• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical analysis of flow separation zone in a confluent meander bend channel*

    2017-09-15 13:55:43BinSui隋斌ShehuaHuang黃社華

    Bin Sui (隋斌), She-hua Huang (黃社華)

    State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, E-mail: bins@whu.edu.cn

    Numerical analysis of flow separation zone in a confluent meander bend channel*

    Bin Sui (隋斌), She-hua Huang (黃社華)

    State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, E-mail: bins@whu.edu.cn

    The flow pattern in the confluent meander bend channel under the conditions of different discharge ratios and junction angles is numerically simulated by means of the large eddy simulation (LES), and the characteristics of the flow separation zone are analyzed. Numerical results are well validated by experimental data with a good agreement. Analysis of the vertical confinement shows that the turbulence within the separation zone can be characterized as quasi-2-D. Details of the separation zone characteristics are revealed as shown by mean velocity isolines. According to the analysis of numerical results, the length and the width of the separation zone generally increase with the increase of the discharge ratio and the junction angle. However, the width of the separation zone keeps substantially constant when the junction angle increases from 60oto90o. The dimensionless shape of the separation zone is nearly the same for three discharge ratios and three junction angles. The formulas of the relative width and the relative length of the separation zone are obtained by means of the polynomial fit method.

    Large eddy simulation (LES), separation zone, discharge ratio, junction angle, quasi-2-D

    Introduction

    A river confluence can be divided into six zones according to the flow dynamics: the flow stagnation zone, the flow deflection zone, the flow separation zone, the maximum velocity zone, the distinct shear layer zone and the flow recovery zone. The sizes of these zones are controlled by the discharge ratio and the junction angle between the confluent streams. The characteristics of the flow separation zones and the shear layers were analyzed by experimental studies and numerical modeling of confluent straight channels. The dimension of the separation zone in the open channel junction becomes larger when the discharge ratio and the junction angle increase[1-3], and the size of the separation zone decreases when the dredging depth increases[4]. Mao et al.[5]and Creelle et al.[6]studied flows in channel junctions and, in particular,focused on the changes of the dimensions of the separation zone for different junction angles and discharge ratios. They pointed out that the separation zone disappears near the riverbed and the shape of the separation zone is never changed for different discharge ratios or junction angles. However, the above studies mainly focused on straight channels, and only a few on separation zones in confluences of a meandering channel[7-10]. The area of a separation zone in the confluence of downstream rivers is a very important factor because it controls the width of the confluent flows of both the main stream and the tributary with a direct influence on the expected flow velocity and bed shear. Also, in the separation zone one has a recirculating flow in an area of reduced pressure and sediment deposition with a number of consequences, including hydraulic geometry and river roughness[11-13].

    As mentioned above, there were several studies concerning the properties of the flow separation zone in the river confluence especially for straight channel confluent flows. However, there still lacks a complete quantitative relationship between the width and the length of the separation zone for various discharge ratios and junction angles. Therefore, this papernumerically explores the characteristics of the separation zone of a more complicated confluence of meander bend channels. More details of the flow separation zone are revealed for the prediction of the sediment transport and the river bed evolution.

    1. Numerical model setup

    Figure 1 shows the numerical model (with thez-direction pointing upwards) that consists of a 1 m wide main channel and 0.3 m wide tributary channel. The main channel consists of a 4 m long straight inlet, ao

    180 reach, and a 4 m long straight outlet. The centerline radius of the curved reach is 2 m. The inlet part and the outlet part of the main channel are parallel. The curved segment has a rectangular cross-section. The intersection at the confluence between the tributary and the main channel is located at ao

    90cross-section (CS4). The tributary channel is a straight rectangular flume of 3.5 m long. Takeo90 as the junction angle between the tributary and the main channel, for example. The gradient of the straight main channel is 1/2000, and the average gradient of the curved segment and the tributary are 1/1250 and 1/1000, respectively.

    Fig.1 Conceptual model of the confluent meander bend (junction angle is90o)

    The discharge from the main channel is denoted asQM(QM=30 L/s) and the discharge from the tributary channel is denoted asQT. Three different discharge ratios (λ=QT/QM=0.1, 0.3, 0.6) and three different junction angles (α=30o, 60oand 90o) are considered in the simulation, with the simulation result of theo

    90 junction angle and the simulation result of the discharge ratio of 0.6 as the references. The simulation of the 3-D flow through the meander bend in the numerical model is performed using Openfoam[14]with the large-eddy simulation (LES). The subgrid scales in the LES are captured with a Smagorinsky closure model.

    A structured hexahedral mesh is adopted in the model. The grid has a greater density in the junction area, because the hydraulic elements in this region have are relatively larger variations than those at other locations, and a boundary layer grid is used near the boundaries. A 3-D structured grid system with 6.6×106elements is generated with the grid generator GAMBIT.

