• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial relationship between energy dissipation and vortex tubes in channel flow*

    2017-09-15 13:55:43LiekaiCao曹列凱DanxunLi李丹勛HuaiChen陳槐ChunjingLiu劉春晶

    Lie-kai Cao (曹列凱), Dan-xun Li (李丹勛), Huai Chen (陳槐), Chun-jing Liu (劉春晶)

    1.State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China, E-mail:clk_THU@hotmail.com

    2.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

    3.State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resource and Hydraulic Research, Beijing 100038, China

    Spatial relationship between energy dissipation and vortex tubes in channel flow*

    Lie-kai Cao (曹列凱)1, Dan-xun Li (李丹勛)1, Huai Chen (陳槐)2, Chun-jing Liu (劉春晶)3

    1.State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China, E-mail:clk_THU@hotmail.com

    2.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

    3.State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resource and Hydraulic Research, Beijing 100038, China

    The spatial relationship between the energy dissipation slabs and the vortex tubes is investigated based on the direct numerical simulation (DNS) of the channel flow. The spatial distance between these two structures is found to be slightly greater than the vortex radius. Comparison of the core areas of the vortex tubes and the dissipation slabs gives a mean ratio of 0.16 for the mean swirling strength and that of 2.89 for the mean dissipation rate. These results verify that in the channel flow the slabs of intense dissipation and the vortex tubes do not coincide in space. Rather they appear in pairs offset with a mean separation of approximately 10η.

    Energy dissipation, vortex, channel flow, swirling strength, turbulent structure

    Introduction

    The structure of the intermediate and fine scales of the turbulent shear flows remains one of the most challenging issues in the turbulence research. Understanding the dynamics of these scales is essential for an accurate statistical description and the numerical simulation of the turbulent shear flows.

    The energy dissipative structures, characterized by the Kolmogorov scaleη, represent the finest eddies in the turbulence. The kinetic energy dissipation is generally complex, involving sheet-, line- and blob-like structures[1]. The intense energy dissipation structures (defined as a region over which the magnitude of energy dissipation is much larger than the global mean value), however, tend to be more slab-like, as has been identified in various experimental studies[1,2]. The dissipation slab possesses a charac-teristic thickness of 5η-10ηand a length of 50η-100ηin the order of magnitude[1,2].

    Vortex structures are comparable in size to the dissipative structures. Vortex cores correspond to the most intense realizations of the background vorticity, and they tend to form tube-like structures, as identified in various kinds of turbulent flows, e.g., the isotropic turbulence[3], the turbulent jet[1,4], the pipe flow[5], the channel flow[6], and the turbulent boundary layers[7]. Herpin et al.[8]found that the core diameter of the vortex tubes was nominally 8η, and Ganapathisubramni et al.[1]reported similar results of 6ηto 15η. The typical length of the vortex tubes was found to be approximately 60η-100η[1].

    The relationship between the vortex structures and the dissipative structures is a research focus. Results obtained based on the DNS concluded that intense dissipative structures occur in the vicinity of intense vortex cores[3,9]. The measurements of previous studies[1,10,11]reported similar conclusions that the dissipation structures and the vortices are spatially and temporally separated. In particular, Zeff et al.[10]studied conditional averages of the growth rate of the dissipation, finding that the dissipation decreases whenthe centre of a vortex tube is approached. Ganapathisubramani et al.[1]computed the joint probability density function (PDF) between the swirling strength and the energy dissipation rate to investigate the concurrence of intense values of the two quantities, showing that an intense dissipation is not coincident with an intense swirling strength. Fiscaletti et al.[11]estimated the distance between the vortex structure and the intense dissipation structure by a cross correlation of the swirling strength and the dissipation rate, which is found to be comparable to the radius of the vortex.

    Table 1 Parameters of the DNS data from Del Alamo et al.[13]

    Table 2 Interpolated planes from the DNS dataset

    Regarding the energy dissipation field associated with the vortex tubes, most results indicate that the two structures are separated, and the peaks of the dissipation rate are at the periphery of the vortex tubes. These results are mainly based on the analysis of the isotropic turbulent flow and the turbulent jet, and without much work on the analysis of channel flows. Moreover, some contradictory evidence exists, for example, Pirozzoli[12]reported that the energy dissipation peaks are found at the vortex centre rather than around the periphery.

    In the present study we analyze the dissipation fields associated with the vortex tubes using a direct numerical simulation (DNS) database of channel flows. The main objective is to perform both qualitative and quantitative analyses to reveal the spatial relationship between the intense dissipation structures and the vortex tubes in channel flows.

    1. Methodology

    1.1 DNS data

    The analysis is based on a DNS database of the turbulent channel flows by Del Alamo et al.[13]. The original datasets include two series of simulations: in the first one, large numerical boxes are used to account for large-scale energetic structures, and in the second one, smaller boxes are used to increase the Reynolds number. The L950 case from the first series is selected and introduced briefly here. Detailed information can be found in Del Alamo et al.[13].

    The friction Reynolds number of the flow iswhereuτis the wall friction velocity andνis the viscosity. The simulation covers a spatial domain ofandalongx(steamwise),y(wall-normal) andz(spanwise) directions, respectively, wherehis the channel half-width. The domain is discretized into an array of 3072(x)×385(y)×2304(z) points. In the present analysis, we compute statistics related with a part of the domain with a volume of 16πh/3(x)×1h(y)×2πh(z), corresponding to an array of 2 048(x)×193(y)×1536(z) points. It is worth noting that the original discretization is based on uniform spatial resolutions inxandzdirections (the flow homogeneity is assumed in these two directions) and non-uniform resolution inydirection (finer grids are used in the near-wall region in order to better resolve the velocity gradient).

