• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銅三氟柳配合物的合成,結構和仿生催化溴化

    2017-09-12 08:59:35王穎林曉濛白鳳英張瑞張小溪
    無機化學學報 2017年9期
    關鍵詞:溴化聯(lián)吡啶三氟

    王穎林曉濛白鳳英張瑞張小溪

    銅三氟柳配合物的合成,結構和仿生催化溴化

    王穎林曉濛白鳳英*張瑞張小溪

    (遼寧師范大學化學化工學院,大連116029)

    合成了一系列2-羥基-4-三氟甲基苯甲酸(h2tba)-銅配合物:[Cu(htba)2(pz)2](1),[Cu(htba)(2,2′-bipy)](htba)(2)和[Cu(htba)2(4,4′-bipy)](3)(h2tba=2-羥基-4-三氟甲基苯甲酸,pz=吡唑,2,2′-bipy=2,2′-聯(lián)吡啶,4,4′-bipy=4,4′-聯(lián)吡啶),并且通過元素分析、紅外光譜、紫外光譜、粉末X射線衍射、單晶X射線衍射和熱重分析方法對配合物結構進行了表征。這些配合物能夠在過氧化氫和溴化物存在的條件下催化苯酚紅溴化,并且展示出了較高的催化溴化活性。

    銅配合物;三氟柳;晶體結構;催化溴化

    0 Introduction

    Continuing interest in the chemistry of copper complexes has been promoted owing to their biological and catalytic properties.While the different property of the copper complexes is mainly dependent on different kinds of ligands,and the key structural feature of the ligands gives rise to a rich variety of complexes with unusual properties.Among the organic ligands,N-heterocyclic ligands[1-3](e.g.pyrazole,pyridine,imidazole)and their derivatives havebeen widely used in synthesis in coordination chemistry. Especially for pyrazole/pyridine and its derivatives, which have attracted much attention of pharmacy expertsfortheirgoodbiologicalactivityand compatibility[4-8].

    Vanadium-dependenthaloperoxidases(VHPOs) are a class of peroxidases that utilize a vanadate cofactor to perform two electron oxidation of halides or organic sulfides[9-11].The compounds were designed tomimick the active centre of these haloperoxidases which have also been reported to catalyze in vitro oxidations of substrates,emphasizing the importance ofbiologicallyorientedmodelinvestigationsfor industrially relevant processes.Although the synthesis of some oxovanadium complexes with various organic ligands has been reported[12-16],the detailed investigation on the VHPO mimicking activity as well as the mechanism of action of such complexes containing organic ligands are very scanty.Recent researches show that copper complexes have also similar VHPOs behavior.Recently,our group has reported some related research results[17-20],it is proved that transition metal complexes can be useful models in studying the biomimetic catalytic reaction mechanism[21].Here,a series of new metal-medicine complexes:[Cu(htba)2(pz)2] (1),[Cu(htba)(2,2′-bipy)](htba)(2)and[Cu(htba)2(4,4′-bipy)](3)(h2tba=2-hydroxy-4-trifluoromethylbenzoic acid,pz=pyrazole,2,2′-bipy=2,2′-bipyridine,4,4′-bipy=4,4′-bipyridine)were synthesized under hydrothermal conditions.The spectral and structures of complexes 1~3 were characterized.Their cytotoxicity in hADSCs and Chang liver cells was evaluated using a multiple parallel perfused microbioreactor,and the mimicking catalytic bromination reaction dynamics was also tested for the study of whether the copper complexes is potential functional model compound of bromoperoxidase.

    1 Experimental

    1.1 Materials and methods

    The reagents include CuCl2·2H2O(Beijing Chemical Works),Cu(NO3)2·3H2O(Aladdin),h2tba(Aladdin), pz(J&K Scientific),2,2′-bipy(Taizhou MaiBo Chemical Co.,Ltd),4,4′-bipy(Taizhou MaiBo Chemical Co., Ltd).All of the above reagents are of analytical grade and used without further purification.

    Elemental analyses for C,H,and N were carried out on a PE 240C automatic analyzer(Perkin-Elmer, Waltham,MA).The infrared spectra were recorded on a JASCO FT/IR-480 spectrometer(JASCO,Tokyo, Japan)with pressed KBr pellets in the range of 200~4 000 cm-1.UV-Vis spectra were recorded with a V-570-UV/VIS/NIR spectrophotometer(JASCO,Tokyo, Japan)(200~2 000 nm,in the form of the solid sample). The X-ray powder diffraction data were collected on a Bruker AXS D8 Advance diffractometer using Cu Kα radiation(λ=0.154 18 nm)in the 2θ range of 5°~60° (U=30 kV,I=30 mA).Thermogravimetric analyses(TG) were performed under N2atmosphere with a heating rate of 10℃·min-1on a Perkin Elmer Diamond TG/ DTA.