    The numerical model employed in this study is based on the 3-D LES turbulence model. In the LES simulation, the filtered velocity and pressure fields are solved, whereas the influence of the filtered smallscale features on larger eddies is modeled through a subgrid stress (SGS) model. The equations for the LES method are as follows:

    whereis the filtered large eddy velocity, andτijis the modeled SGS that accounts for the influence of the sub-grid eddies on the large eddies. The SGS model is as follows:

    whereis the filtered strain rate tensor, defined as

    The inflow conditions of the velocity and the height of the inlet are obtained by experimental measurements[15]. For the inlet boundary, the flow discharge and the velocity of the main channel are specified. The pressure is chosen to have a zero normal gradient for consistency with the velocity condition. The outlet boundary is set to have a zero gradient. The free surface is described by the rigid-lid approximation (using the measured water surface data). The finite volume method (FVM) is used for the discretization of the Navier-Stokes equations, and the pimpleFoam algorithm is used for the velocity and pressure coupling. The central difference scheme is adopted for the diffusion terms of the governing equation, and the convection term is solved by a first order upwind scheme.

    2. Model validation

    Experiment data are used to validate the numerical model of the confluent meander bend flow. Figures 2, 3 and 4 display the streamwise velocity (Va)variations against the water depth(d) at CS3 (φ=60o)and CS6(φ=120o) cross-section in the bend channel,where the discharge ratio isλ=0.6 and the junction angle isα=30o, 60oand 90o, respectively (The dashed line representsY-axis). Figures 5, 6 and 7 display the flow velocity vectors on the water surface for various discharge ratios and junction angles, where the junction angle isα=90oand the discharge ratio isλ=0.6, respectively. Figures 5, 6, 7(a2) and 7(b2) show the same trends for the velocity vectors. But as shown in Fig.7(a1) (LES data), the small area of the separation zone appears along the outer bank at the downstream of the junction, while in the experiment data (Fig.7(b1)) this separation zone does not exist for the case of the tributary entry angle ofo30. This is mainly due to the fact that the small separation zone cannot be captured by the experiment measurement.

    In this way, the reliability of the numerical model is validated. The experiment data agree well with the calculated results and give the same trends of the flow velocity, which ensures that the numerical results are reasonable and reliable.

    Fig.2 Comparison of numerical results and model test data for a streamwise velocity distribution in two cross sections

    Fig.3 Comparison of numerical results and model test data for a streamwise velocity distribution in two cross sections

    Fig.4 Comparison of numerical results and model test data for a streamwise velocity distribution in two cross sections

    Fig.5 Comparison of flow velocity vectors on the water surface for various discharge ratios (LES data)

    Fig. 6 Comparison of flow velocity vectors on the water surface for various discharge ratios (Experiment data)

    Fig.7 Comparison of flow velocity vectors on the water surface for various junction angles

    3. Analysis of simulation results

    3.1 Influence of vertical confinement

    The flow structure is measured by computing the correlation product between the velocity fields on seven horizontal slices: the lower slices SL1=0.01m, SL2=0.03m and SL3=0.06 m above the bottom, the middle slice at the half depth SL4=0.09 m, and the upper slices SL5=0.12 m, SL6=0.16 m, SL7=0.18m above the bottom. The correlation product is given by[16]

    where(u1,v1),(u2,v2)are the velocity components given at each point of the mesh grid on two different slices, andi,jrepresent the mesh grids constituted by

    Fig.8 Correlation product

    Figure 8(a) shows the correlation products forλ=0.1, 0.3 and 0.6, and Fig.8(b) shows the correlation products forα=30o, 60oand 90o. The correlation product is computed based on the values provided by the lower and middle slices and by the upper and middle slices. If the correlation product is equal to 1, the velocity fields are totally identical between(u1,v1) and(u2,v2). For the three discharge ratios, the value provided by SL1 and SL4 is smaller than the other values, and, with the exception of this value, the correlation product is in the range from 0.90to 0.98. For the three junction angles in Fig.8(b), the correlation product is between 0.85 and 0.98. Although the correlation product is never equal to 1.0, the trend is to approach 1.0, which means that the vertical velocity has little influence on the separation zone flow structures, and the maximum Froude number is 0.147 at downstream of the junction, so the turbulent flows within the separation zone can be characterized as quasi-2-D[17]. Thus we choose the middle slice at the half depth (SL4) to study the characteristics of the flow separation zone.

    3.2 Separation zone characteristics

    In this paper, the main channel has a meander bend shape, a Cartesian coordinate system is not best suited for this shape but the cylindrical coordinates might easily do the job. To have a clearer picture of the separation zone characteristics in a confluent meander bend channel, we convert the numerical results from a Cartesian to a cylindrical coordinate system. Figure 9(a) shows the streamwise mean velocities of the study domain (from CS4 to CS9) in the Cartesian coordinates (we use the case ofα=90oandλ=0.6 as an example) and Fig.9(b) shows the streamwise mean velocities of the study domain (from CS4 to CS9) in the cylindrical coordinate system.