    For each mesh, three instantaneous velocity components and nine corresponding velocity gradients are considered. Major parameters of the DNS database are summarized in Table 1.

    To facilitate the vortex detection and analysis, the native 2-D velocity fields inXYandYZplanes are interpolated on regular meshes using the bi-cubic spline interpolation technique, as by Herpin et al.[14]. Different spacings inydirection are used inXYandYZplanes, i.e., Δy+=7.5 (similar to Δx+) inXYplane and Δy+=3.8 (equal to Δz+) inYZplane. The original uniform resolution inXZplane is maintained (Δx+=7.6and Δz+=3.8). Then the 3-D velocity fields are projected into the coordinate planes, with a separation distance of+38 inzdirection and of+76 inxdirection. For each sliced plane, a total number of 30 instantaneous velocity fields, uncorrelated in time, are used for statistical analysis. In total, we have extracted 153×30XYplanes, 204×30YZplanes, and 193×30XZplanes for further analysis, and there are 2048×124, 245×1536 and 2048×1536 grid points inXY,YZandXZplanes, respectively. The characteristics of the interpolatedXYandYZplanes as well as the nativeXZplanes are summarized in Table 2.

    1.2 Vortex identification

    Vortices can be extracted from the background turbulence through various point-wise methods that involve kinematic parameters derived from the velocity gradient tensor ?u[15]. In the present study we use the swirling strength method. This method, first proposed by Zhou et al.[15], takes the imaginary part of the complex eigenvalues,λci, as the vortex indicator.

    To eliminate the wall-normal dependence ofλciin the wall-bounded flows, similar to the normalisation methods in the previous research[16], we recommend to use the normalisation ofλciwith its local root mean square (rms)

    whereis the rms ofλciat a givenyposition. A comparison of PDFs of(whereandΛatand 0.9 indicates that the wall-normal dependence ofciλis successfully eliminated after the normalisation (Fig.1). Following Wu and Christensen[16], Herpin et al.[14], Chen et al.[17]and Zhong et al.[18], we useΛsto identify and visualize the vortices in the present study. It is worth noting that the use of other vortex detection functions does not alter the results as these methods are essentially equivalent.

    To extract vortexes from a background turbulence, a non-zero threshold has to be used such that

    Fig.1 Comparison of probability density functions inXZplane for different values of

    There is no general consensus on the selection of an appropriate non-zero threshold in the literature[1,6,14-17]. Zhou et al.[15]determinedαas a percentage of the maximumΛssuch that

    Zhou et al.[15]recommended =12%-20%βbased on their findings that the extracted vortices have varying sizes but a similar shape at such a threshold. In order to extract intense vortex tubes, we use a threshold ofα=2 at whichβis equal to about 13%, similar to the lower limit given by Zhou et al.[15]. This threshold is greater than that used by Wu and Christensen, whereα=1.5[16].

    The vortex radius is calculated by using the algorithm proposed by Gao et al.[6].

    1.3 Energy dissipation slab

    The dissipation rate of the kinetic energy per unit volume,ε, is calculated by using nine velocity gradient components. The volume-averaged and plane-averaged (XZplane) energy dissipation rates, 0εandεp, are quantified by averaging over the entire domain and theXZplane, respectively. Further analysis of the energy dissipation rate in a channel flow is performed by computing the cumulative distribution functions (CDFs).

    Fig.2 Comparison of probability density functions ofεandEinXZplane for various values ofy/h

    Instantaneous dissipation slabs can be extracted based on the iso-surfaces of the dissipation rate. Similar to the swirling strength, the dissipation rate also exhibits a wall-normal dependence (Fig.2(a)). This wall-normal dependence makes it difficult to select a universal threshold, i.e., a proper threshold for showing inner-layer dissipation structures may lead to“blurring” in the outer layer, and conversely, raising the threshold to “accommodate” the outer-layer dissipation structures may result in “cluttering” of those in the inner layer. By analogy to the normalisation procedure used for the vortex identification, we normalize the dissipation rate with its plane-averaged value to eliminate the wall-normal dependence (Fig.2(b))

    whereis the plane-averaged dissipation rate in the plane aty.

    The normalisation of Eq.(4) yields a value ofEwith a negligible wall-normal dependence, based on which the energy dissipation structures can be extracted through similar procedures used for the vortex identification. A threshold ofE=3 is selected (corresponding to 90% of the points of the cumulative distribution function inXZplane), that is, the intense dissipation regions in the flow field are identified asε≥3εp. This threshold is also used by Fiscaletti et al.[11]to extract a high dissipation structure.

    1.4 Spatial relationship analysis

    The spatial relationship between the energy dissipation and the vortex structures is investigated through three approaches in the present analysis.

    The first approach is to project the instantaneous iso-surfaces ofΛsandEinto a slicedXYplane or into the 3-D domain. This approach is easy to implement, and can provide important intuitive information.

    Fig.3 (Color online) Schematic diagram of the conditional average approach (green points denote vortex cores)

    Fig.4 (Color online) Centers extracted from instantaneous 3-D structures of dissipation and vortices

    The second approach involves a conditional average in variousXYplanes at+=2 006zto examine the energy dissipation in the vicinity of vortex centers. This approach consists of four steps. Firstly, all points ofΛs>2 are identified, and their local maxima are marked as the vortex cores in theXYplane. Secondly, each vortex is characterized by a rectangular region of 40×40 mesh. Thirdly, an ensemble is established by collecting all these rectangular vortex regions with samey+in the time series (as those vortices in the stripe with grey background color in Fig.3). Lastly, the swirling strength and the energy dissipation rate are statistically averaged to obtain the final results.

