• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The influence of wave surge force on surf-riding/broaching vulnerability criteria check*

    2017-09-15 13:55:49PeiyuanFeng封培元ShemingFan范佘明JunNie聶軍XiaojianLiu劉小健
    關(guān)鍵詞:培元

    Pei-yuan Feng (封培元), She-ming Fan (范佘明), Jun Nie (聶軍), Xiao-jian Liu (劉小健)

    1.Marine Design & Research Institute of China, Shanghai 200011, China

    2.Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China, E-mail: pyfeng23@163.com

    3.Shanghai Key Laboratory of Ship Engineering, Shanghai 200011, China

    The influence of wave surge force on surf-riding/broaching vulnerability criteria check*

    Pei-yuan Feng (封培元)1,2, She-ming Fan (范佘明)1,3, Jun Nie (聶軍)1, Xiao-jian Liu (劉小健)1,2

    1.Marine Design & Research Institute of China, Shanghai 200011, China

    2.Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China, E-mail: pyfeng23@163.com

    3.Shanghai Key Laboratory of Ship Engineering, Shanghai 200011, China

    This study focuses on the influence of the wave surge force on the assessments of the surf-riding/broaching vulnerability criteria according to the new proposal of the IMO Second Generation Intact Stability Criteria. A code is developed for the criteria check and the sample ship calculations show that the accuracy of the wave surge force estimation has a significant influence on the assessment result. For further investigation, the wave surge force measurement through a captive model test is made for a purse seiner to validate the numerical model, the effects of the wave steepness and the ship forward speed on the wave surge force responses are also discussed. It is demonstrated that the diffraction effect is important for the correct estimation of the wave surge force. Therefore, it is recommended to include this effect in the assessment procedure.

    Intact stability criteria, surf-riding/broaching, sample calculation, wave surge force, captive model test

    Introduction

    In order to ensure the safety of ships in waves more effectively, the International Maritime Organization (IMO) is currently working on the second generation intact stability criteria to include five new stability failure modes: the pure loss of stability, the parametric roll, the dead ship condition, the surf-riding/broaching and the excessive acceleration[1,2]. Among them, broaching is considered to be the most complicated due to its highly nonlinear and chaotic nature[3,4]. The broaching occurs when a ship cannot keep a constant course despite the maximum steering effort, typically in the following and quartering waves.The surf-riding is usually regarded as the prerequisite of the broaching when a ship is captured by the wave approaching from the stern that accelerates the ship to the wave celerity[5]. Small-size high-speed ships are most vulnerable to this stability failure mode.

    The mechanism behind this hazardous phenomenon, was extensively studied both theoretically and experimentally in recent decades. Maki et al.[6,7]and Wu et al.[8]made surf-riding predictions through theoretical formulations based on heteroclinic bifurcation. Umeda et al.[9-11]carried out free running model experiments and demonstrated that a ship complying with the existing IMO stability code can still be capsized as a result of broaching. Hashimoto and Stern[12]and Carrica et al.[13]applied the CFD method for an advanced broaching prediction to identify more details behind this phenomenon. Yu et al.[14]studied the influence of hull parameters on the mitigation of surf-riding. Another breakthrough is the proposal of the analytical formulae based on the Melnikov method and the split-time formulation for predicting the ship surf-riding threshold in the following seas[15,16], which forms the foundation for the development of surf-riding/broaching vulnerability criteria.

    According to the latest IMO draft document[17], a three-level approach is adopted for the assessment of the surf-riding/broaching vulnerability criteria: in the Level 1 evaluation, only the ship length and speed information is required, the Level 2 evaluation is based on a simplified surf-riding model and the probability of the surf-riding occurrence in an irregular seaway is chosen as the criteria for assessment, the Level 3 evaluation involves a direct stability assessment and the detailed procedures are still under discussion[18].

    This paper focuses on the influence of the wave surge force on the Level 2 assessment result. Studies concerning the parametric rolling show that the reliability of the wave force estimation plays an important role in the prediction model[19-21]. However, its influence on the assessment result of the surf-riding/broaching stability failure remains an issue to be explored. In the current prediction model, only the Froude-Krylov component of the wave surge force is taken into account. As pointed out in Ref.[17]: for calculating the amplitude of the wave surge force, the Froude-Krylov component on its own might often be over-estimated. Correspondingly, an empirical diffraction effect correction factor is proposed. On the other hand, the current wave force estimation model is based on the linear theory (with the small wave amplitude assumption) and the effect of the ship forward speed is neglected. However, a large wave heights and a high ship speed are necessary for the occurrence of surf-riding/broaching. Therefore, it is meaningful to measure the wave surge forces by the captive model experiment in order to validate this empirical formula and investigate the effect of the wave steepness and the ship forward speed.

    1. Vulnerability criteria for surf-riding/broaching

    The assessment procedures for the Level 1 and Level 2 surf-riding/broaching stability failure are based on the contents of Annex 32 and Annex 35 in SDC 2/INF.10[17], which is the latest draft document available. The criteria apply to all ships with length equal to, or greater than 24 m. Assessments should be performed for each loading condition of the ship.