    Fig.9 (Color online) Streamwise mean velocities in the study zone

    Fig.10 (Color online) Streamwise mean velocities in the study zone

    Fig.11 (Color online) Streamwise mean velocities in the study zone

    Figure 10 shows the streamwise mean velocity inthe study zone for different discharge ratios, where the junction angle iso90. Figure 11 shows the streamwise mean velocity for different junction angles, where the discharge ratio is 0.6. The separation zone characteristics are usually expressed by the width and the length of the zone. As Figs.9(b), 10, and 11 show, when the discharge ratio and the junction angle increase, the area of the separation zone also increases. Both the width and the length of the separation zone increase.

    Fig.12 (a) (Color online) The shape of the shear layer

    Fig.12(b) (Color online) the streamwise mean velocities and the isosurface of the shear layer

    According to the boundary layer theory, the separation zone begins at the point where the flow velocity cannot overcome the adverse pressure gradient, therefore, the velocity at these separation zone border is equal to zero[18]and the zero-velocity isolines is taken as the separation zone border in this paper. Through analysis and comparison, the same phenomenon is found in the shear layer for two other discharge ratios and junction angles, so we may analyze the case of the discharge ratioλ=0.6 andas an example (Fig.12, whereW,Lrepresents channel width, arc length at downstream of the junction). It was suggested that the shear layer is a 3-D structure[19], consisting of an inner layer (rough surface) and an outer layer (smooth surface). The turbulent structure in the shear layer is related to the turbulence intensities[20]. Thus, the inner layer is rough (Fig.12(a)), which is influenced by the maximum turbulence velocity. As shown in Fig.12(b), the separation zone is seen very clearly. The streamwise velocity plays an important role in the flow structure, so it also has a significant effect on the shape of the separation zone. In this study, a streamwise velocity isoline with a zero mean-velocity represents the border of the separation zone.

    Figure 13 shows the area of the separation zone in the study domain for (a) different discharge ratios, and (b) different junction angles. Curves represent borders of the separation zone for different discharge ratios and junction angles, with the horizontal and longitudinal coordinates standing for the channel width and the length of the outer bank, respectively. As the discharge ratio and the junction angle increase, the length and the width of the separation zone increase with their shape maintaining unchanged. When the junction angle is gradually increased from 60oto 90o, as Fig.13(b) shows, the separation zone has a nearly equal width, and the length of the separation zone increases over a small range.

    Fig.13 Separation zone in the study domain

    To demonstrate that the shape of the separation zone changes with different discharge ratios and junction angles, the dimensionless values are used instead of the original values (Fig.14).

    To make the variables dimensionless, the following relation is used

    whereWiandLiare the length and the width of the separation zone, respectively.

    Figure 14 shows that when the junction angle is fixed, the dimensionless curves of the separation zone for different discharge ratios are nearly the same. And as the discharge ratio is fixed, the dimensionless curves of the separation zone for different junction angles are also nearly the same.

    Fig.14 Separation zone with dimensionless values

    To better illustrate the characteristics of the separation zones, we consider the cases when the junction angle isα=90o, the discharge ratios areλ=0.1,λ=0.3 andλ=0.6, and the relative width can be described by a polynomial fitting as:

    wherexis a relative width, andyis a relative length.

    When the discharge ratio isλ=0.6, the junction angles areα=30o, 60oand 90o, and the relative width can be described by a polynomial fit as:

    wherexis the relative width, andyis the relative length.

    4. Conclusions

    This paper investigates the flow structures in a confluent meander bend channel using a 3-D numerical model. According to the analysis, the influence of the vertical confinement and the turbulent structures within the separation zone can be characterized as quasi-2-D. To illustrate the detailed characteristics of the separation zone in a confluent meander bend channel, the numerical results are converted from a Cartesian to a cylindrical coordinate system. The following research results are obtained numerically:

    Based on the shear layer boundary theory, the shape of the separation zone is successfully visualized by taking the zero-velocity is oline as the separation zone border.

    The length and the width of the separation zone is found to increase with the increase of discharge ratios and junction angles, but when the discharge ratio isλ=0.6 and the junction angle increases from 60oto 90o, the width of the separation zone hardly changes and the length of the separation zone only increases over a small range.

    The shape of the separation zone is never changed for different discharge ratios or junction angles according to the dimensionless analysis of the numerical data. Based on the dimensionless values, the functional relationships between the relative width and length of the separation zone are proposed for the confluent meander bend channel flow.

    [1] Geberemariam T. K. Numerical analysis of stormwater flow conditions and separation zone at open-channel junctions [J].Journal of Irrigation and Drainage Engineering, 2016. 143(1): 05016009.

