection[J]. J Hepatol, 2012, 57(1):167-185.
[8] Lai CL, Yuen MF. Prevention of hepatitis B virus-related hepatocellular carcinoma with antiviral therapy[J]. Hepatology,2013, 57(1):399-408.
[9] Zeisel MB, Lucifora J, Mason WS, et al. Towards an HBV cure:state-of-the-art and unresolved questions--report of the ANRS workshop on HBV cure[J]. Gut, 2015, 64(8):1314-1326.
[10] Thomsen MK, Nandakumar R, Stadler D, et al. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection[J]. Hepatology, 2016, 64(3):746-759.
[11] Trepo C, Chan HL, Lok A. Hepatitis B virus infection[J].Lancet, 2014, 384(9959):2053-2063.
[12] Verrier ER, Colpitts CC, Bach C, et al. A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses[J]. Hepatology, 2016, 63(1):35-48.
[13] Yan H, Zhong G, Xu G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. Elife, 2012, 1:e00049.
[14] Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B[J]. Gut, 2015,64(12):1972-1984.
[15] Xia Y, Stadler D, Lucifora J, et al. Interferon-gamma and tumor necrosis factor-alpha produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis[J].Gastroenterology, 2016, 150(1):194-205.
[16] Ni Y, Lempp FA, Mehrle S, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for speciesspecific entry into hepatocytes[J]. Gastroenterology, 2014,146(4):1070-1083.
[17] Volz T, Allweiss L, Ben MM, et al. The entry inhibitor Myrcludex B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus[J]. J Hepatol, 2013,58(5):861-867.
[18] Meier A, Mehrle S, Weiss TS, et al. Myristoylated PreS1-domain of the hepatitis B virus L-protein mediates specific binding to differentiated hepatocytes[J]. Hepatology, 2013, 58(1):31-42.
[19] Blank A, Markert C, Hohmann N, et al. First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B[J]. J Hepatol, 2016, 65(3):483-489.
[20] Nkongolo S, Ni Y, Lempp FA, et al. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor[J]. J Hepatol, 2014,60(4):723-731.
[21] Wong DK, Yuen MF, Ngai VW, et al. One-year entecavir or lamivudine therapy results in reduction of hepatitis B virus intrahepatic covalently closed circular DNA levels[J]. Antivir Ther, 2006, 11(7):909-916.
[22] Belloni L, Allweiss L, Guerrieri F, et al. IFN-alpha inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome[J]. J Clin Invest, 2012, 122(2):529-537.
[23] Qi Y, Gao Z, Xu G, et al. DNA polymerase kappa is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus[J]. PLoS Pathog, 2016, 12(10):e1005893.
[24] Chisari FV, Mason WS, Seeger C. Virology. Comment on "Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA"[J]. Science, 2014, 344(6189):1237.
[25] Kennedy EM, Bassit LC, Mueller H, et al. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease[J].Virology, 2015, 476:196-205.
[26] Klein C, Bock CT, Wedemeyer H, et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA[J].Gastroenterology, 2003, 125(1):9-18.
[27] Ozcan G, Ozpolat B, Coleman RL, et al. Preclinical and clinical development of siRNA-based therapeutics[J]. Adv Drug Deliv Rev, 2015, 87:108-119.
[28] Billioud G, Kruse RL, Carrillo M, et al. In vivo reduction of hepatitis B virus antigenemia and viremia by antisense oligonucleotides[J].J Hepatol, 2016, 64(4):781-789.
[29] Deres K, Schroder CH, Paessens A, et al. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids[J].Science, 2003, 299(5608):893-896.
[30] Billioud G, Pichoud C, Puerstinger G, et al. The main hepatitis B virus (HBV) mutants resistant to nucleoside analogs are susceptible in vitro to non-nucleoside inhibitors of HBV replication[J].Antiviral Res, 2011, 92(2):271-276.
[31] Wang XY, Wei ZM, Wu GY, et al. In vitro inhibition of HBV replication by a novel compound, GLS4, and its efficacy against adefovir-dipivoxil-resistant HBV mutations[J]. Antivir Ther ,2012, 17(5):793-803.
[32] Brahmania M, Feld J, Arif A, et al. New therapeutic agents for chronic hepatitis B[J]. Lancet Infect Dis, 2016, 16(2):e10-e21.
[33] Bertoletti A, Ferrari C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection[J]. Gut, 2012, 61(12):1754-1764.