    1.2 Syntheses of the complexes

    1.2.1 Synthesis of[Cu(htba)2(pz)2](1)

    CuCl2·2H2O(0.017 9 g,0.1 mmol),h2tba(0.049 6 g,0.2 mmol)and pz(0.014 g,0.2 mmol)were mixed in the ethanol-water(1∶2,V/V)solution(15 mL),and the mixture was stirred at room temperature for 1.5 h to get a blue solution.The final reaction mixture was sealed in a 30 mL flask and heated at 100℃for 24 h. Finally,purple crystals suitable for X-ray diffraction analysis were obtained.Yield(based on Cu):73%. Anal.Calcd.for C11H8N2O3F3Cu0.5(%):C,43.33;H, 2.65;N,9.19.Found(%):C,43.32;H,2.59;N,9.16. IR(KBr,cm-1):3 356(m),3 153(w),1 638(m),1 591(s), 1 500(m),1 472(w),1 480(s),1 335(s),1 298(w),1 225 (s),1 161(s),1 060(s).UV-Vis(λmax/nm):300,552.

    1.2.2 [Cu(htba)(2,2′-bipy)](htba)(2)

    The synthetic method of complex 2 was similar to that of complex 1.For complex 2,the starting material pyrazole was replaced by 2,2′-bipy(0.031 5 g,0.2 mmol).Yield(based on Cu):78%.Anal.Calcd.for C26H16N2O6F6Cu(%):C,49.57;H,2.56;N,4.45.Found (%):C,49.65;H,2.61;N,4.41.IR(KBr,cm-1):3 118 (w),3 073(w),1 609(s),1 492(w),1 438(s),1 392(w), 1 338(s),1 230(m),1 158(w),1 122(s),1 058(m).UVVis(λmax/nm):304,586.

    1.2.3 [Cu(htba)2(4,4′-bipy)](3)

    The synthetic method of complex 3 was also similar to that of complex 1.In the reaction,starting material Cu(NO3)2·3H2O(0.018 8 g,0.1 mmol)and 4,4′-bipy(0.031 4 g,0.2 mmol)were chosen instead of CuCl2·2H2O and pyrazole.Yield(based on Cu):78%. Anal.Calcd.for C13H8NO3F3Cu0.5(%):C,49.57;H, 2.56;N,4.45.Found(%):C,49.51;H,2.59;N,4.49. IR(KBr,cm-1):3 103(w),1 603(s),1 504(m),1 433(s),1 332(s),1 233(s),1 152(m),1 116(s),1 061(m).UVVis(λmax/nm):302,602.

    1.3 X-ray crystallographic determination

    Suitable single crystals of the three complexes were mounted on glass fibers for X-ray measurement. Reflection data were collected at room temperature with a Bruker AXS SMART APEXⅡCCD diffractometer(Bruker AXS,Karlsruhe,Germany)with graphitemonochromated Mo Kα radiation(λ=0.071 07 nm)and an ω scan mode.All measured independent reflections (I>2σ(I))were used in the structural analysis and semi -empirical absorption corrections were applied using the SADABS program[22].The structures were solved by the direct method using SHELXL-97[23].Crystal data and structure refinements are shown in Table 1.All non-hydrogen atoms were refined anisotropically and by temperature factor with the full-matrix least squares method.Hydrogen atoms of the organic frameworks werefixedatcalculatedpositionswithisotropic thermal parameters and refined using a riding model. The F atoms were found to be disordered,which were given occupancy parameters of 0.5 in order to retain acceptable displacement parameters.

    CCDC:1041787,1;1041788,2;1041789,3.

    1.4 Measurement of bromination activity in solution

    The reactions were started with the existence of phenol red solution,copper complex,KBr and H2O2with a buffer solution of NaH2PO4-Na2HPO4(pH=5.8)[24]. The UV spectral changes were recorded using a UV-1000 spectrophotometer at 5 min intervals.By sequential collecting the UV absorption spectrum data during the reaction and executed data treatment and fitting,the bromine reaction rate constant of coppercomplexeswereobtainedbythemethodinthe literature[10,20,25-27].

    Table1 Crystallographic data for complexes 1~3

    2 Results and discussion

    2.1 Synthesis

    Three copper complexes have been successfully synthesized by copper salt(CuCl2·2H2O and Cu(NO3)2·3H2O),h2tba and nitrogen heterocyclic ligands(pz, 2,2′-bipy and 4,4′-bipy)in the system of ethanolwater with a hydrothermal reaction in 100℃.It is worth to mention that,for complex 3,we tried to use almost all kinds of copper salt,but only Cu(NO3)2· 3H2O as the starting material could get the best crystal morphology of the complexes.

    It is interesting to note that the starting material of h2tba was used in the synthesis process of the complexes.However,the ester groups in the ligand become hydroxy during the reaction.The possible disengaging reason is that the reaction condition could result in the hydrolysis of the ester.

    2.2 IR spectra

    The IR spectra of the complexes 1~3 are shown in Table 2 and Fig.S1.The weak peaks observed at 3 059~3 153 cm-1are attributed to the stretching vibrations of the N-H in the pyrazolyl rings and the CH stretching vibrations of the pyridine/pyrazolyl rings. The strong peaks at 1 591~1 637 cm-1and around 1 330 cm-1are attributed to the asymmetric and symmetric stretching vibration of the C=O group.Peaks in the range of 1 000~1 500 cm-1are assigned to the stretchingvibrationcharacterizationofthepyrazolyl, pyridine and phenyl rings.