    [2] Rooniyan F. The effect of confluence angle on the flow pattern at a rectangular open-channel [J].Engineering Technology and Applied Science Research, 2013, 4(1): 576-580.

    [3] Yang F. C., Chen X. P. Numerical simulation of twodimensional viscous flows using combined finite elementimmersed boundary method [J].Journal of Hydrodynamics, 2015, 27(5):658-667.

    [4] Sik C. H., Mo S. J. An analysis on the characteristics ofseparation zone due to a bed discordance at confluence [J].Journal of Korea Water Resources Association, 2015, 48(8): 625-634.

    [5] Mao Z. Y., Zhao S. W., Zhang L. Separation zone of open-channel junction [J].Advances in water science, 2005, 16(1): 7-12(in Chinese).

    [6] Creelles S., Mulder T. D., Schindfessel L. et al. Influence of hydraulic resistance on flow features in an open channel confluence [J].Iahr Europe Congress, 2014, 45(2): 527-535.

    [7] Roberts M. V. T. Flow dynamics at open channel confluent-meander bends [D]. Doctoral Thesis, Leeds, UK: University of Leeds, 2004.

    [8] Wang X. K., Zhou S. F., Ye L. et al. Numerical simulation of confluence flow structure between Jialing River and Yangtze River [J].Advances in water science, 2015, 26(3): 372-373(in Chinese).

    [9] Goudarzizadeh R., Jahromi S. H. M., Hedayat N. Simulation of 3D flow using numerical model at open-channel confluences [J].World Academy of Science, Engineering and Technology, 2010, 4(11): 1437-1442.

    [10] Riley J. D., Rhoads B. L. Flow structure and channel morphology at a natural confluent meander bend [J].Geomorphology, 2012, 163: 84-98.

    [11] Artt D. W. An experimental investigation of film cooling, with particular reference to the injection region [D]. Doctoral Thesis, Belfast, UK: Queen’s University Belfast, 1970.

    [12] Huai W., Xue W., Qian Z. Large-eddy simulation of turbulent rectangular open-channel flow with an emergent rigid vegetation patch [J].Advances in Water Resources, 2015, 80: 30-42.

    [13] Liu S. H., Cao B. Hybrid simulation of the hydraulic characteristics at river and lake confluence [J].Journal of Hydrodynamics, 2011, 23(1): 105-113.

    [14] OpenCFD. OpenFOAM: The open source computational fluid dynamic (CFD) toolbox [EB/OL]. http://www.OpenFoam.org 2005, 2006.

    [15] Gao Y., Huang S. H., Li Q. Experimental research on velocity distribution along depth at junction of bend stream with branch afflux [J].Water Resources and Power, 2012, 30(7): 90-93.

    [16] Sous D., Bonneton N., Sommeria J. Turbulent vortex dipoles in a shallow water layer [J].Physics of Fluids, 2004, 16(8): 2886-2898.

    [17] Constantinescu G., Miyawaki S., Rhoads B. et al. Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: Insight provided by an eddy-resolving numerical simulation [J].Water Resources Research, 2011, 47(5): W05507.

    [18] Yuan Q. Y., Wang X. Y., Lu W. Z. et al. Experimental study on characteristics of separation zone in confluence zones in rivers [J].Journal of Hydrologic Engineering, 2009, 14(2): 166-171.

    [19] Amir M., Castro I. P. Turbulence in rough-wall boundary layers: Universality issues [J].Experiments in fluids, 2011, 51(2): 313-326.

    [20] Melnick M. B., Thurow B. S. Comparison of large-scale three-dimensional features in zero-and adverse-pressuregradient turbulent boundary layers [J].AIAA Journal, 2015, 53(12): 3686-3699.

    (Received February 27, 2016, Revised March 2, 2017)

    * Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 51439007).

    Biography:Bin Sui (1985-), Female, Ph. D.