    The third approach makes use of the quantification of the spatial distances between vortex tubes and their neighboring energy dissipation structures. The centres of the instantaneous 3-D structures of dissipation and the vortices are identified as the local maxima in the vortex tubes and the dissipation slabs, as shown in Fig.4. Once the vortex centreand its neighboring dissipation centreare obtained, the distance between them can be readily calculated

    The ratios ofλcias well asεbetween the two cores are defined as

    whereλciDandλciVare the swirling strengths at the dissipation centre and at the vortex centre, respectively,εDandεVare similarly defined.

    Fig.5 Distribution of plane-averaged energy dissipation along

    Fig.6 Cumulative distribution functions of the dissipation rate

    2. Results

    2.1 Energy dissipation

    The volume-averaged energy dissipation rateε0over the entire 3-D domain is 0.011 m2s-3. The normalized plane-averaged dissipation ratein theXZplane is shown in Fig.5. A relatively constantεpis observed in the vicinity of the channel bed+(y<8) followed by a steady decrease with increasing+y. This finding is consistent with the results of Herpin et al.[14]. Compared withε0,εpis greater in the region ofy+<23 due to the contribution of the mean shear. to 72% in the outer layer (y+=700) and 61% in the viscous sublayer+(y=5). These results are consistent with those obtained by Ganapathisubramani et al.[1].

    The instantaneous 3-D dissipative structures are visualized through iso-surfaces of the the normalized dissipation rate,E. As shown in Fig.7, most dissipative structures are slab-like of a finite thickness. These structures are named the “dissipation sheet” by Ganapathisubramani et al.[1].

    Fig.7 (Color online) Two typical iso-surfaces of instantaneous dissipation structures forE=3

    Fig.8 Distribution of the scaled Kolmogorov length scale

    The CDFs of the dissipation rate in the 3-D domain and the three orthogonal planes are shown in Figs.6(a)-6(d), respectively. In the 3-D domain, about 86% of the energy dissipation rate is less than the volume-averagedε0(Fig.5(a)). Similar percentages are observed in differentXYplanes (corresponding toz+=200, 470, 2 000 and 7 000 in Fig.6(b)) and differentYZplanes (corresponding tox+=49, 298, 1 009 and 2 006 in Fig.6(c)). InXZplanes (Fig.6(d)), the CDF profiles display a visible wall-normal dependence, and the percentage reduces

    Fig.9 (Color online) Typical instantaneous vortex structures visualized withΛs=2

    Fig.10 Mean vortex radius scaled with+yandη

    Fig.11 (Color online) Color maps of swirling strength and energy dissipation rate in the slicedXYplane at+=2 006z

    Figure 8 presents the scaled Kolmogorov length scaleη/y*alongy+in which. It is clear thatremains roughly constant in the nearwall regionand then turns to increase steadily withy+. Herpin et al.[14]reported similar results.

    2.2 Vortex characteristics

    The tube-like vortex structures are visualized through the contours ofΛs. Figure 9 shows typical iso-surfaces forΛs=2. It is clearly visible that the channel flow is also prominent with vortex tubes.

    The mean radius of the tube-like vortices displays a visible wall-normal dependence, as shown in Fig.10. When scaled withy*, the mean radius increases with+y, when scaled with localη, however, it decreases with+y. These trends agree well with the previous results[19]. In the outer layer, a similar magnitude ofris observed as those obtained by Ganapathisbramani et al.[1], and Pirozzoli[12]. The magnitude ofr+(whereis smaller than those reported by Gao et al.[6], and such a disagreement is possibly due to different thresholds used.

    2.3 Spatial relationship between dissipation slabs and vortices

    Fig.12 (Color online) Overlay iso-surfaces of swirling strength forΛs=2 and energy dissipation rate forE=3

    Figure 11 presents a typical 2-D instantaneous velocity field in theXYplane at+=2 600zto illustrate the spatial relationship between the dissipation slabs and the vortex structures. The distributions ofΛsandEindicate that both the vortices and the intense dissipation regions are locally concentrated (Figs.11(a), 11(b)). These local patterns are better illustrated through a binary thresholding withΛs=2 andE=3, respectively (Figs.11(c), 11(d)). In the same plot, the distributions ofΛsandEshow clearly that the intense dissipation slabs are located in the vicinity of multiple nested vortex tubes (Fig.11(e)). Similar results are obtained in otherXYplanes andXZandYZplanes.

    Figure 12 presents a typical instantaneous 3-D iso-surfaces ofΛsandE. In the region of300, both the vortex tubes and the intense dissipation structures are densely distributed, in the region ofthose structures become sparse. It is clearly visible that the elongated vortex tubes are surrounded by intense dissipation slabs. This observation is consistent with the previous studies[1,3,9].

    Figure 13 presents the conditionally averaged results forand 700. Similar procedures of the binary thresholding and the superposition are used in plotting the figure. Again, it is clearly visible that the intense vortices and the intense dissipation structures do not collapse in space. Note that the spatial relationship between these two kinds of structures seem to be related toi.e., the vortices and the dissipation structures seem to stand shoulder by shoulder aty+=74 whereas the vortices are surrounded by the dissipation structures aty+=700.

    The results of the distance between the vortex tubes and the dissipation slabs are presented in Table 3. The mean distance is, about twice the radius of the vortex tube. This fact supports the previous findings that the intense dissipation structures are generally distributed in the vicinity of the vortex tubes. The mean values ofMλandMεareandrespectively, indicating that the vortex cores and the dissipation structures do not collapse in space.