    2.3 UV-Vis spectra

    The UV-Vis absorption spectra of complexes 1~3 are recorded in form of the solid sample(Table 3 and Fig.S2).They have similar absorption patterns.In the high-frequency region,the absorption peaks at 210~212 nm and 300~304 nm are attributed to the π-π* transition of the pyrazoly ring and the htba ligand.In the visible range,the broad peak at 552 nm for 1,586nm for 2 and 602 nm for 3 can be caused by the charge transitions from the ligands to Cuion(LMCT).

    Scheme 1Reaction process of the complexes 1~3

    Table2 IR data for complexes 1~3 cm-1

    Table3 UV-Vis data for complexes 1~3 nm

    2.4 Crystal structure

    The molecular structures of the complexes 1~3 are depicted in Fig.1~3,and some selected bond distances and angles are summarized in Table S1.The hydrogenbonds parameters of complexes 1~3 are listed in Table S2.

    Fig.1 (a)Molecular structure of the complex 1 with probability level of 30%;(b)One dimensional chain structure; (c)Two dimensional planar structure

    Single-crystal X-ray structure analyses reveals that complex 1 crystallizes in the Triclinic system with P1 space group.The molecular structure of 1 contains one copper ion,two htba ligands and two pz moieties. As shown in Fig.1a,Cuion in complex 1 is coordinated with two oxygen(O1 and O1#1,Symmetry codes:#1:-x+1,-y,-z+1)from two htba ligands and two nitrogen atoms from two pz moieties,respectively, forming a CuN2O2plane square geometry.There is no deviation of the plane atoms.The bond lengths of Cu-N1 and Cu-O1 are 0.196 3(3)and 0.193 7(2)nm, respectively.The angles of O1-Cu-N1 and O1-Cu-N#1 are 89.93(11)°and 90.07(12)°,respectively.

    In addition,there are two kinds of hydrogen bonds in the molecular structure:(i)intramolecular hydrogen bond(O3…O2,0.258 36 nm,153.95°) between the oxygen atoms from oxhydryl and carboxylate group;(ii)hydrogen bond(N2…O2#3,0.282 35 nm,139.20°,Symmetry codes:#3:-1+x,y,z)between oxygen from carboxylae group and nitrogen from pyrazolyl.The molecules of the complex 1 are connected to an infinite 1D chain structure by the hydrogenbonds of O3-H3A…O2(Fig.1b),and connected to a 2D planar structure by N2-H2A…O2#3(Fig.1c).

    Fig.2 (a)Molecular structure of complex 2 with probability level of 30%;(b)Dimer structure;(c)One dimensional chain structure;(d)Two dimensional planar structure;(e)Three dimensional network structure

    Single-crystal X-ray structure analyses reveals that complex 2 crystallizes in the Triclinic system with P1 space group.The crystal structure comprises a monomeric Cu(htba)(2,2′-bipy)neutral molecule and one free htba molecule.The coordination environment of the central Cuion in complex 2 is shown in Fig. 2a.The Cuion is five-coordinated by three oxygen atoms(O1,O2 and O1#1,Symmetry codes:#1:-x+1, -y,-z+1)from htba ligands with Cu-O bond distances in the range of 0.189 76(17)~0.242 45(19)nm andtwo nitrogen atoms(N1 and N2)from 2,2′-bipy with Cu-N bond distances in the range of 0.198 9(2)~0.200 3(2)nm to form a CuN2O3tetragonal structure. The deviations of Cu,O1,O2,N1 and N2 atoms that composed of the least-squares plane are 0.007 60, 0.005 49,-0.009 63,0.006 35 and-0.009 81 nm, respectively,showing that these atoms are almost on one plane.The angles of O1-Cu-O2 and N1-Cu-N2 are 89.93(11)°and 81.18(9)°,respectively,and the angles of O-Cu-N are in the range of 92.29(8)°~174.29(8)°.

    Fig.3 (a)Molecular structure of the complex 3 with probability level of 30%;(b)View of 1D chain linked by 4,4′-bipy in 3;(c)View of 3D structure formed by hydrogen bonding interaction in 3

    There are two kinds of hydrogen bonds,O-H…O (O…O 0.250 75 nm)and C-H…O(C…O 0.321 66~0.340 08 nm),in complex 2.Hereinto,the O-H…O hydrogen bonds come from the coordinated htba ligand and the free htba ligand:O6-H6A…O3#4(O6…O3#4 0.250 75 nm,O6-H6A…O3#4 163.40°,Symmetry codes:#4:2-x,1-y,1-z);the C-H…O hydrogen bonds are from the carbon atoms from 2,2′-bipy,oxygen atoms from the coordinated htba and free htba:C9-H9…O5#4(0.321 66 nm,147.41°);C21-H21…O4#6 (0.340 08 nm,165.77°);C16-H16…O3#5(0.336 78 nm,166.68°,Symmetry codes:#6:1-x,1-y,-z;#5: x,-1+y,z).Two independent molecules form a dimer bybridgingcoordination oxygen(O1)(Fig.2b).The dimer is further linked through the C9-H9…O5#3 hydrogen bond to generate a 1D chain structure,as illustrated in Fig.2c and then the adjacent chains are connected through the weak interaction between the cooper atom and oxygen atom to form a 2D structure (Fig.2d).Eventually the 2D structure of 2 is connected into a 3D network structure(Fig.2e).