    For a ship to pass the assessment of the Level 2 vulnerability criteria, it is required that

    whereCrepresents the probability of the surf-riding occurrence,RSRis the standard value, which is 5×10-3. The value ofCis estimated by

    whereis the weighting factor of each sea state according to the long-term wave statistics,is the significant wave height,TZis the zerocrossing wave period,Wijis the statistical weight of a wave with the steepnessvarying from 0.03 to 0.15, and the ratio of the wave length to the ship lengthvarying from 1.0 to 3.0. Details concerning thecalculations of these factors are specified in SDC 2/INF.10[17].

    is the key element indicating whether surfriding/broaching will occur for each wave case, which is defined as:

    whereR(u) is the calm water resistance of the ship approximated by anNth order polynomial

    is the propeller thrust in calm water, which is modeled by:

    wheretPis the thrust deduction factor,wPis the wake fraction,DPis the propeller diameter.

    The Melnikov method is adopted for solvingncr, based on a nonlinear surging equation

    whereξGrepresents the longitudinal position of the ship center of gravity relative to the wave trough,mis the ship mass,mxis the added mass in the surge direction,fis the amplitude of the wave surge force, andkis the wave number.

    The detailed application of the Melnikov method can be found in Ref.[15], and the following equations are included in the latest draft criteria to obtainncr:

    wherecwis the wave celerity.

    The amplitude of the wave surge force in Eq.(11) is calculated as:

    whered(xi) andS(xi) are the draft and the submerged area of the ship at the stationiin calm water, respectively.

    Because Eq.(17) only cocnerns the Froude-Krylov component of the wave surge force, an empirical correction factorμxfor the diffraction effect compensation is proposed:

    whereCbis the block coefficient,Cmis the midship section coefficient. It should be pointed out that the validity of this empirical correction has not been proved, which is still under discussion in IMO.

    Based on the above method and procedures, a numerical code is developed for the assessment of the subsequent surf-riding/broaching vulnerability criteria.

    2. Sample ship calculation

    The main particulars of the sample ships are listed in Table 1. The length perpendicularLPPis taken as the ship lengthLin this study. The offset data, the calm water resistances and the propeller open water data of the sample ships are provided by the design institutes.

    Fishing boats and small-size high-speed boats are chosen intentionally because they are most vulnerable to the broaching stability failure. Moreover, the Froude numbers of the sample ships are above 0.3 and none of the ship length is over 200 m. Therefore, none of the sample ships can pass the Level 1 evaluation.

    For the Level 2 evaluation, the calm water resistance curves and the propeller thrust coefficients are approximated by the 5th and 2nd order polynomials, respectively. The assessment results are summarized in Table 1. TheCvalues are calculated either with or without the diffraction effect correction, denoted byCandC(μx). As can be seen from the results, the diffraction effect correction has a significant influence on the attainedCvalue. Once the diffraction effect is corrected, the attainedCvalue is decreased by about 40%-70%, which implies that the correct estimation of the wave surge force is crucial for the Level 2 assessment. Therefore, it is necessary to carry out further experimental investigations for a more accurate wave surge force prediction.

    Table 1 Main particulars of sample ships and assessment results

    Fig.1 Captive model test setup for wave surge force measurement

    3. Captive model test

    The captive model test in regular waves is performed to measure the wave surge force for a purse seiner (No. 1 ship in Table 1). This ship is a single propeller ocean-going vessel commonly found in China. The main particulars of the ship model (with a scale ratio of 17) are listed in Table 2.

    The experiment is conducted in the towing tank of MARIC (Marine Design and Research Institute of China). The basin is 280 m long, 10 m wide and 5 m deep.

    The experimental setup is illustrated in Fig.1. The ship is connected to the carriage. For the conventional seakeeping experiment, the ship is free to heave through one heaving pole. However, for the captive model test, an additional heaving pole is needed and two heave restrictors are applied to confine the heave and the pitch motions of the ship. Co-rrespondingly, two 3-component force sensors are installed between the heaving pole and the ship to measure the forces in the surge direction. The summation of the forces from the two sensors is taken as the measured wave surge force, i.e., the Froude-Krylov force plus the diffraction force. For tests with a forward speed, the ship is towed in calm water first to measure the reference forces of the two sensors, which is later deducted from the total measured wave surge force.

    Table 2 Main particulars of the purse seiner

    The experiment conditions are summarized in Table 3. Regular following waves are generated by the wave generator. Both cases of zero speed and ship speed ofFr=0.3 are tested. Two sets of wave steepness are tested for the zero speed case, i.e.,andThe wave lengths cover a range ofwhenH/λ=0.02. Under the condition ofH/λ=0.05 andFr=0.3,the tested wave lengths are reduced due to the wave height generation limitations and safety considerations.

    Table 3 Experiment conditions

    Figure 2 is an illustration of the experiment, which compares the wave patterns when the wave crest is passing the midship to demonstrate the effect of the wave steepness and the ship forward speed. In the case ofH/λ=0.05, there is a clear change of the wetted hull surface, which violates the linear theory assumption. On the other hand, due to the forward speed, the wave field becomes more complicated because the incoming regular wave interacts with the constant wave generated by the hull. A distinct bow wave can be noticed in Fig.2 whenFr=0.3.