    Figure 14 shows the CDFs of the distanced. About 80% of the values ofdfall in the interval of (10y*-40y*), and their median is at 28y*, about twice of the vortex radius.

    Figure 15 shows the plane-averaged distancedswith respect toy+. In the inner layer,increases with the increase of+y, but in the outer layer the trend reverses (Fig.15(a)). In the outer layer, the magnitude ofdsvaries in the range of 7η-10η(Fig.15(b)), about twice the radius of vortex tubes calculated as in the range of 4η-6η. The spatial distance is similar to the estimation of 9ηbyFiscaletti et al.[11]and to the distance in the range of 8η-12ηin a Burgers vortex model.

    Figure 16(a) shows the plane-averagedMsλas a function of the wall-normal position. It is apparent that fory+>50,Msλremains close to 0.16 with a negligible wall-normal dependence. Figure 16(b) shows that in the outer layer, the probability ofMλ=0 fluctuates around 59.5%, indicating that about 60% of the intense dissipation slabs are located in the non-vortex region. These results further verify that the cores of the intense dissipation structures and the vortex tubes are not overlapped in space.

    3. Discussions

    As both the vortex tubes and the energy dissipation slabs are complex spatial structures, it is difficult, if not impossible, to accurately define and quantify the distances between them. In order to get comparable results, the present study follows the commonly used definitions and methods.

    When a dissipation slab is immediately close to a vortex tube (Fig.17), the distance between these two structures can be defined as

    Fig.13 (Color online) Color maps of conditional averaged swirling strength and dissipation rate aty+=74 and+=700y

    Fig.14 CDFs of distance in the whole domain

    whereφandHrepresent the vortex diameter and the thickness of the intense dissipation structure, respectively. Previous studies reveal thatH=6η-12η[1-2]. The present study indicates thatφ=8η-12η. Based on these results, one may haveL=6η-12ηsimilar to the calculated values (7η-10η).

    Pirozzoli[12]reported that the maximum dissipation occurs in the vortex centre rather than around the periphery. His observation may be closely related to his average procedure (azimuthally averaging the energy dissipation around vortex tubes), not necessarily related to the true physics. For illustration, we also make a spatial average analysis of the energy dissipation rate along the radial direction. Figure 18 presents the result aty+=700 (based on the data from the averaged results in Section 3.3). Similar to the finding of Pirozzoli[12], a distinct peak occurs at the centre of the vortex and a secondary peak occurs near the edge of the vortex. This trend can be explained by the non-circular characteristics of the dissipative struc-tures in a sliced plane (for instance, see Fig.13). For an individual vortex, the dissipation rate in the vortex core is always smaller than that in the outer edge. However, due to the fact that the dissipation structure typically does not surround the vortex as a circle, the averaging over the area equidistant to the vortex core may result in the pattern shown in Fig.18.

    Fig.15 Mean distance ofdsscaled withy*andη

    Fig.16 Plane-averagedMsλand the probability ofM=0λ Mλ=0 along+y

    Fig.17 (Color online) Schematic diagram of a neighboring pair of dissipation slab and vortex tube

    Fig.18 Radial distribution of energy dissipation.εrmeans the averaged dissipation rate at a givenr

    4. Conclusions

    Based on the DNS data of the turbulent channel flow, the spatial distributions of intense dissipation slabs and vortex tubes are investigated. Major findings are as follows:

    (1) A relatively uniform distribution of the energy dissipation is observed in theXZplane, uneven distributions are observed in bothXYandYZplanes, i.e., the plane-averaged dissipation rate decreases with the increase of+y. In more than 86% of the flow region, the dissipation rate is below the average value.

    (2) The typical instantaneous velocity fields reveal that the vortices are organized in tube-like structures and the intense dissipation structures are slab-like with a finite thickness. Intense dissipation slabs are found in the vicinity of vortex tubes.

    (3) The mean distances between the neighboring vortex tubes and the dissipation slabs are found to be approximately equal to 28.1y*, slightly larger than the vortex radius. Scaled with the Kolmogorov scale, the distance varies in the range of 7η-10η.

    (4) Comparison of the core areas of the vortex and the dissipation slab gives a mean ratio of 0.16 for the mean swirling strength and that of 2.89 for the mean dissipation rate. This further verifies that the regions of the intense dissipation do not collapse to those of the vortex tubes.

    [1] Ganapathisubramani B., Lakshminarasimhan K., Clemens N. T. Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry [J].Journal of Fluid Mechanics, 2008, 598: 141-175.

    [2] Tsurikov M. S., Clemens N. T. The structure of dissipative scales in axisymmetric turbulent gas-phase jets [C].AIAA 40th Aerospace Sciences Meeting. Reno, Nevada, 2002.

    [3] Vincent A., Meneguzzi M. The dynamics of vorticity tubes in homogeneous turbulence [J].Journal of Fluid Mechanics, 1994, 258: 245-254.

    [4] Violato D., Scarano F. Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown [J].Physics of Fluids, 2013, 25(1): 015-112.

    [5] Mouri H., Hori A., Kawashima Y. Laboratory experiments for intense vortical structures in turbulence velocity fields [J].Physics of Fluids, 2007, 19(5): 055-101.

    [6] Gao Q., Ortiz-Dunnas C., Longmire E. K. Analysis ofvortex populations in turbulent wall-bounded flows [J].Journal of Fluid Mechanics, 2011, 678: 87-123.

    [7] Elsinga G. E., Adrian R. J., Van Oudheusden B. W. et al. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer [J].Journal of Fluid Mechanics, 2010, 644: 35-60.