    Structural analysis shows that complex 3 crystallizes in the Monoclinic system with P21/c space group. The molecular structure of 3 contains one copper ion, two htba ligands and one 4,4′-bipy ligand.The coordination environment of the central Cuatom in complex 3 is shown in Fig.3a.The Cuatom is sixcoordinated by four oxygen atoms(O1,O2,O1#1 and O2#1,Symmetry codes:#1:-x+2,-y,-z+1)from htba ligands and two nitrogen atoms from 4,4′-bipy moiety, respectively,forming a CuN2O4octahedral structure. There is no deviationoftheplaneatoms.The bond lengths of Cu-N and Cu-O1 are 0.202 6(3)and 0.195 5(2)nm,respectively.The angles of O1-Cu-N and O1-Cu-N#2(Symmetry codes:#2:2-x,-0.5+y, 2.5-z)are 89.49(11)°and 90.52(11)°,and the angles of O(1)-Cu-O(1)#2 and N(1)#2-Cu-N(1)are 180.00(7)° and 180.0°,respectively.The molecules are linked to an infinite 1D chain(Fig.3b)by 4,4′-bipy.The chains are further linked through the hydrogen bonds C5-H5…O3#7(Symmetry codes:#7:-1+x,0.5-y,-0.5+z)to generate a 3D hydrogen bond network(Fig.3c).

    2.5 Thermal properties and XRD analysis

    To examine the thermal stability of the complexes 1~3,TG was carried out with the temperature range of 30~1 000℃(Fig.4).For complex 1,the result shows the initial weight loss of 44.88%before 298℃is due to the release of two pz and two-CF3moieties(Calcd. 44.94%).The second weight loss occurs in the range of 298~1 000℃,which is ascribed to the release of the remaining part of h2tba(Obsd.44.87%;Calcd. 44.64%),and the final residue corresponds to copper oxide(Obsd.10.25%;Calcd.13.03%).The TG curve of 2 can be divided into three stages.The first weight loss of 44.44%in the range of 30~291℃is attributed to the free htba and two-CF3moieties(Calcd.43.67%). The second weight loss occurs in the range of 291~369℃with a weight loss of 20.96%,which is ascribed to the release of the remaining part of h2tba (Calcd.21.45%).The last step of decomposition occurred within the range of 369~1 000℃,which is attributed the loss of 2,2′-bipy(Obsd.24.76%;Calcd. 24.79%),and the final residue corresponds to copper oxide(Obsd.9.84%;Calcd.12.61%).The first weight loss in the complex 3 occurs in the range of 30~298℃,implying the removal of two-CF3moieties and two 4,4′-bipy(Obsd.45.82%;Calcd.46.69%).The second weight loss of 43.69%occurs in the temperature range of 298~495℃,which is ascribed to the release of the remaining part of h2tba ligand(43.22%).And finally, the residue might be copper oxide(Obsd.10.49%; Calcd.12.61%).

    Fig.4 TG curves for the complexes 1~3

    ThepowderX-raydiffractiondataofthe complexes 1~3 were obtained and compared with the corresponding simulated single-crystal diffraction data (Fig.S3~S5).The phase of the complexes is considered as purities owning to the agreement of the peak positions.The different intensity may be due to the preferred orientation of the powder samples.

    2.6 Functional mimics of complexes 1~3

    Asweknow,oxidovanadiumcomplexescan mimic a reaction in which vanadium haloperoxidases could catalyze the bromination of organic substrates in the presence of bromide and H2O2[28-29].However,it is found that copper complexes showed obviously catalytic bromination activities in the experiment system,and the catalytic activity of copper complexes were close to the vanadium complexes[9-12].Herein,the bromination reaction activities of complexes 1~3 are shown by the conversion of phenol red as an organic substrate to bromophenol blue.The reaction is efficient and rapid, producing the halogenated product by the reaction of oxidized halogen species with the organic substrate, and the reactive process is shown in Scheme 2.

    The solution color visibly changed from yellow to blue when complex 1 was added to the standard reaction of bromide in a phosphate buffer with phenol red as a trap for oxidized bromine.The UV absorption spectra recorded a decrease in absorbance of the peak at 443 nm due to the loss of phenol red and an increase of the peak at 592 nm with production of the bromophenolblue,investigatingthatcomplex1 possess better catalytic activity.The results of the mimic catalytic activity for 2 and 3 is similar to that for 1.In order to evaluate the catalytic reaction of phenol red based on vanadium complex 1 as a catalyst exactly,wehavedesignedandcarriedoutan experiment system:the DMF-water solution of the complexes was added to the reaction system involving phosphate buffer,KBr,H2O2and phenol red which acted as a substrate to be brominated,resulting in visible color change of the solution from yellow to blue.Spectral intensity change was recorded at 10 min intervals(Fig.5).The conversion rate of the phenol red (α)can be expressed as follow:

    α=(1-ct/c0)×100%(1) where ct=equilibrium concentration,c0=initial concentration.Because of the relationship of c∝A,we could convert the conversion of phenol red based on Eq.1 into(1-At/A0)×100%(At=equilibrium absorbance,A0= initial absorbance).So,α=(1-At/A0)×100%=(1-1.734 6 /2.366 2)×100%=26.7%.