    She-hua Huang,

    E-mail: hshh2@126.com

    99九九线精品视频在线观看视频| 亚洲精品456在线播放app| 国产成人精品一,二区 | 国产精品女同一区二区软件| 国产麻豆成人av免费视频| 国产亚洲av片在线观看秒播厂 | 成年版毛片免费区| 亚洲国产精品sss在线观看| 久久久久久大精品| 麻豆乱淫一区二区| 欧美+日韩+精品| 国产精品一区二区性色av| 99热网站在线观看| 国产精品久久久久久av不卡| 高清在线视频一区二区三区 | 亚洲第一区二区三区不卡| 男人舔女人下体高潮全视频| 男女视频在线观看网站免费| 免费看日本二区| 日韩在线高清观看一区二区三区| 男人舔奶头视频| 久久99热这里只有精品18| 亚洲av第一区精品v没综合| 99热6这里只有精品| 国内精品久久久久精免费| 全区人妻精品视频| 日韩三级伦理在线观看| 一级毛片我不卡| 欧美高清性xxxxhd video| 两性午夜刺激爽爽歪歪视频在线观看| 五月伊人婷婷丁香| 性插视频无遮挡在线免费观看| 99久国产av精品| 久久久欧美国产精品| 悠悠久久av| 亚洲18禁久久av| 久久久久九九精品影院| 精品久久久噜噜| 日本黄色视频三级网站网址| 色吧在线观看| 国产精品嫩草影院av在线观看| 亚洲天堂国产精品一区在线| 国产极品精品免费视频能看的| 国产私拍福利视频在线观看| 麻豆成人午夜福利视频| 午夜免费男女啪啪视频观看| 自拍偷自拍亚洲精品老妇| a级毛片a级免费在线| 国产精品一区www在线观看| 国产色婷婷99| 亚洲精品乱码久久久久久按摩| 国产av不卡久久| 久久久国产成人免费| 亚洲在线观看片| 成人特级黄色片久久久久久久| 精品一区二区免费观看| 一级毛片我不卡| 在线播放国产精品三级| 波野结衣二区三区在线| 亚州av有码| 免费观看的影片在线观看| 国产又黄又爽又无遮挡在线| 亚洲成人久久性| 国产男人的电影天堂91| 国产精品美女特级片免费视频播放器| 在线播放无遮挡| 国产亚洲5aaaaa淫片| 国产一区二区三区在线臀色熟女| 少妇人妻精品综合一区二区 | 亚洲精品色激情综合| 亚洲四区av| 国产成人精品一,二区 | 亚洲国产精品久久男人天堂| 亚洲电影在线观看av| 国产精品免费一区二区三区在线| 精品欧美国产一区二区三| 午夜久久久久精精品| 熟女电影av网| 国产午夜福利久久久久久| av在线蜜桃| 哪里可以看免费的av片| 免费在线观看成人毛片| 一个人看视频在线观看www免费| 精品人妻视频免费看| 国产精品女同一区二区软件| 久久精品国产鲁丝片午夜精品| 成人亚洲欧美一区二区av| 久久精品国产清高在天天线| 精品欧美国产一区二区三| 亚洲丝袜综合中文字幕| 国产精品无大码| 搡老妇女老女人老熟妇| 国产乱人偷精品视频| 在线观看免费视频日本深夜| 久久人人爽人人爽人人片va| 能在线免费观看的黄片| a级一级毛片免费在线观看| 亚洲精品自拍成人| av视频在线观看入口| 日本在线视频免费播放| 一区二区三区高清视频在线| 免费看美女性在线毛片视频| 又爽又黄无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久大av| 午夜免费激情av| 国产探花在线观看一区二区| 精品人妻视频免费看| 色播亚洲综合网| 色尼玛亚洲综合影院| 熟女电影av网| 国产精品精品国产色婷婷| 干丝袜人妻中文字幕| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久 | 九九爱精品视频在线观看| 波野结衣二区三区在线| 国产精品日韩av在线免费观看| 一级黄片播放器| 欧美日韩国产亚洲二区| 国产不卡一卡二| 亚洲婷婷狠狠爱综合网| 精品国内亚洲2022精品成人| 91av网一区二区| 亚洲国产精品成人综合色| 精品久久久久久久久久久久久| 国产一级毛片七仙女欲春2| 亚洲内射少妇av| 精品无人区乱码1区二区| 久久久久久久久久成人| 久久久久久久久大av| 精品一区二区三区视频在线| 欧美激情国产日韩精品一区| 久久精品国产清高在天天线| 欧美色欧美亚洲另类二区| 国产免费男女视频| 免费不卡的大黄色大毛片视频在线观看 | 99久久久亚洲精品蜜臀av| 国产一区二区激情短视频| 最近2019中文字幕mv第一页| 国产毛片a区久久久久| 久久中文看片网| 亚洲最大成人手机在线| 日韩成人伦理影院| 久久精品国产清高在天天线| 亚洲成a人片在线一区二区| 一个人看视频在线观看www免费| www.