    4. Results and discussions

    The experiment results are post-processed and compared with the numerical results in order to see the effect of the large wave steepness and the ship forward speed on the resulting wave surge force. Two methods for the numerical prediction are adopted: one is the strip method introduced in Section 2 according to SDC 2/INF.10, the other is a frequency domain Green Function based the 3-D panel method. Both methods are based on the linear theory with the small wave amplitude assumption, and the wave force is calculated only up to the mean wetted hull surface incalm water. Moreover, with the method based on the strip method, the Froude-Krylov force component of the wave surge force is only considered without taking into account the forward speed effect, while with the 3-D panel method, both the Froude-Krylov force and the diffraction force are considered, taking into account the speed effect. The results based on the 3-D panel method are computed by the commercial software HydroSTAR developed by Bureau Veritas (BV).

    Fig.2 (Color online) Experiment snapshots

    Figures 3, 4 show the section model and the panel model for the numerical computation.

    Fig.3 Section model

    Fig.4 (Color online) Panel model of the purse seiner

    The experimental and numerical results are shown in Fig.5. The wave surge forceFxis presented in the form of non-dimensional Response Amplitude Operators (RAOs).The major findings are summarized as follows:

    (1) The comparison of the experimental results betweenandH/λ=0.05 with zero forward speed shows that the linearity keeps well in terms of theFxresponses to the wave amplitude. Therefore, the wave steepness does not influence the wave surge force response very much and the numerical methods based on the linear theory assumptions can be applied in the assessments of the Level 2 surf-riding/broaching vulnerability criteria.

    (2) The comparison of the experimental results betweenFr=0 andFr=0.3 shows that the ship speed effect tends to increaseFxRAOs whenbut tends to decreaseFxRAOs whenλ/LPP=2.0 and 2.5. The numerical results according to the 3-D panel method show the same tendency. However, theFxRAOs with or without the speed effect do not see a great difference. Therefore, for the simplicity of computation, it is acceptable to neglect the speed effect in the Level 2 assessment.

    (3) The comparison between the 3-D panel method and the experimental results shows that they agree reasonably well with each other, especially in the small wave length region. However, the experiment results in the large wave length region are a little larger than the numerical results. Generally speaking, the 3-D panel method is applicable for the wave surge force prediction in the Level 2 assessment.

    (4) The comparison of the numerical results obtained by the 3-D panel method and the strip method without diffraction correction shows that the wave surge forces obtained by the latter method are over-predicted throughout the whole wave length range. Therefore, the diffraction effect correction is necessary if the strip method is applied.

    (5) The comparison of the numerical results obtained by the 3-D panel method and the strip method with diffraction correction shows that their differences are reduced, especially in the large wave length region. However, noticeable discrepancies still exist, which may influence the final assessment result. Therefore, the proposed empirical correction model can help improve the wave surge force estimation accuracy but further modification is still desirable. The advantage of using an empirical correction model instead of the direct 3-D panel method computation lies in the fact that the strip method adopts simpler section models and requires less computation effort, which is more preferable for the Level 2 assessment.

    Fig.5 Comparison between experimental and numerical results

    5. Conclusions

    The influence of the wave surge force on the assessment of the surf-riding/broaching vulnerabilitycriteria according to the new proposal of IMO Second Generation Intact Stability Criteria is investigated. A code is developed for the check of the criteria. Sample ship calculations are performed, which show that the accuracy of the wave surge force estimation has a significant influence on the assessment result.

    For a further investigation, the wave surge force measurement through a captive model test is made for a purse seiner in the towing tank. The influence of the wave steepness and the ship forward speed on the wave surge force is studied. It is demonstrated that:

    (1) The wave steepness and the ship forward speed only have a secondary influence on the wave surge force responses. Therefore, it is acceptable to neglect the speed effect and adopt numerical methods based on the linear theory assumptions for the assessment of the Level 2 surf-riding/broaching vulnerability criteria.

    (2) The diffraction effect is important for the correct estimation of the wave surge forces. Therefore, it is recommended to include this effect in the assessment procedure.

    (3) The proposed empirical diffraction effect correction model can help improve the wave surge force estimation accuracy but further modification is still desirable.

    This study demonstrates the validity of using the linear theory based methods for the estimation of the wave surge forces in the following regular waves despite the fact that the surf-riding/broach event is usually associated with a large wave amplitude and a high ship speed. The results can provide some guidance for IMO to finalize the new generation regulation. For future studies, more sample ship calculations are required for establishing a better empirical model for the diffraction effect correction.

    [1] Umeda N. Current status of second generation intact stability criteria development and some recent efforts [C].The 13th International Ship Stability Workshop. Brest, France, 2013.

    [2] Gu M., Lu J., Wang T. H. Stability of a tumblehome hull under the dead ship condition [J].Journal of Hydrodynamics, 2015, 27(3): 452-457.