    Fig.5 Mimic catalytic activity of complex 1

    Scheme 2Reactive process of bromination reaction catalysed by the complexes

    Take complex 1 as an instance to execute kinetic studies of mimicking bromination reaction.A series of dA/dt data were acquired by changing the concentrationof the complex shown in Fig.6.According to Lambert-Beer′s law,A=εbc,dA/dt=εb(dc/dt),where A is the measurable absorbance of the resultant;ε is molar absorption coefficient,which is measured as 14 500 L ·mol-1·cm-1at 592 nm for bromophenol blue;and b is the light path length of sample cell(b=1 cm).Then,the catalytic reaction kinetic equation:dc/dt=kc1xc2yc3z,was treatedinto lg(dc/dt)=lgk+xlgc1+ylgc2+zlgc3.In the equation,the reaction rate constant,k,is determined by the concentrations of complex 1,KBr and phenol red(c1,c2and c3,respectively),the reaction orders of complex 1,KBr and phenol red(x,y and z),as well as lg(dc/dt).While in the experiment,in view of the reaction orders of KBr and phenol red(y and z)being 1 according to the literature[30-31];c2and c3are known to be 0.4 and 1×10-4mol·L-1,respectively,then the plot of-lg(dc/dt)vs-lgc1for complex 1 was depicted with the data in Fig.5,obtaining a straight line(Fig.7) with a slope of 1.07 and intercept of-0.917 4.The former confirms the first-order reaction being dependent on copper ion.According to the intercept,the reaction rate constant(k)for complex 1 was calculated as 3.023 ×103L2·mol-2·s-1.Similar plots for 2 and 3 were generated in the same way(Fig.S6~S9),and values of the slope and the intercept are 1.060 3 and-1.272 1 for 2,1.036 9 and-1.063 8 for 3,and the reaction rate constants(k)for complexes 2 and 3 can be calculated as 1.336×103and 2.158×103L2·mol-2·s-1,respectively. Through the experimental results,we gave conclusion that(i)the reaction orders for phenol red in the bromination reactions catalyzed by copper-complexes are all close to 1;(ii)the reaction rate constants of the three complexes are similar.

    Fig.6 Linear calibration plots of the absorbance(at 592 nm)vs time for bromination reaction of phenol red with different concentrations of complex 1

    Fig.7 -lg(dc/dt)dependence of-lgc1for complex 1 in DMF-H2O at(30±0.5)℃

    3 Conclusions

    In this work,by selecting appropriate ligands, three new copper complexes have been successfully synthesized for the first time.In order to further explore the efficacious copper model complexes with the active center which is similar to the structure of VHPOs,we tested the bromination reaction activity with phenol red as an organic substrate in the presence of the complex,H2O2,KBr and a phosphate buffer solution.The results show that three cooper complexes all could catalyzed phenol red bromination rapidlyandefficiently,exhibitinggoodcatalytic activity,which may be applied as potential functional catalytic model in future.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Wang X,Xing Y H,Bai F Y,et al.RSC Adv.,2013,3(36): 16021-16033

    [2]Govindaswamy P,Carroll P J,Mozharivskyj Y A,et al.J. Organomet.Chem.,2005,690(4):885-894

    [3]Gupta G,Prasad K T,Das B,et al.J.Organomet.Chem., 2009,694(16):2618-2627

    [4]WAN Li-Juan(萬麗娟),XING Na(邢娜),WAN Li-Ying(萬麗英),et al.Chin.J.Appl.Chem.(應用化學),2012,29(11):1266-1271

    [5]WANG Xin-Yu(王欣羽),XING Na(邢娜),SONG Ge(宋鴿), et al.Chem.J.Chinese Universities(高等學?;瘜W學報), 2012,33(6):1143-1150

    [6]Reger D L,Pascui A E,Smith M D.Eur.J.Inorg.Chem., 2012(29):4593-4604

    [7]Wang S,Zang H Y,Sun C Y,et al.CrystEngComm,2010,12 (11):3458-3462

    [8]Manzur J,Acuňa C,Vega A,et al.Inorg.Chim.Acta,2011, 374(1):637-642

    [9]Feng X D,Zhang X X,Wang Z N,et al.New J.Chem., 2016,40(2):1222-1229

    [10]Zhang R,Zhang X X,Bai F Y,et al.J.Coord.Chem.,2014, 67(9):1613-1628

    [11]Cao Y Z,Zhao H Y,Bai F Y,et al.Inorg.Chim.Acta, 2011,368(1):223-230

    [12]Rehder D,Santoni G,Licini G M,et al.Coord.Chem.Rev., 2003,237(1/2):53-63

    [13]Kraehmer V,Rehder D.Dalton Trans.,2012,41(17):5225-5234

    [14]Si T K,Paul S S,Drew M G B,et al.Dalton Trans.,2012, 41(19):5805-5815

    [15]Soedjak H S,Butler A.Inorg.Chem.,1990,29(25):5015-5017

    [16]Patra S,Chatterjee S,Si T K,et al.Dalton Trans.,2013,42 (37):13425-13435

    [17]Feng X D,Zhang X X,Wang X Y.Polyhedron,2015,90(18): 69-76

    [18]Wang J X,Wang C,Wang X,et al.Spectrochim.Acta Part A,2015,142(5):55-61

    [19]Ren D X,Xing N,Shan H,et al.Dalton Trans.,2013,42(15): 5379-5389

    [20]Zhang R,Liu J,Chen C,et al.Spectrochim.Acta Part A, 2013,115:476-482

    [21]Sharma R K,Sharma C.Tetrahedron Lett.,2010,51(33): 4415-4418

    [22]Sheldrick G M.SADABS,Program for Empirical Absorption Correction of Area Detector Data,University of G?ttingen, Germany,1996.