色视频.com| 国产片特级美女逼逼视频| 日韩欧美在线乱码| avwww免费| 亚洲av免费高清在线观看| 国产在线男女| 久久久成人免费电影| 国产真实乱freesex| 中文资源天堂在线| 高清日韩中文字幕在线| 欧美色欧美亚洲另类二区| 老熟妇乱子伦视频在线观看| 国产精品一区二区三区四区久久| 久久草成人影院| 在线观看免费视频日本深夜| 99热只有精品国产| 午夜免费激情av| 波多野结衣巨乳人妻| 你懂的网址亚洲精品在线观看 | 给我免费播放毛片高清在线观看| 国产午夜精品论理片| 午夜a级毛片| 99在线视频只有这里精品首页| 在线国产一区二区在线| 99热网站在线观看| 欧美色欧美亚洲另类二区| 黄色日韩在线| 欧美一区二区亚洲| 国产精品麻豆人妻色哟哟久久 | ponron亚洲| 久久综合国产亚洲精品| 尤物成人国产欧美一区二区三区| 大型黄色视频在线免费观看| 国产精品久久视频播放| 欧美激情国产日韩精品一区| 床上黄色一级片| 性欧美人与动物交配| 在线观看66精品国产| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 天堂中文最新版在线下载 | 天堂av国产一区二区熟女人妻| 深夜a级毛片| 能在线免费看毛片的网站| 久久久欧美国产精品| 搡女人真爽免费视频火全软件| 麻豆国产av国片精品| 久久久久久久久久成人| 国产一区二区亚洲精品在线观看| 尤物成人国产欧美一区二区三区| 少妇人妻一区二区三区视频| 国产麻豆成人av免费视频| 成年版毛片免费区| 一级毛片久久久久久久久女| 联通29元200g的流量卡| 久久久成人免费电影| 51国产日韩欧美| 不卡视频在线观看欧美| 国产一区二区激情短视频| 精品99又大又爽又粗少妇毛片| 亚洲中文字幕一区二区三区有码在线看| 激情 狠狠 欧美| 日本三级黄在线观看| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 亚洲av成人精品一区久久| 日本五十路高清| 国模一区二区三区四区视频| 国产成人一区二区在线| 男女边吃奶边做爰视频| 精品久久久久久成人av| 91aial.com中文字幕在线观看| 给我免费播放毛片高清在线观看| 日韩国内少妇激情av| 国产av不卡久久| 校园春色视频在线观看| av在线观看视频网站免费| videossex国产| 久久久久免费精品人妻一区二区| 国产亚洲91精品色在线| 成人亚洲精品av一区二区| 精品一区二区三区人妻视频| 嫩草影院入口| 久久鲁丝午夜福利片| 有码 亚洲区| 欧美另类亚洲清纯唯美| 久久欧美精品欧美久久欧美| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 综合色av麻豆| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 欧美成人精品欧美一级黄| 男的添女的下面高潮视频| 丝袜美腿在线中文| 中文资源天堂在线| 亚洲18禁久久av| 一卡2卡三卡四卡精品乱码亚洲| 大型黄色视频在线免费观看| 老司机影院成人| 免费看光身美女| 国产一区二区在线av高清观看| 精品日产1卡2卡| 在线观看av片永久免费下载| 99久久无色码亚洲精品果冻| 免费看光身美女| 亚洲国产欧美人成| 精品久久久噜噜| 精品国产三级普通话版| 成人二区视频| 国产三级中文精品| 久久久国产成人免费| .国产精品久久| 青青草视频在线视频观看| 精品久久久久久久久久免费视频| 久久亚洲精品不卡| 嘟嘟电影网在线观看| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 黄色配什么色好看| 亚洲av第一区精品v没综合| 亚洲av中文字字幕乱码综合| 国产国拍精品亚洲av在线观看| 中文字幕免费在线视频6| 神马国产精品三级电影在线观看| 国产精品久久久久久精品电影小说 | 国产一级毛片七仙女欲春2| 日韩av在线大香蕉| 国产精品99久久久久久久久| 欧美性猛交黑人性爽| 在线播放国产精品三级| 亚洲精品成人久久久久久| 可以在线观看的亚洲视频| 国产高清不卡午夜福利| 丝袜美腿在线中文| 国产精品99久久久久久久久| 一级毛片电影观看 | 国产精品不卡视频一区二区| АⅤ资源中文在线天堂| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 中文字幕人妻熟人妻熟丝袜美| 一级毛片我不卡| 少妇熟女aⅴ在线视频| a级毛片a级免费在线| 精品久久久噜噜| 国产成人91sexporn| 女的被弄到高潮叫床怎么办| 