    [8] Herpin S., Stanislas M., Foucaut J. M. et al. Influence of the Reynolds number on the vortical structures in the logarithmic region of turbulent boundary layers [J].Journal of Fluid Mechanics, 2013, 716: 5-50.

    [9] Kaneda Y., Ishihara T. High-resolution direct numerical simulation of turbulence [J].Journal of Turbulence, 2006, 7: 1-17.

    [10] Zeff B. W., Lanterman D. D., McAllister R. et al. Measuring intense rotation and dissipation in turbulent flows [J].Nature, 2003, 421(6919): 146-149.

    [11] Fiscaletti D., Westerweel J., Elsinga G. E. Long-range mu-PIV to resolve the small scales in a jet at high Reynolds number [J].Experiments in Fluids, 2014, 55: 1812.

    [12] Pirozzoli S. On the velocity and dissipation signature of vortex tubes in isotropic turbulence [J].Physica D: Nonlinear Phenomena, 2012, 241(3): 202-207.

    [13] Del Alamo J. C., Jimenez J., Zandonade P. et al. Scaling of the energy spectra of turbulent channels [J].Journal of Fluid Mechanics, 2004, 500: 135-144.

    [14] Herpin S., Stanislas M., Soria J. The organization of near-wall turbulence: a comparison between boundary layer SPIV data and channel flow DNS data [J].Journal of Turbulence, 2010, 11: 1-30.

    [15] Zhou J., Adrian R. J., Balachandar S. et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J].Journal of Fluid Mechanics, 1999, 387: 353-396.

    [16] Wu Y., Christensen K. T. Population trends of spanwise vortices in wall turbulence [J].Journal of Fluid Mechanics, 2006, 568: 55-76.

    [17] Chen Q., Zhong Q., Wang X. et al. An improved swirling-strength criterion for identifying spanwise vortices in wall turbulence [J].Journal of Turbulence, 2014, 15(2): 71-87.

    [18] Zhong Q., Li D., Chen Q. et al. Coherent structures and their interactions in smooth open channel flows [J].Environmental Fluid Mechanics, 2015, 15(3): 653-672.

    [19] Pirozzoli S., Bernardini M., Grasso F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer [J].Journal of Fluid Mechanics, 2008, 613: 205-231.

    (Received July 11, 2015, Revised October 21, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51127006).