    [23]Sheldrick G M.SHELXS-97,Program for Crystal Structure Refinement,University of G?ttingen,Germany,1997.

    [24]Verhaeghe E,Buisson D,Zekri E,et al.Anal.Biochem., 2008,379(1):60-65

    [25]Rehder D.Coord.Chem.Rev.,1999,182(1):297-322

    [26]Chen C,Bai F Y,Zhang R,et al.J.Coord.Chem.,2013,66 (4):671-688

    [27]Schneider C J,Penner J E,Hahn J E,et al.J.Am.Chem. Soc.,2008,130(9):2712-2713

    [28]Maurya M R,Kumar A,Ebel M,et al.Inorg.Chem.,2006, 45(15):5924-5937

    [29]Clague M J,Butler A.J.Am.Chem.Soc.,1995,117(12): 3475-3484

    [30]Colpas G J,Hamstra B J,Kampf J W,et al.J.Am.Chem. Soc.,1996,118(14):3469-3478

    [31]Zampella G,Kravitz J Y,Webster C E,et al.Inorg.Chem., 2004,43(14):4127-4136

    Syntheses,Structures and Biomimetic Catalytic Bromination of Copper-Triflusal Complexes

    WANG YingLIN Xiao-MengBAI Feng-Ying*ZHANG RuiZHANG Xiao-Xi
    (College of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian,Liaoning 116029,China)

    A series of 2-hydroxy-4-trifluoromethylbenzoic acid(h2tba)-copper complexes:[Cu(htba)2(pz)2](1),[Cu (htba)(2,2′-bipy)](htba)(2)and[Cu(htba)2(4,4′-bipy)](3)(h2tba=2-hydroxy-4-trifluoromethylbenzoic acid,pz= pyrazole,2,2′-bipy=2,2′-bipyridine,4,4′-bipy=4,4′-bipyridine)have been synthesized and characterized by elemental analysis,IR spectra,UV-Vis,spectroscopy,powder X-ray diffraction,single-crystal X-ray diffraction and thermal gravimetric analysis(TG).The complexes which catalyzed phenol red bromination in the presence of H2O2and bromide,exhibited high catalytic bromination activity.CCDC:1041787,1;1041788,2;1041789,3.