    [3] Themelis N., Spyrou K. J., Belenky V. “High runs” of a ship in multi-chromatic seas [J].Ocean Engineering, 2016, 120: 230-237.

    [4] Neves M. Dynamic stability of ships in regular and irregular seas-An overview [J]. Ocean Engineering, 2016, 120: 362-370.

    [5] Spyrou K. J., Belenky V., Themelis N. et al. Detection of surf-riding behavior of ships in irregular seas [J].Nonlinear Dynamics, 2014, 78(1): 649-667.

    [6] Maki A, Umeda N., Hori M. Prediction of global bifurcation points as surf-riding points as surf-riding threshold in following seas [J].The Japan Society of Naval Architects and Ocean Engineers, 2007, 5: 205-215.

    [7] Maki A., Miyauchi Y. Prediction methods for the surfriding threshold and the wave-blocking threshold based on Melnikov’s method [J].Journal of Marine Science and Technology, 2016, 21(2): 179-189.

    [8] Wu W., Spyrou K. J., McCue L. S. Improved prediction of the threshold of surf-riding of a ship in steep following seas [J].Ocean Engineering, 2010, 37(13): 1103-1110.

    [9] Umeda N., Matsuda A., Hamamoto M. et al. Stability assessment for intact ships in the light of model experiments [J].Journal of Marine Science and Technology, 1999, 4(2): 45-57.

    [10] Umeda N., Hamamoto M. Capsize of ship models in following/quartering waves-physical experiments and nonlinear dynamics [J].Philosophical Transactions of the Royal Society A, 2000, 358: 1883-1904.

    [11] Umeda N., Usada S., Mizumoto K. et al. Broaching probabilitiy for a ship in irregular stern-quartering waves: Theoretical prediction and experimental validation [J].Journal of Marine Science and Technology, 2016, 21(1): 23-37.

    [12] Hashimoto M., Stern F. An application of CFD for advanced broaching prediction [J].The Japan Society of Naval Architects and Ocean Engineers, 2007, (5E): 51-52.

    [13] Carrica P. M., Paik K. J., Hossein H. S. et al. URANS analysis of a broaching event in irregular quartering seas [J].Journal of Marine Science and Technology, 2008, 13(4): 395-407.

    [14] Yu L., Ma N., Gu X. On the mitigation of surf-riding by adjusting center of buoyancy in design stage [J].International Journal of Naval Architecture and Ocean Engineering, 2017, 9(3): 292-304.

    [15] Maki A., Umeda N., Renilson M. et al. Analytical formulae for predicting the surf-riding threshold for a ship in following seas [J].Journal of Marine Science and Technology, 2010, 15(3): 218-229.

    [16] Belenky V., Weems K., Spyrou K. On probability of surfriding in irregular seas with a split-time formulation [J].Ocean Engineering, 2016, 120(1): 264-273.

    [17] IMO. Proposed amendments to Part B of the 2008 IS code to assess the vulnerability of ships to the broaching stability failure mode [R]. SDC 2/INF.10, 2014.

    [18] IMO. Draft guidelines of direct stability assessment procedures as a part of the second generation intact stability criteria [R]. SDC 1/INF.8, 2013.

    [19] Matusiak J. E. On the non-linearities of ship’s restoring and the Froude-Krylov wave load part [J].International Journal of Naval Architects and Ocean Engineers, 2011, 3(1): 111-115.

    [20] Hashimoto N., Umeda N., Matsuda A. Model experiment on heel-induced hydrodynamic forces in waves for broaching prediction [C].The 7th International Ship Stability Workshop. Shanghai, China, 2004, 144-155.

    [21] Horel B., Guillerm P. E., Rousset J. M. et al. Experimental database for surf-riding and broaching-to quantification based on captive model tests in waves [C].The 14th International Ship Stability Workshop. Kuala Lumpur, Malaysia, 2014.

    (Received March 6, 2015, Revised September 15, 2015)

    * Project supported by the High-Technology Ship Research Project of Ministry of Industry and Information Technology (Grant No. K24352), the National Natural Science Foundation of China (973 Praogram, Grant No. 51579144).