    Biography:Lie-kai Cao (1990-), Male, Ph. D. Candidate

    Chun-jing Liu,

    E-mail: liucj@iwhr.com

    另类精品久久| 欧美老熟妇乱子伦牲交| 亚洲少妇的诱惑av| 97在线人人人人妻| 又黄又爽又刺激的免费视频.| 中文字幕人妻熟人妻熟丝袜美| 91成人精品电影| 久久久国产欧美日韩av| 日韩欧美一区视频在线观看| 国产伦理片在线播放av一区| 欧美日本中文国产一区发布| 亚洲成人av在线免费| 国产免费一级a男人的天堂| 亚洲av欧美aⅴ国产| 22中文网久久字幕| 久久99一区二区三区| 免费观看在线日韩| 在线天堂最新版资源| 老司机影院毛片| 免费av不卡在线播放| 免费av不卡在线播放| 99视频精品全部免费 在线| 人体艺术视频欧美日本| 亚洲欧美一区二区三区黑人 | 国产毛片在线视频| 免费高清在线观看视频在线观看| 在线观看美女被高潮喷水网站| 国产精品久久久久久精品电影小说| 精品亚洲成国产av| 中文字幕人妻丝袜制服| 一边亲一边摸免费视频| 亚洲欧美日韩另类电影网站| 日日摸夜夜添夜夜添av毛片| 一区在线观看完整版| 国产精品女同一区二区软件| 欧美3d第一页| 精品酒店卫生间| 午夜av观看不卡| 亚洲av电影在线观看一区二区三区| 秋霞在线观看毛片| 国产一区二区三区综合在线观看 | av线在线观看网站| 亚洲av成人精品一区久久| 在线观看人妻少妇| 老女人水多毛片| 一区二区日韩欧美中文字幕 | 亚洲av成人精品一区久久| 亚洲欧美成人精品一区二区| 国产欧美亚洲国产| 国产免费福利视频在线观看| 亚洲av中文av极速乱| 人人妻人人澡人人看| 七月丁香在线播放| 一级二级三级毛片免费看| 亚洲综合精品二区| 日本黄色片子视频| 免费黄网站久久成人精品| 18禁动态无遮挡网站| 最近手机中文字幕大全| 国产69精品久久久久777片| 国产乱人偷精品视频| 80岁老熟妇乱子伦牲交| 国产白丝娇喘喷水9色精品| 边亲边吃奶的免费视频| 极品人妻少妇av视频| 男女边吃奶边做爰视频| 毛片一级片免费看久久久久| 18禁在线无遮挡免费观看视频| 一本一本综合久久| 51国产日韩欧美| 熟妇人妻不卡中文字幕| 国产日韩欧美在线精品| 一个人看视频在线观看www免费| .国产精品久久| 国产精品国产三级专区第一集| 日本wwww免费看| 欧美另类一区| 99九九在线精品视频| 少妇人妻精品综合一区二区| 高清毛片免费看| kizo精华| 永久免费av网站大全| 男人操女人黄网站| 精品国产一区二区久久| 国产免费又黄又爽又色| 久久av网站| 成人毛片a级毛片在线播放| 色婷婷av一区二区三区视频| xxxhd国产人妻xxx| 热99国产精品久久久久久7| 在线免费观看不下载黄p国产| 国产精品一二三区在线看| 精品亚洲乱码少妇综合久久| 两个人免费观看高清视频| 久久亚洲国产成人精品v| 欧美激情极品国产一区二区三区 | 一区二区三区四区激情视频| 少妇高潮的动态图| 国产69精品久久久久777片| 在线观看一区二区三区激情| 国产精品久久久久久久久免| 亚洲国产精品999| 日本黄大片高清| 色吧在线观看| 亚洲精品av麻豆狂野| 久久久久国产精品人妻一区二区| 亚洲丝袜综合中文字幕| 高清黄色对白视频在线免费看| 久久久久久久久大av| av国产久精品久网站免费入址| 三上悠亚av全集在线观看| 欧美激情 高清一区二区三区| 国产成人精品无人区| 国产成人精品婷婷| 国产精品99久久99久久久不卡 | 99九九线精品视频在线观看视频| 国产69精品久久久久777片| 精品少妇黑人巨大在线播放| 久久精品久久久久久噜噜老黄| 中文字幕av电影在线播放| 婷婷色av中文字幕| .国产精品久久| 亚洲伊人久久精品综合| 精品一区二区三区视频在线| 亚洲欧美成人精品一区二区| 日韩中字成人| 最近手机中文字幕大全| 男女无遮挡免费网站观看| 欧美精品一区二区大全| 制服人妻中文乱码| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 又大又黄又爽视频免费| 国产亚洲精品久久久com| 一级爰片在线观看| 汤姆久久久久久久影院中文字幕| 国精品久久久久久国模美| 国产爽快片一区二区三区| 亚洲av二区三区四区| 亚洲av.av天堂| 国产亚洲精品久久久com| 日韩精品免费视频一区二区三区 | 欧美日韩精品成人综合77777| 亚洲色图综合在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久久电影| 欧美少妇被猛烈插入视频| 秋霞在线观看毛片| 日韩熟女老妇一区二区性免费视频| 久久久久久伊人网av| 美女cb高潮喷水在线观看| 免费少妇av软件| 母亲3免费完整高清在线观看 | 免费人妻精品一区二区三区视频| 男男h啪啪无遮挡| 乱人伦中国视频| 插逼视频在线观看| 伦理电影免费视频| 精品99又大又爽又粗少妇毛片| 欧美最新免费一区二区三区| 亚洲精品乱码久久久v下载方式| 久久久久久久亚洲中文字幕| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区| 免费看av在线观看网站| 熟女电影av网| 成人影院久久| 欧美成人精品欧美一级黄| .国产精品久久| 欧美精品国产亚洲| 999精品在线视频| videosex国产| 亚洲欧洲日产国产| 国产欧美日韩一区二区三区在线 | 亚洲欧美一区二区三区国产| videosex国产| √禁漫天堂资源中文www| 另类精品久久| 狠狠婷婷综合久久久久久88av| 啦啦啦在线观看免费高清www| 亚洲人与动物交配视频| 五月开心婷婷网| 十分钟在线观看高清视频www| 欧美精品亚洲一区二区| 女人久久www免费人成看片| 菩萨蛮人人尽说江南好唐韦庄| 99久国产av精品国产电影| 久久久精品免费免费高清| 亚洲精品,欧美精品| 一二三四中文在线观看免费高清| 亚洲丝袜综合中文字幕| 国产伦精品一区二区三区视频9| 婷婷色综合www| 午夜免费男女啪啪视频观看| 国产一区二区在线观看av| 国产精品嫩草影院av在线观看| 久久毛片免费看一区二区三区| 如日韩欧美国产精品一区二区三区 | 色视频在线一区二区三区| 国产乱人偷精品视频| 两个人的视频大全免费| 嫩草影院入口| 久久av网站| 久久久久久久久大av| 最近的中文字幕免费完整| 国产一区二区三区综合在线观看 | 亚洲综合精品二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 蜜桃在线观看..