[34] Yu W, Goddard C, Clearfield E, et al. Design, synthesis, and biological evaluation of triazolo-pyrimidine derivatives as novel inhibitors of hepatitis B virus surface antigen (HBsAg) secretion[J].J Med Chem, 2011, 54(16):5660-5670.
[35] Siegler VD, Bruss V. Role of transmembrane domains of hepatitis B virus small surface proteins in subviral-particle biogenesis[J]. J Virol, 2013, 87(3):1491-1496.
[36] Al-Mahtab M, Bazinet M, Vaillant A. Safety and efficacy of nucleic acid polymers in monotherapy and combined with immunotherapy in treatment-naive bangladeshi patients with HBeAg+chronic hepatitis B infection[J]. PLoS One, 2016, 11(6):e0156667.
[37] Vandepapeliere P, Lau GK, Leroux-Roels G, et al. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomized, controlled study of coadministration of HBsAg/AS02 candidate vaccine and lamivudine[J]. Vaccine, 2007, 25(51):8585-8597.
[38] Martin P, Dubois C, Jacquier E, et al. TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and exerts an antiviral effect in HBV-persistent mice[J]. Gut, 2015,64(12):1961-1971.
[39] Bazan SB, Geginat G, Breinig T, et al. Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes[J]. Vaccine, 2011, 29(45):8165-8173.
[40] Gaggar A, Coeshott C, Apelian D, et al. Safety, tolerability and immunogenicity of GS-4774, a hepatitis B virus-specific therapeutic vaccine, in healthy subjects: a randomized study[J].Vaccine, 2014, 32(39):4925-4931.
[41] Lobaina Y, Hardtke S, Wedemeyer H, et al. In vitro stimulationwith HBV therapeutic vaccine candidate nasvac activates B and T cells from chronic hepatitis B patients and healthy donors[J].Mol Immunol, 2015, 63(2):320-327.
[42] Betancourt AA, Delgado CA, Estevez ZC, et al. Phase I clinical trial in healthy adults of a nasal vaccine candidate containing recombinant hepatitis B surface and core antigens[J]. Int J Infect Dis, 2007, 11(5):394-401.
[43] Lang T, Lo C, Skinner N, et al. The hepatitis B e antigen (HBeAg)targets and suppresses activation of the toll-like receptor signaling pathway[J]. J Hepatol, 2011, 55(4):762-769.
[44] Lanford RE, Guerra B, Chavez D, et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees[J]. Gastroenterology,2013, 144(7):1508-1517.
[45] Finnefrock AC, Tang A, Li F, et al. PD-1 blockade in rhesus macaques: impact on chronic infection and prophylactic vaccination[J]. J Immunol, 2009, 182(2):980-987.
[46] Liu J, Zhang E, Ma Z, et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection[J]. PLoS Pathog, 2014,10(1):e1003856.
[47] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26):2443-2454.
(2017-08-03收稿 2017-08-15修回)
(本文編輯 胡 玫)
Advance on novel therapeutic agents for chronic hepatitis B
LI Yuan-yuan*, ZHOU Wen-jing, JIN Jie-hua, WANG Fu-sheng
Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, China
The ideal goal for chronic hepatitis B is functional cure. The current antiviral treatment can efficiently control viral replication, reduce or eliminate liver pathological lesion, effectively prevent the progression into liver cirrhosis and liver cancer, but it cannot clear HBsAg and viral reservoir (cccDNA). So it is still quite far from achieving a functional cure. Therefore, novel antiviral agents are needed to target various processes of hepatitis B virus lifecycle and regulate immune system. The emergency of HBV receptor and the establishment of in vitro HBV-infected cell-culture model will promote the development of potential antiviral surface antigen or incrrease virus-specific cellular immunity and other host antiviral drugs, such as inhibiting HBsAg synthesis and clearing viral reservoir. It is likely that successful HBV functional cure may be ultimately realized with the combinational use of HBV-specific immunomodulatory drugs, antiviral (HBsAg and HBV DNA) agents and cccDNA inhibitors.
HBV; chronic hepatitis B; therapy; immunomodulatory
R512.6
A
1007-8134(2017)04-0197-06
10.3969/j.issn.1007-8134.2017.04.004
首都臨床特色應(yīng)用研究(Z151100004015014)
100039 北京,解放軍第三〇二醫(yī)院感染性疾病診療與研究中心(李元元、周文靖、靳婕華、王福生)
李元元,E-mail: lyy020818@sina.com
*Corresponding author, E-mail: lyy020818@sina.com