国产午夜精品久久久久久一区二区三区| 成人性生交大片免费视频hd| 国产高潮美女av| 男插女下体视频免费在线播放| 白带黄色成豆腐渣| 亚洲av第一区精品v没综合| 亚洲精华国产精华液的使用体验 | 日日摸夜夜添夜夜添av毛片| 九九热线精品视视频播放| 日本一本二区三区精品| 久久久久久久久久黄片| 午夜久久久久精精品| 最新中文字幕久久久久| 蜜桃亚洲精品一区二区三区| 欧美日本亚洲视频在线播放| 99热6这里只有精品| 麻豆久久精品国产亚洲av| 成人无遮挡网站| 在线国产一区二区在线| 国产精品爽爽va在线观看网站| 午夜久久久久精精品| 精品国产三级普通话版| 日本三级黄在线观看| 日韩中字成人| 老司机福利观看| 只有这里有精品99| 最近2019中文字幕mv第一页| 91午夜精品亚洲一区二区三区| 午夜福利视频1000在线观看| 天堂中文最新版在线下载 | 白带黄色成豆腐渣| av卡一久久| 日本熟妇午夜| 69av精品久久久久久| av在线亚洲专区| 国产视频首页在线观看| 亚洲精华国产精华液的使用体验 | 国产精品一区二区三区四区免费观看| 日韩av在线大香蕉| 人妻制服诱惑在线中文字幕| 日本av手机在线免费观看| 国产伦在线观看视频一区| 久久久精品欧美日韩精品| 少妇的逼水好多| 国产一区二区激情短视频| 精品国内亚洲2022精品成人| 有码 亚洲区| 啦啦啦韩国在线观看视频| 亚洲一级一片aⅴ在线观看| 日本三级黄在线观看| 午夜a级毛片| 校园春色视频在线观看| 国产伦精品一区二区三区视频9| 如何舔出高潮| 大型黄色视频在线免费观看| 一进一出抽搐动态| 熟女电影av网| 欧美日韩乱码在线| 成人二区视频| 性色avwww在线观看| 丝袜喷水一区| 亚洲精品成人久久久久久| 麻豆成人午夜福利视频| 亚洲在久久综合| 国产国拍精品亚洲av在线观看| 一级av片app| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| av黄色大香蕉| 2021天堂中文幕一二区在线观| 一级毛片我不卡| 国产亚洲精品av在线| 国产不卡一卡二| 亚洲成人久久爱视频| 国产黄片美女视频| 91久久精品国产一区二区三区| 直男gayav资源| 只有这里有精品99| 午夜免费激情av| 色5月婷婷丁香| av又黄又爽大尺度在线免费看 | 久久综合国产亚洲精品| 不卡视频在线观看欧美| 欧美在线一区亚洲| 免费av不卡在线播放| 国模一区二区三区四区视频| 人体艺术视频欧美日本| 国产亚洲av嫩草精品影院| 天堂中文最新版在线下载 | 国内久久婷婷六月综合欲色啪| 欧美+亚洲+日韩+国产| 亚洲高清免费不卡视频| 精品熟女少妇av免费看| 欧美色视频一区免费| 一进一出抽搐gif免费好疼| 亚洲成人久久爱视频| 男人舔奶头视频| 午夜爱爱视频在线播放| 99国产极品粉嫩在线观看| 亚洲一区高清亚洲精品| 精品国产三级普通话版| 真实男女啪啪啪动态图| 麻豆国产97在线/欧美| 波多野结衣巨乳人妻| 我要看日韩黄色一级片| 熟妇人妻久久中文字幕3abv| 女人十人毛片免费观看3o分钟| 国产白丝娇喘喷水9色精品| videossex国产| av.在线天堂| 亚洲最大成人手机在线| 久久精品人妻少妇| 国产单亲对白刺激| 久久精品久久久久久噜噜老黄 | 日本成人三级电影网站| 午夜福利视频1000在线观看| 日本免费一区二区三区高清不卡| 日本黄色片子视频| 久久精品国产自在天天线| 直男gayav资源| 在线免费观看的www视频| 国产色婷婷99| 乱人视频在线观看| 欧美不卡视频在线免费观看| 美女cb高潮喷水在线观看| 人妻夜夜爽99麻豆av| 三级毛片av免费| 国产午夜精品久久久久久一区二区三区| 极品教师在线视频| 精品国产三级普通话版| 久久久久久久久久久丰满| 亚洲综合色惰| 日韩一区二区视频免费看| or卡值多少钱| 岛国毛片在线播放| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站| 99热全是精品| 午夜a级毛片| 国产又黄又爽又无遮挡在线| 久久久久久国产a免费观看| 日韩在线高清观看一区二区三区| 久久6这里有精品| 国产老妇女一区| 午夜精品在线福利| 此物有八面人人有两片| 亚洲一区高清亚洲精品| 久久久成人免费电影| 精品久久久噜噜| 久久久精品94久久精品| 黄色配什么色好看| 久久九九热精品免费| 亚洲精品乱码久久久久久按摩| 少妇熟女欧美另类| 亚洲精品日韩av片在线观看| 国内久久婷婷六月综合欲色啪| 亚洲国产欧洲综合997久久,| 