| 日韩中字成人| 99热全是精品| 美女脱内裤让男人舔精品视频| 亚洲内射少妇av| 国产精品国产三级国产专区5o| 久久亚洲国产成人精品v| 制服丝袜香蕉在线| 日本爱情动作片www.在线观看| 建设人人有责人人尽责人人享有的| 久久久精品免费免费高清| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| 免费高清在线观看日韩| 一级二级三级毛片免费看| 久久久久久久久久久丰满| 天天躁夜夜躁狠狠久久av| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| 亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级| 在线观看一区二区三区激情| 日本wwww免费看| 国产精品99久久99久久久不卡 | 简卡轻食公司| 最近中文字幕2019免费版| 久久ye,这里只有精品| av线在线观看网站| 国产精品无大码| 欧美 亚洲 国产 日韩一| 亚洲久久久国产精品| 一本色道久久久久久精品综合| 国产视频内射| 亚洲激情五月婷婷啪啪| 欧美 亚洲 国产 日韩一| 亚洲精品美女久久av网站| 五月玫瑰六月丁香| av在线app专区| 国产一区二区三区av在线| 国产老妇伦熟女老妇高清| 性高湖久久久久久久久免费观看| 青春草亚洲视频在线观看| av黄色大香蕉| 五月伊人婷婷丁香| 丰满饥渴人妻一区二区三| 亚洲av日韩在线播放| 久久精品久久精品一区二区三区| 亚洲欧美成人精品一区二区| 国产精品三级大全| 国产精品麻豆人妻色哟哟久久| 日本av免费视频播放| 一本一本综合久久| 你懂的网址亚洲精品在线观看| 久久99热这里只频精品6学生| 中文字幕久久专区| 日韩三级伦理在线观看| 国产日韩欧美亚洲二区| 亚洲av成人精品一二三区| 亚洲精品第二区| 天堂中文最新版在线下载| 久久青草综合色| 亚洲精品久久成人aⅴ小说 | 亚洲国产精品国产精品| 国产极品粉嫩免费观看在线 | 成年美女黄网站色视频大全免费 | 国产成人精品无人区| 热re99久久国产66热| 亚洲精华国产精华液的使用体验| 久久人人爽人人爽人人片va| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 欧美亚洲日本最大视频资源| freevideosex欧美| 少妇 在线观看| 一级毛片黄色毛片免费观看视频| 久久韩国三级中文字幕| 99国产精品免费福利视频| 高清av免费在线| 老熟女久久久| 少妇被粗大猛烈的视频| 飞空精品影院首页| 国产精品成人在线| 亚洲欧美日韩另类电影网站| 日韩人妻高清精品专区| 亚洲精品日本国产第一区| 色94色欧美一区二区| 国产成人av激情在线播放 | 亚洲av男天堂| 欧美成人午夜免费资源| 国产国语露脸激情在线看| 人妻系列 视频| 在线看a的网站| 最后的刺客免费高清国语| 国产探花极品一区二区| 成人漫画全彩无遮挡| 亚洲三级黄色毛片| 午夜激情久久久久久久| tube8黄色片| 久久久久精品久久久久真实原创| 久热久热在线精品观看| 国产精品成人在线| 国产69精品久久久久777片| 乱码一卡2卡4卡精品| 婷婷色综合www| 亚洲精华国产精华液的使用体验| www.色视频.com| 在线 av 中文字幕| 亚洲国产精品999| 最黄视频免费看| 一级毛片我不卡| 久久精品熟女亚洲av麻豆精品| 精品人妻偷拍中文字幕| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品一区蜜桃| 亚洲国产精品一区二区三区在线| 色哟哟·www| 韩国av在线不卡| videosex国产| 97超视频在线观看视频| 一本久久精品| 久久久久久久亚洲中文字幕| 人人妻人人澡人人看| 亚洲欧美日韩另类电影网站| 亚洲av欧美aⅴ国产| 亚洲成人手机| 精品人妻熟女毛片av久久网站| 国产亚洲欧美精品永久| 国产一区有黄有色的免费视频| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲网站| 欧美精品一区二区大全| 免费日韩欧美在线观看| 大陆偷拍与自拍| 观看美女的网站| 免费人成在线观看视频色| 亚洲国产精品专区欧美| 自线自在国产av| 汤姆久久久久久久影院中文字幕| 欧美精品亚洲一区二区| 午夜福利网站1000一区二区三区| 大片免费播放器 马上看| 亚洲无线观看免费| 亚洲国产av影院在线观看| 激情五月婷婷亚洲| 国产成人91sexporn| 在线观看国产h片| 免费av中文字幕在线| 纯流量卡能插随身wifi吗| 日本-黄色视频高清免费观看| 九色成人免费人妻av| 熟女人妻精品中文字幕| 久久亚洲国产成人精品v| 一级毛片 在线播放| 黄色视频在线播放观看不卡| 人人妻人人爽人人添夜夜欢视频| 如日韩欧美国产精品一区二区三区 | 国产女主播在线喷水免费视频网站| 国产国拍精品亚洲av在线观看| 亚洲国产成人一精品久久久| 美女大奶头黄色视频| 国产成人免费无遮挡视频| 亚洲少妇的诱惑av| 国产有黄有色有爽视频| 精品久久国产蜜桃| 日韩视频在线欧美| 国产成人精品婷婷| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 99久久人妻综合| 亚洲天堂av无毛| 久久99热6这里只有精品| 久久久亚洲精品成人影院| 2021少妇久久久久久久久久久| 女性生殖器流出的白浆| 在线观看免费高清a一片| 久久久久久久久久成人| 99九九线精品视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 成人漫画全彩无遮挡| 久久毛片免费看一区二区三区| 日韩av免费高清视频| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品专区欧美| 国产日韩欧美亚洲二区| av免费在线看不卡| 中文字幕人妻熟人妻熟丝袜美| 精品国产一区二区久久| 成年av动漫网址| 美女主播在线视频| 国产精品久久久久久久久免| 日韩中字成人| 久久精品国产鲁丝片午夜精品| 日韩不卡一区二区三区视频在线| 精品人妻一区二区三区麻豆| 一本色道久久久久久精品综合| 精品人妻一区二区三区麻豆| 成人国产av品久久久| 亚洲国产色片| 国产免费一级a男人的天堂| av不卡在线播放| 人体艺术视频欧美日本| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 99九九在线精品视频| 夫妻性生交免费视频一级片| 老司机亚洲免费影院| 22中文网久久字幕| 国产视频内射| 免费播放大片免费观看视频在线观看| 在线观看人妻少妇| 国产精品欧美亚洲77777| 亚洲人成网站在线观看播放| 日本爱情动作片www.