    Biography:Pei-yuan Feng (1987-), Male, Ph. D.,

    Senior Engineer

    She-ming Fan,

    E-mail: fan_sm@maric.com.cn

    猜你喜歡
    培元
    第17期參考答案
    秋日水鄉(xiāng)(水彩)
    照著說與接著說:蒙培元先生的中國哲學(xué)研究
    蒙培元哲學(xué)思想研討會暨《蒙培元全集》出版發(fā)布會舉行
    幸福就是跟你走
    景行行止
    ——蔡培元、林風(fēng)眠在杭州 紙本水墨 林皖
    金秋(2020年4期)2020-08-18 02:39:20
    以美育人 以美培元
    甘肅教育(2020年21期)2020-04-13 08:07:54
    郭培元:演好創(chuàng)新發(fā)展的四個角色
    李濟仁教授“培元”思想臨床應(yīng)用探微※
    愛開會的CIO
    国产老妇伦熟女老妇高清| 欧美日韩精品成人综合77777| 在线免费观看不下载黄p国产| 国产 亚洲一区二区三区 | 色综合色国产| 一级毛片aaaaaa免费看小| 国产一区二区亚洲精品在线观看| 97精品久久久久久久久久精品| 亚洲精品国产成人久久av| 精品人妻视频免费看| .国产精品久久| 少妇熟女aⅴ在线视频| 国产精品蜜桃在线观看| 亚洲va在线va天堂va国产| 看非洲黑人一级黄片| 两个人的视频大全免费| 欧美极品一区二区三区四区| 看黄色毛片网站| 亚洲人成网站在线播| 狂野欧美白嫩少妇大欣赏| 最近最新中文字幕免费大全7| 日本一二三区视频观看| 人人妻人人澡欧美一区二区| 91精品一卡2卡3卡4卡| 国产精品福利在线免费观看| 国产伦一二天堂av在线观看| 国内精品宾馆在线| 在现免费观看毛片| 成人av在线播放网站| 免费观看性生交大片5| 一级二级三级毛片免费看| 国产精品精品国产色婷婷| 国产高清国产精品国产三级 | 日本av手机在线免费观看| 国内精品美女久久久久久| 国产毛片a区久久久久| 内地一区二区视频在线| av免费在线看不卡| 久久久久久久久久人人人人人人| 99re6热这里在线精品视频| 日韩一区二区视频免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久亚洲中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美在线一区| 嫩草影院精品99| 两个人视频免费观看高清| 亚洲国产精品成人综合色| 精品欧美国产一区二区三| 熟妇人妻不卡中文字幕| 国产高清三级在线| 尾随美女入室| 欧美高清成人免费视频www| 午夜福利在线观看免费完整高清在| 精品人妻偷拍中文字幕| 只有这里有精品99| av播播在线观看一区| 黄色配什么色好看| 嫩草影院精品99| 九九久久精品国产亚洲av麻豆| 亚洲精品久久久久久婷婷小说| 中文资源天堂在线| 日韩 亚洲 欧美在线| 水蜜桃什么品种好| 在线免费观看不下载黄p国产| 久久精品国产鲁丝片午夜精品| 亚洲欧美中文字幕日韩二区| 国产伦在线观看视频一区| 国产黄色小视频在线观看| 精品人妻偷拍中文字幕| 男人舔奶头视频| 一个人看的www免费观看视频| 久久久欧美国产精品| 亚洲av在线观看美女高潮| 午夜福利成人在线免费观看| 国产精品三级大全| 啦啦啦啦在线视频资源| 啦啦啦啦在线视频资源| 久久久久九九精品影院| 啦啦啦中文免费视频观看日本| 日韩制服骚丝袜av| 街头女战士在线观看网站| 美女主播在线视频| 亚洲av成人精品一二三区| 欧美bdsm另类| 国产精品爽爽va在线观看网站| 成人性生交大片免费视频hd| 国产激情偷乱视频一区二区| 欧美日韩在线观看h| 国产精品女同一区二区软件| 99热这里只有精品一区| 亚洲经典国产精华液单| 26uuu在线亚洲综合色| av又黄又爽大尺度在线免费看| 亚洲图色成人| 如何舔出高潮| 国产在线一区二区三区精| 精品久久久久久久久久久久久| 99热这里只有是精品50| 偷拍熟女少妇极品色| 久久亚洲国产成人精品v| 亚洲人成网站在线观看播放| 不卡视频在线观看欧美| 亚洲最大成人中文| 精品国产露脸久久av麻豆 | 内地一区二区视频在线| 亚洲国产欧美人成| 免费大片黄手机在线观看| a级一级毛片免费在线观看| 亚洲av不卡在线观看| 亚洲av日韩在线播放| 日本熟妇午夜| 啦啦啦啦在线视频资源| 天堂影院成人在线观看| 国产在线男女| 内地一区二区视频在线| 美女xxoo啪啪120秒动态图| 老师上课跳d突然被开到最大视频| 久久久久九九精品影院| 午夜精品国产一区二区电影 | 在线观看免费高清a一片| 免费不卡的大黄色大毛片视频在线观看 | 国产黄片美女视频| 成人亚洲精品一区在线观看 | 午夜福利高清视频| 国产精品福利在线免费观看| 