    copper complexes;triflusal;crystal structure;catalytic bromination

    O614.121

    A

    1001-4861(2017)09-1667-11

    10.11862/CJIC.2017.202

    2017-04-19。收修改稿日期:2017-07-14。

    國家自然科學基金(No.21571091)資助項目。

    *通信聯(lián)系人。E-mail:baifengying2000@163.com,Tel:086-0411-82156987

    猜你喜歡
    溴化聯(lián)吡啶三氟
    微波加熱快速合成5-三氟甲基吡啶-2-胺和2-[(5-三氟甲基吡啶-2-基)氧基]乙醇
    山東化工(2024年1期)2024-02-04 09:47:12
    一種納米材料復合溴化丁基橡膠及其制備方法
    橡膠科技(2022年9期)2022-12-12 05:26:53
    芳胺類化合物的原位氧化溴化工藝研究
    4-甲胺基-6-三氟甲基-2-甲砜基嘧啶的合成及其晶體結構
    合成化學(2015年10期)2016-01-17 08:56:30
    溴化丁基橡膠成套技術升級
    新型三氟甲基化反應的研究及進展
    溴化氧鉍(BiOBr)光催化降解亞甲基藍的研究
    可見光促進的光氧化還原催化的三氟甲基化反應
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    一区福利在线观看| 欧美zozozo另类| 亚洲精品亚洲一区二区| 国产熟女欧美一区二区| 国内精品美女久久久久久| 日韩成人伦理影院| 成年av动漫网址| 国产欧美日韩一区二区精品| 在线免费观看不下载黄p国产| 一级av片app| 国产中年淑女户外野战色| 国产色爽女视频免费观看| 亚洲国产精品久久男人天堂| 99热6这里只有精品| 亚洲国产精品成人久久小说 | 男女那种视频在线观看| 特大巨黑吊av在线直播| 夜夜夜夜夜久久久久| 日本撒尿小便嘘嘘汇集6| 在线看三级毛片| videossex国产| 久久久久九九精品影院| 国产亚洲av嫩草精品影院| 日本欧美国产在线视频| 亚洲成人久久爱视频| 极品教师在线视频| 1024手机看黄色片| 午夜福利在线观看吧| 97热精品久久久久久| 亚洲高清免费不卡视频| 一级毛片我不卡| 69av精品久久久久久| 熟女人妻精品中文字幕| 国产单亲对白刺激| 少妇熟女欧美另类| 亚洲欧美中文字幕日韩二区| 日本欧美国产在线视频| 久久久色成人| 日本撒尿小便嘘嘘汇集6| 亚洲欧美中文字幕日韩二区| 又爽又黄无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 老师上课跳d突然被开到最大视频| 国产精品一区二区免费欧美| 国产精品电影一区二区三区| 亚洲,欧美,日韩| 少妇高潮的动态图| 久久鲁丝午夜福利片| 亚洲性久久影院| 九九在线视频观看精品| 特级一级黄色大片| 精品不卡国产一区二区三区| 国产三级中文精品| 亚洲美女视频黄频| 亚洲av成人av| 亚洲国产欧美人成| 乱人视频在线观看| av卡一久久| 久久午夜亚洲精品久久| 别揉我奶头~嗯~啊~动态视频| 久久精品国产鲁丝片午夜精品| 精品午夜福利视频在线观看一区| 晚上一个人看的免费电影| 晚上一个人看的免费电影| 男女那种视频在线观看| 午夜日韩欧美国产| 亚洲国产日韩欧美精品在线观看| 亚洲久久久久久中文字幕| 久久天躁狠狠躁夜夜2o2o| 国产精品精品国产色婷婷| a级毛片a级免费在线| 亚洲最大成人av| 日韩 亚洲 欧美在线| a级一级毛片免费在线观看| 天天躁夜夜躁狠狠久久av| 国产精品三级大全| 99热这里只有是精品在线观看| 久久亚洲国产成人精品v| 亚洲精品一区av在线观看| av在线天堂中文字幕| 性欧美人与动物交配| 日韩国内少妇激情av| 国产 一区精品| 国产高清有码在线观看视频| 最近最新中文字幕大全电影3| 欧美三级亚洲精品| a级毛片免费高清观看在线播放| 99热6这里只有精品| 91狼人影院| 国产真实伦视频高清在线观看| 亚洲七黄色美女视频| 国产91av在线免费观看| 久久精品91蜜桃| 亚洲熟妇中文字幕五十中出| 乱系列少妇在线播放| 午夜视频国产福利| 久久人人精品亚洲av| 日日干狠狠操夜夜爽| 高清毛片免费看| 九九在线视频观看精品| 91久久精品国产一区二区三区| 99热全是精品| 亚洲av五月六月丁香网| 国产精品一区二区三区四区久久| 一级黄片播放器| 亚洲国产日韩欧美精品在线观看| 国产精品av视频在线免费观看| 亚洲va在线va天堂va国产| 久久久精品大字幕| 最好的美女福利视频网| 国产成人a∨麻豆精品| 99久久成人亚洲精品观看| 日本黄色视频三级网站网址| 国产精品精品国产色婷婷| 成年女人毛片免费观看观看9| 看免费成人av毛片| 日本精品一区二区三区蜜桃| 国产视频内射| 亚洲精品一卡2卡三卡4卡5卡| 高清日韩中文字幕在线| 精品人妻熟女av久视频| 婷婷亚洲欧美| 亚洲av免费在线观看| 可以在线观看的亚洲视频| 日韩成人伦理影院| 日日撸夜夜添| 国产精品美女特级片免费视频播放器| 亚洲成av人片在线播放无| 深夜a级毛片| 亚洲精品影视一区二区三区av| 99在线视频只有这里精品首页| 中文在线观看免费www的网站| 国产极品精品免费视频能看的| 国产一区二区激情短视频| 在线看三级毛片| 国内精品一区二区在线观看| 国产亚洲91精品色在线| 久久草成人影院| 婷婷亚洲欧美| 亚洲精品粉嫩美女一区| 91精品国产九色| 黄色日韩在线| 99热网站在线观看| 美女 人体艺术 gogo| 亚洲,欧美,日韩| 菩萨蛮人人尽说江南好唐韦庄 | www日本黄色视频网| 亚洲五月天丁香| 精品一区二区三区av网在线观看| 日本与韩国留学比较| 