在线观看| 日韩熟女老妇一区二区性免费视频| 99九九在线精品视频| 亚洲第一区二区三区不卡| 亚洲国产色片| 中文欧美无线码| 国产精品久久久久久久久免| 国产成人免费观看mmmm| 中文字幕久久专区| 一级二级三级毛片免费看| 亚洲精品美女久久av网站| 精品少妇内射三级| 久久99一区二区三区| 欧美精品亚洲一区二区| 欧美日韩视频精品一区| 亚洲不卡免费看| 桃花免费在线播放| 亚洲三级黄色毛片| 亚洲情色 制服丝袜| 99九九线精品视频在线观看视频| 纯流量卡能插随身wifi吗| 母亲3免费完整高清在线观看 | 精品久久久久久电影网| 精品久久久噜噜| 亚洲欧洲日产国产| 精品少妇黑人巨大在线播放| 99九九在线精品视频| 在线看a的网站| 99热6这里只有精品| 午夜av观看不卡| 黑人巨大精品欧美一区二区蜜桃 | 久久国内精品自在自线图片| 日本-黄色视频高清免费观看| 18禁在线无遮挡免费观看视频| 黄色一级大片看看| 国产av国产精品国产| 国产精品久久久久久久久免| 精品人妻偷拍中文字幕| 久久国内精品自在自线图片| 天堂中文最新版在线下载| 国语对白做爰xxxⅹ性视频网站| 国产探花极品一区二区| av天堂久久9| 一级毛片aaaaaa免费看小| 大码成人一级视频| 久久精品国产a三级三级三级| 制服诱惑二区| 超碰97精品在线观看| 亚洲精品视频女| 欧美日韩av久久| 永久免费av网站大全| 高清欧美精品videossex| 亚洲经典国产精华液单| 啦啦啦视频在线资源免费观看| 尾随美女入室| 制服人妻中文乱码| 亚洲精品一二三| 亚洲欧洲日产国产| 两个人免费观看高清视频| 免费久久久久久久精品成人欧美视频 | 国产国拍精品亚洲av在线观看| 黄色欧美视频在线观看| 国产男人的电影天堂91| 美女中出高潮动态图| 97在线视频观看| 久久婷婷青草| 夫妻午夜视频| 国产成人精品福利久久| 夜夜骑夜夜射夜夜干| 久久免费观看电影| 特大巨黑吊av在线直播| 中文精品一卡2卡3卡4更新| 国产毛片在线视频| videossex国产| 日韩人妻高清精品专区| 国产爽快片一区二区三区| 亚洲av福利一区| a级片在线免费高清观看视频| 中文字幕av电影在线播放| 亚洲欧美精品自产自拍| 亚洲av综合色区一区| 精品久久久久久电影网| 少妇的逼水好多| 一区二区三区四区激情视频| 高清黄色对白视频在线免费看| 欧美丝袜亚洲另类| 免费不卡的大黄色大毛片视频在线观看| 人妻 亚洲 视频| 高清不卡的av网站| 女人久久www免费人成看片| 久久 成人 亚洲| 色94色欧美一区二区| 国产在视频线精品| 亚洲精品aⅴ在线观看| 日本欧美国产在线视频| av网站免费在线观看视频| 狂野欧美激情性bbbbbb| 亚洲精品久久久久久婷婷小说| 韩国高清视频一区二区三区| 国产黄频视频在线观看| 超碰97精品在线观看| 国产国语露脸激情在线看| av在线app专区| 国产一区亚洲一区在线观看| 日本91视频免费播放| av免费在线看不卡| 丝袜喷水一区| 亚州av有码| 男人添女人高潮全过程视频| 啦啦啦在线观看免费高清www| 男女无遮挡免费网站观看| 亚洲欧洲日产国产| 国产成人午夜福利电影在线观看| 97在线视频观看| 亚洲精品一二三| 天美传媒精品一区二区| 国产精品国产av在线观看| 精品久久国产蜜桃| 熟女av电影| 亚洲精品乱久久久久久| 亚洲丝袜综合中文字幕| 搡老乐熟女国产| 欧美老熟妇乱子伦牲交| 18禁在线播放成人免费| 久久久久国产网址| 中文字幕av电影在线播放| 人人妻人人澡人人爽人人夜夜| 最近手机中文字幕大全| 丝袜喷水一区| 精品久久蜜臀av无| 80岁老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡 | 色视频在线一区二区三区| 国产伦理片在线播放av一区| 亚洲色图综合在线观看| 黑丝袜美女国产一区| 男人爽女人下面视频在线观看| 男的添女的下面高潮视频| 国产免费一区二区三区四区乱码| 欧美三级亚洲精品| a级毛片黄视频| 午夜日本视频在线| a级毛色黄片| 国产熟女午夜一区二区三区 | 一区二区av电影网| 日本91视频免费播放| 有码 亚洲区| 免费看不卡的av| 观看美女的网站| 久久女婷五月综合色啪小说| 中文字幕精品免费在线观看视频 | 黄片无遮挡物在线观看| 亚洲人成网站在线播| 最近最新中文字幕免费大全7| 日本欧美视频一区| 久久ye,这里只有精品| 欧美日本中文国产一区发布| 一区二区三区免费毛片| 在线看a的网站| 99热这里只有是精品在线观看| 国产极品粉嫩免费观看在线 | 母亲3免费完整高清在线观看 | 亚洲怡红院男人天堂| 久久毛片免费看一区二区三区| 国语对白做爰xxxⅹ性视频网站| 欧美日韩视频精品一区| av专区在线播放| 最后的刺客免费高清国语| 欧美日韩视频精品一区| 午夜免费观看性视频| 国语对白做爰xxxⅹ性视频网站| 男人操女人黄网站| 国产av一区二区精品久久| 国模一区二区三区四区视频| 只有这里有精品99| 国产日韩欧美在线精品| 国产精品久久久久久av不卡| 国产黄频视频在线观看| 成年女人在线观看亚洲视频| 午夜91福利影院| 国产熟女午夜一区二区三区 | av卡一久久| 久久久午夜欧美精品| 国产高清三级在线| 91在线精品国自产拍蜜月| 母亲3免费完整高清在线观看 | 成年人午夜在线观看视频| 久久久久精品久久久久真实原创| 欧美老熟妇乱子伦牲交| 亚洲国产精品成人久久小说| 日本wwww免费看| 十八禁网站网址无遮挡| 亚洲精品第二区|