熟女电影av网| 免费大片18禁| 精品一区在线观看国产| 亚洲av免费在线观看| 成人特级av手机在线观看| 91精品一卡2卡3卡4卡| 午夜免费观看性视频| 免费av不卡在线播放| 美女大奶头视频| 亚洲18禁久久av| 青青草视频在线视频观看| 一级a做视频免费观看| 一级爰片在线观看| 人妻系列 视频| 免费在线观看成人毛片| 99热全是精品| 国产乱人偷精品视频| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜添av毛片| 天天一区二区日本电影三级| 国产伦精品一区二区三区视频9| 毛片一级片免费看久久久久| 三级毛片av免费| 干丝袜人妻中文字幕| 成年av动漫网址| 精品人妻一区二区三区麻豆| 中文字幕亚洲精品专区| 色综合亚洲欧美另类图片| 美女国产视频在线观看| 一级片'在线观看视频| 综合色丁香网| 欧美成人一区二区免费高清观看| 大香蕉97超碰在线| 高清欧美精品videossex| 人妻系列 视频| 别揉我奶头 嗯啊视频| 99热这里只有是精品50| 久久久久久久国产电影| 亚洲精品成人久久久久久| 亚洲精品自拍成人| 男人舔女人下体高潮全视频| 国国产精品蜜臀av免费| 亚洲高清免费不卡视频| 国产黄片视频在线免费观看| 美女内射精品一级片tv| 男插女下体视频免费在线播放| 国语对白做爰xxxⅹ性视频网站| 免费看av在线观看网站| 国产激情偷乱视频一区二区| 人妻夜夜爽99麻豆av| 亚洲综合色惰| 男插女下体视频免费在线播放| 精品人妻一区二区三区麻豆| 成年版毛片免费区| 日韩精品有码人妻一区| 我要看日韩黄色一级片| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 噜噜噜噜噜久久久久久91| 三级国产精品片| av在线亚洲专区| 少妇丰满av| 乱人视频在线观看| 婷婷色av中文字幕| 成年av动漫网址| 午夜视频国产福利| 国产探花极品一区二区| 99视频精品全部免费 在线| 亚洲第一区二区三区不卡| 久久韩国三级中文字幕| 91精品伊人久久大香线蕉| 欧美xxxx性猛交bbbb| 尤物成人国产欧美一区二区三区| www.av在线官网国产| 亚洲乱码一区二区免费版| 成人漫画全彩无遮挡| 午夜激情福利司机影院| 真实男女啪啪啪动态图| 久久鲁丝午夜福利片| 婷婷色综合大香蕉| 久久97久久精品| 亚洲成人久久爱视频| 99久久人妻综合| 久久久欧美国产精品| 日韩在线高清观看一区二区三区| 看免费成人av毛片| 婷婷色麻豆天堂久久| 免费高清在线观看视频在线观看| 亚洲国产成人一精品久久久| 亚洲av在线观看美女高潮| 亚洲精华国产精华液的使用体验| 人妻制服诱惑在线中文字幕| 黄片无遮挡物在线观看| 亚洲18禁久久av| 免费看美女性在线毛片视频| 久久97久久精品| 日韩 亚洲 欧美在线| videos熟女内射| 少妇高潮的动态图| 大陆偷拍与自拍| 天堂中文最新版在线下载 | 日本一二三区视频观看| 日韩欧美精品免费久久| 一区二区三区乱码不卡18| 水蜜桃什么品种好| 亚洲av在线观看美女高潮| 精品99又大又爽又粗少妇毛片| 亚洲精品一二三| 精品熟女少妇av免费看| 男女啪啪激烈高潮av片| av福利片在线观看| 夫妻性生交免费视频一级片| 国产免费福利视频在线观看| 丰满人妻一区二区三区视频av| 少妇被粗大猛烈的视频| 七月丁香在线播放| videossex国产| 女的被弄到高潮叫床怎么办| 日本一本二区三区精品| 九草在线视频观看| 天天躁日日操中文字幕| 三级国产精品欧美在线观看| 麻豆久久精品国产亚洲av| 亚洲综合色惰| 免费观看无遮挡的男女| 一级av片app| 高清视频免费观看一区二区 | 免费播放大片免费观看视频在线观看| 久久久精品欧美日韩精品| 91在线精品国自产拍蜜月| 亚洲精品日本国产第一区| 国产精品麻豆人妻色哟哟久久 | 我要看日韩黄色一级片| 青春草国产在线视频| 亚洲无线观看免费| 在线免费观看的www视频| 免费在线观看成人毛片| 寂寞人妻少妇视频99o| 校园人妻丝袜中文字幕| 亚洲精华国产精华液的使用体验| 国产 亚洲一区二区三区 | 午夜激情福利司机影院| av在线蜜桃| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区| 久久人人爽人人爽人人片va| 亚洲人成网站在线播| 国产永久视频网站| 在线 av 中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久久久久久亚洲| av女优亚洲男人天堂| 伦理电影大哥的女人| 国产高清国产精品国产三级 | 欧美极品一区二区三区四区| 亚洲欧美精品专区久久| 国产精品一二三区在线看| av.