中文资源天堂在线| 精品久久久久久久末码| 色哟哟哟哟哟哟| 日本在线视频免费播放| 国产精品免费一区二区三区在线| 小蜜桃在线观看免费完整版高清| 亚洲七黄色美女视频| 欧美区成人在线视频| 国产人妻一区二区三区在| 亚洲欧美精品专区久久| 尤物成人国产欧美一区二区三区| 国产一区二区亚洲精品在线观看| 亚洲最大成人中文| 99久久精品国产国产毛片| 中文字幕av成人在线电影| 亚洲精品456在线播放app| 色综合亚洲欧美另类图片| 午夜久久久久精精品| 国产一区二区激情短视频| 内射极品少妇av片p| 97热精品久久久久久| 男的添女的下面高潮视频| 成人二区视频| 国产精品国产三级国产av玫瑰| 国产在线男女| 免费搜索国产男女视频| 亚洲一区二区三区色噜噜| 亚洲成a人片在线一区二区| 亚洲欧洲国产日韩| 欧美潮喷喷水| 一夜夜www| av.在线天堂| 麻豆乱淫一区二区| 丰满的人妻完整版| 日韩一区二区视频免费看| 最近中文字幕高清免费大全6| 九九在线视频观看精品| 久久精品夜色国产| 久久这里只有精品中国| 青春草视频在线免费观看| 少妇裸体淫交视频免费看高清| 婷婷精品国产亚洲av| 亚洲欧美中文字幕日韩二区| 日本色播在线视频| 国产色爽女视频免费观看| 成人特级av手机在线观看| 国产精品一区二区三区四区免费观看| 国产老妇伦熟女老妇高清| 国产精品无大码| 国产又黄又爽又无遮挡在线| 欧美性猛交╳xxx乱大交人| av福利片在线观看| 99热6这里只有精品| 久久这里只有精品中国| 亚洲av中文字字幕乱码综合| 国产成人a∨麻豆精品| 成人毛片a级毛片在线播放| 亚洲一区高清亚洲精品| 99热只有精品国产| 国产精品99久久久久久久久| 久久国内精品自在自线图片| 亚洲真实伦在线观看| 99久久成人亚洲精品观看| 亚洲精品粉嫩美女一区| 欧美不卡视频在线免费观看| 久99久视频精品免费| 久久精品国产自在天天线| 中文字幕久久专区| 亚洲av熟女| 12—13女人毛片做爰片一| 99久国产av精品| 中文精品一卡2卡3卡4更新| 一个人看视频在线观看www免费| 国产精华一区二区三区| 亚洲欧美日韩无卡精品| 久久久久久久亚洲中文字幕| 偷拍熟女少妇极品色| 亚洲中文字幕日韩| 女人被狂操c到高潮| 深夜精品福利| 久久鲁丝午夜福利片| 国产片特级美女逼逼视频| 欧美日韩精品成人综合77777| 中文字幕久久专区| 91久久精品国产一区二区成人| 国内精品美女久久久久久| 欧美丝袜亚洲另类| 色噜噜av男人的天堂激情| 欧美潮喷喷水| 天天躁日日操中文字幕| 亚洲精品自拍成人| 中文字幕人妻熟人妻熟丝袜美| 青春草亚洲视频在线观看| 中文亚洲av片在线观看爽| 美女高潮的动态| 五月玫瑰六月丁香| 亚洲国产精品合色在线| 精品人妻熟女av久视频| 国产蜜桃级精品一区二区三区| 国产精品人妻久久久久久| 国产高清有码在线观看视频| 九九在线视频观看精品| 简卡轻食公司| 国产亚洲5aaaaa淫片| 99久国产av精品| 看黄色毛片网站| 久久国产乱子免费精品| 免费看日本二区| 在线观看一区二区三区| 一本精品99久久精品77| 国产精品人妻久久久影院| 又黄又爽又刺激的免费视频.| 亚洲熟妇中文字幕五十中出| 国产精品野战在线观看| 狂野欧美激情性xxxx在线观看| 欧美+日韩+精品| 日韩av在线大香蕉| 九九在线视频观看精品| 国产精品久久久久久精品电影小说 | 亚洲精品国产av成人精品| 两个人的视频大全免费| 麻豆乱淫一区二区| 3wmmmm亚洲av在线观看| 天堂影院成人在线观看| 国产黄a三级三级三级人| 国产午夜精品论理片| 免费搜索国产男女视频| av.在线天堂| 热99re8久久精品国产| 91av网一区二区| 午夜久久久久精精品| 亚洲国产欧美人成| 亚洲在久久综合| 97热精品久久久久久| 一区二区三区高清视频在线| 久久精品久久久久久久性| 欧美bdsm另类| 男女那种视频在线观看| 国产精品爽爽va在线观看网站| 全区人妻精品视频| 人妻久久中文字幕网| 日韩强制内射视频| 全区人妻精品视频| 欧美极品一区二区三区四区| 嫩草影院精品99| av.在线天堂| 欧美另类亚洲清纯唯美| 青春草亚洲视频在线观看| 三级国产精品欧美在线观看| 日本三级黄在线观看| 青青草视频在线视频观看| 午夜福利高清视频| 老女人水多毛片| 欧美在线一区亚洲| 欧美日本亚洲视频在线播放| 国产精品电影一区二区三区| 一级毛片我不卡| 黄片wwwwww| 中文资源天堂在线| 成人av在线播放网站| 色吧在线观看| 欧美不卡视频在线免费观看| 国产亚洲欧美98|