在线天堂| 免费观看性生交大片5| 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 久久99热这里只频精品6学生| 中文字幕av在线有码专区| 国产精品国产三级国产av玫瑰| 国产v大片淫在线免费观看| 男女啪啪激烈高潮av片| 精品人妻熟女av久视频| 我的老师免费观看完整版| 亚洲精品久久午夜乱码| av在线亚洲专区| 国产一区二区亚洲精品在线观看| 免费观看精品视频网站| 亚洲自偷自拍三级| 精品人妻一区二区三区麻豆| 日本wwww免费看| 蜜桃亚洲精品一区二区三区| 亚洲成人精品中文字幕电影| 欧美xxxx性猛交bbbb| 免费观看av网站的网址| 高清欧美精品videossex| 精品酒店卫生间| 嫩草影院精品99| 欧美潮喷喷水| 高清av免费在线| 国产在线一区二区三区精| 亚洲成人精品中文字幕电影| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕 | 久久久久久久久久人人人人人人| 一个人观看的视频www高清免费观看| 看黄色毛片网站| 欧美精品国产亚洲| 午夜久久久久精精品| av免费观看日本| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 少妇猛男粗大的猛烈进出视频 | 免费高清在线观看视频在线观看| 久久精品夜色国产| 亚洲av日韩在线播放| av国产久精品久网站免费入址| 日日摸夜夜添夜夜添av毛片| 久久综合国产亚洲精品| 人人妻人人看人人澡| av又黄又爽大尺度在线免费看| 亚洲人成网站在线播| 2021天堂中文幕一二区在线观| 国产成人aa在线观看| 欧美三级亚洲精品| 一级毛片我不卡| 夫妻性生交免费视频一级片| 久久午夜福利片| 国产成人freesex在线| 18禁在线播放成人免费| 人妻一区二区av| 国产视频首页在线观看| 波多野结衣巨乳人妻| 久久人人爽人人爽人人片va| 日韩电影二区| 日本猛色少妇xxxxx猛交久久| 久久久久久久亚洲中文字幕| 国产欧美另类精品又又久久亚洲欧美| 国产高清三级在线| 国产欧美另类精品又又久久亚洲欧美| 国产免费又黄又爽又色| 国产欧美另类精品又又久久亚洲欧美| 日本一本二区三区精品| 免费不卡的大黄色大毛片视频在线观看 | 男女边摸边吃奶| 国产精品嫩草影院av在线观看| 国产精品久久久久久久电影| 久久国内精品自在自线图片| 在线天堂最新版资源| 欧美xxxx黑人xx丫x性爽| 少妇高潮的动态图| 97热精品久久久久久| 亚洲成色77777| 久久97久久精品| 天天一区二区日本电影三级| 国产精品久久久久久av不卡| 白带黄色成豆腐渣| 国产成人a∨麻豆精品| 欧美激情久久久久久爽电影| 国产av国产精品国产| 十八禁网站网址无遮挡 | 99视频精品全部免费 在线| 亚洲高清免费不卡视频| 九九在线视频观看精品| 亚洲精品国产av成人精品| 精品国产一区二区三区久久久樱花 | 国产高清不卡午夜福利| 一区二区三区免费毛片| 高清午夜精品一区二区三区| 国产片特级美女逼逼视频| av.在线天堂| 禁无遮挡网站| 永久免费av网站大全| 国产片特级美女逼逼视频| 人妻夜夜爽99麻豆av| 亚洲精品日本国产第一区| 精品国产一区二区三区久久久樱花 | av在线天堂中文字幕| 人妻少妇偷人精品九色| 80岁老熟妇乱子伦牲交| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 久久亚洲国产成人精品v| 日日撸夜夜添| 日本黄色片子视频| 大话2 男鬼变身卡| 免费观看无遮挡的男女| 午夜免费观看性视频| 亚洲国产av新网站| 久久久久性生活片| 插逼视频在线观看| 欧美日韩视频高清一区二区三区二| 国产综合懂色| 中文欧美无线码| 在现免费观看毛片| 白带黄色成豆腐渣| 偷拍熟女少妇极品色| 精品一区二区三卡| 九九久久精品国产亚洲av麻豆| 青春草国产在线视频| 99视频精品全部免费 在线| 一个人观看的视频www高清免费观看| 国产白丝娇喘喷水9色精品| 一二三四中文在线观看免费高清| 国产黄片美女视频| 日本一二三区视频观看| 三级国产精品欧美在线观看| 51国产日韩欧美| ponron亚洲| 国产成人aa在线观看| 亚洲精品视频女| 免费黄色在线免费观看| 免费高清在线观看视频在线观看| 男人狂女人下面高潮的视频| av免费观看日本| 亚洲人成网站在线播| 在线观看一区二区三区| 伊人久久国产一区二区| 日韩欧美三级三区| 成人美女网站在线观看视频| 欧美精品国产亚洲| 欧美变态另类bdsm刘玥| 深爱激情五月婷婷| 国产午夜精品一二区理论片| 精品国产三级普通话版| 日韩成人av中文字幕在线观看| 欧美日韩亚洲高清精品| 99久国产av精品国产电影| 国产淫片久久久久久久久| 久久鲁丝午夜福利片| 久久久久久国产a免费观看| 国产久久久一区二区三区| 国产黄色免费在线视频| 欧美xxxx黑人xx丫x性爽| 欧美日本视频| 97超视频在线观看视频| 国产精品伦人一区二区| 精品一区二区三区人妻视频| 美女内射精品一级片tv| 色5月婷婷丁香| 国产av不卡久久| 色尼玛亚洲综合影院| 91aial.com中文字幕在线观看| 日韩亚洲欧美综合| 久久鲁丝午夜福利片| 精品久久久久久久久av| 狠狠精品人妻久久久久久综合| 国产高潮美女av| 超碰av人人做人人爽久久| 中文字幕久久专区| 亚洲欧洲国产日韩| 青春草国产在线视频| 成年女人看的毛片在线观看| 欧美激情在线99| 欧美变态另类bdsm刘玥| 亚洲自偷自拍三级| 欧美高清性xxxxhd video| 亚洲精品乱码久久久久久按摩| 嫩草影院入口| 欧美人与善性xxx| 精品午夜福利在线看| 别揉我奶头 嗯啊视频| 亚洲真实伦在线观看| 男人和女人高潮做爰伦理| 国产精品1区2区在线观看.| 女人十人毛片免费观看3o分钟| 国产伦在线观看视频一区| 亚洲av成人av| 国产淫语在线视频| 淫秽高清视频在线观看| 欧美日本视频| 丝袜美腿在线中文| 大陆偷拍与自拍| 男人和女人高潮做爰伦理| 久久精品人妻少妇| 啦啦啦啦在线视频资源| 热99在线观看视频| 国产一区有黄有色的免费视频 | 精品一区二区三区视频在线| 午夜福利在线在线| 国产精品伦人一区二区| 精品国产三级普通话版| 日本一本二区三区精品| 丰满乱子伦码专区| 97超碰精品成人国产| 午夜亚洲福利在线播放| 国产精品一区二区在线观看99 | 国产在线男女| 国产av不卡久久| 免费观看精品视频网站| av在线天堂中文字幕| 国产精品人妻久久久久久| 国产成人精品婷婷| 波多野结衣巨乳人妻| 啦啦啦中文免费视频观看日本| 99视频精品全部免费 在线| 国产黄色视频一区二区在线观看| 又大又黄又爽视频免费| 天堂网av新在线| 一级二级三级毛片免费看| 99久久九九国产精品国产免费| 2021少妇久久久久久久久久久| freevideosex欧美| 99久久人妻综合| 国产成人福利小说| 内射极品少妇av片p| videossex国产| 久久久亚洲精品成人影院| 亚洲av不卡在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产日韩欧美精品在线观看| 一级毛片我不卡| 亚洲精品亚洲一区二区| 九九爱精品视频在线观看| av又黄又爽大尺度在线免费看| 中文资源天堂在线| 婷婷色综合www| 国产极品天堂在线| 亚洲精品一区蜜桃| 97在线视频观看| 亚洲最大成人中文| 精品欧美国产一区二区三| 97人妻精品一区二区三区麻豆| 国产色爽女视频免费观看| 久久久精品94久久精品| 久久久久久久久久久免费av| 国产精品一区www在线观看| 精品久久久久久久久亚洲| 成人一区二区视频在线观看| 天美传媒精品一区二区| 欧美xxⅹ黑人| 美女高潮的动态| 最近最新中文字幕免费大全7| kizo精华| 成人无遮挡网站| 中文天堂在线官网| 亚洲精品456在线播放app| 日韩三级伦理在线观看| 特级一级黄色大片| 在线 av 中文字幕| 婷婷色综合大香蕉| 国产成人精品一,二区| 99九九线精品视频在线观看视频| 插逼视频在线观看| 能在线免费看毛片的网站| 日日啪夜夜撸| 久久久久久久久久久丰满| 亚洲精品乱久久久久久| 国产精品99久久久久久久久| 亚洲四区av| 久久99蜜桃精品久久| 尤物成人国产欧美一区二区三区| 国产精品爽爽va在线观看网站| 美女脱内裤让男人舔精品视频| 在线免费观看不下载黄p国产| 男女下面进入的视频免费午夜| 亚洲av成人精品一区久久| 美女xxoo啪啪120秒动态图| 日本免费在线观看一区| 欧美 日韩 精品 国产| 草草在线视频免费看| 国产激情偷乱视频一区二区| 性插视频无遮挡在线免费观看| 国产极品天堂在线| 国产 一区 欧美 日韩| 国产精品女同一区二区软件| 天堂中文最新版在线下载 | 干丝袜人妻中文字幕| 99久久精品热视频| 国产伦在线观看视频一区| 国内精品宾馆在线| 亚洲成人精品中文字幕电影| 欧美成人午夜免费资源| av在线天堂中文字幕| 精品一区二区三区人妻视频| 内地一区二区视频在线| 亚洲av电影在线观看一区二区三区 | 国产精品综合久久久久久久免费| 日本三级黄在线观看| 偷拍熟女少妇极品色| 国产女主播在线喷水免费视频网站 | 亚洲精品日韩在线中文字幕| 久久久a久久爽久久v久久| 久久97久久精品| 亚洲精品日韩在线中文字幕| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区成人| 汤姆久久久久久久影院中文字幕 | 国产伦精品一区二区三区视频9| 中国美白少妇内射xxxbb| 中文乱码字字幕精品一区二区三区 | 国产视频内射| 黑人高潮一二区| 亚洲色图av天堂| 亚洲精品成人av观看孕妇| 国产精品人妻久久久影院| 网址你懂的国产日韩在线| 免费在线观看成人毛片| 中文精品一卡2卡3卡4更新| 国产精品1区2区在线观看.| 亚洲成人一二三区av| 久久久久久久午夜电影| av.在线天堂|