亚洲aⅴ乱码一区二区在线播放| 成年av动漫网址| 日本熟妇午夜| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 毛片女人毛片| 中文字幕人妻熟人妻熟丝袜美| 精品福利观看| 村上凉子中文字幕在线| 国产精品三级大全| 俺也久久电影网| 99热这里只有精品一区| 国产午夜精品论理片| 国产三级中文精品| 国产精品人妻久久久影院| 日本a在线网址| 国产麻豆成人av免费视频| 真实男女啪啪啪动态图| 少妇高潮的动态图| 深夜a级毛片| 成人特级av手机在线观看| 午夜福利在线观看吧| 久久久国产成人精品二区| a级一级毛片免费在线观看| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 国产91av在线免费观看| 嫩草影视91久久| 久久6这里有精品| 男女那种视频在线观看| 久久精品国产自在天天线| 99久久精品国产国产毛片| 午夜日韩欧美国产| 99久久中文字幕三级久久日本| 亚洲成人久久爱视频| 国产毛片a区久久久久| 亚洲av美国av| 中文字幕免费在线视频6| 免费在线观看影片大全网站| 一个人观看的视频www高清免费观看| 亚洲在线自拍视频| 色噜噜av男人的天堂激情| 国产淫片久久久久久久久| 特级一级黄色大片| 国产一区二区亚洲精品在线观看| 久久久久精品国产欧美久久久| 97碰自拍视频| 亚洲精品久久国产高清桃花| 欧美激情国产日韩精品一区| 天堂动漫精品| 国产精品久久电影中文字幕| 日产精品乱码卡一卡2卡三| 国模一区二区三区四区视频| 日韩欧美在线乱码| 日本精品一区二区三区蜜桃| 久久精品国产亚洲av天美| 老熟妇仑乱视频hdxx| av在线播放精品| 黄色欧美视频在线观看| 日本 av在线| 亚洲国产精品成人久久小说 | 欧美日韩精品成人综合77777| 亚洲欧美日韩高清专用| 欧美最新免费一区二区三区| 亚洲av第一区精品v没综合| 亚洲av成人精品一区久久| 亚洲国产精品sss在线观看| 久久九九热精品免费| 一个人看视频在线观看www免费| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 国产午夜福利久久久久久| 嫩草影院新地址| 亚洲欧美日韩高清在线视频| 精品国产三级普通话版| 在线看三级毛片| 你懂的网址亚洲精品在线观看 | 国产精品一区二区三区四区久久| 日本在线视频免费播放| 成人三级黄色视频| 亚洲欧美中文字幕日韩二区| 九九在线视频观看精品| 一个人观看的视频www高清免费观看| 精品久久久久久久人妻蜜臀av| 热99在线观看视频| 亚洲一区高清亚洲精品| 中文字幕av成人在线电影| 欧美成人一区二区免费高清观看| 两性午夜刺激爽爽歪歪视频在线观看| 狂野欧美激情性xxxx在线观看| 国产91av在线免费观看| 少妇人妻一区二区三区视频| 一级黄片播放器| 成人特级黄色片久久久久久久| 欧美一区二区亚洲| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 麻豆av噜噜一区二区三区| av.在线天堂| 成人午夜高清在线视频| 色5月婷婷丁香| 精品午夜福利在线看| 精品午夜福利视频在线观看一区| 最好的美女福利视频网| 热99re8久久精品国产| av天堂中文字幕网| 日本爱情动作片www.在线观看 | av在线播放精品| 成人精品一区二区免费| 欧美精品国产亚洲| 观看免费一级毛片| 九九久久精品国产亚洲av麻豆| 国产亚洲欧美98| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 午夜日韩欧美国产| 97在线视频观看| 丝袜喷水一区| av免费在线看不卡| 亚洲国产精品久久男人天堂| 亚洲乱码一区二区免费版| 国产欧美日韩一区二区精品| 婷婷精品国产亚洲av| av在线天堂中文字幕| 啦啦啦韩国在线观看视频| 男女做爰动态图高潮gif福利片| a级毛色黄片| 亚洲一区二区三区色噜噜| 毛片一级片免费看久久久久| 搡老熟女国产l中国老女人| 哪里可以看免费的av片| 国内精品久久久久精免费| 国内揄拍国产精品人妻在线| 男人舔女人下体高潮全视频| 亚洲欧美中文字幕日韩二区| 我的老师免费观看完整版| 免费搜索国产男女视频| 天天一区二区日本电影三级| 中文字幕熟女人妻在线| 午夜日韩欧美国产| 九九热线精品视视频播放| 国产精品一区二区免费欧美| 婷婷色综合大香蕉| 99久国产av精品| 国产乱人视频| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 欧美zozozo另类| 国产精品亚洲美女久久久| 少妇的逼好多水| 真实男女啪啪啪动态图| 在线免费观看的www视频| 亚洲不卡免费看| 国产午夜精品久久久久久一区二区三区 | 久久精品国产清高在天天线| 中文字幕免费在线视频6| 午夜影院日韩av| 三级毛片av免费| 国产一级毛片七仙女欲春2| 嫩草影院入口| 国语自产精品视频在线第100页| 男女之事视频高清在线观看| 久久精品国产亚洲av涩爱 | 在线看三级毛片| 天天躁夜夜躁狠狠久久av| 久久午夜亚洲精品久久| 日本黄大片高清| 成人无遮挡网站| 黄色配什么色好看| 一级毛片久久久久久久久女| 欧美人与善性xxx| 97在线视频观看| 青春草视频在线免费观看| 久久中文看片网| 亚洲国产精品久久男人天堂| 九九久久精品国产亚洲av麻豆| 人妻久久中文字幕网| 99国产极品粉嫩在线观看| 亚洲欧美中文字幕日韩二区| 久久热精品热| 久久人人爽人人片av| 久久热精品热| 热99re8久久精品国产| 12—13女人毛片做爰片一| 国内精品宾馆在线| 亚洲成人久久性| 日韩亚洲欧美综合| 成人毛片a级毛片在线播放| 在现免费观看毛片| 国产精品一区二区性色av| 午夜福利视频1000在线观看| 亚洲中文字幕一区二区三区有码在线看| 日韩高清综合在线| 精品熟女少妇av免费看| 好男人在线观看高清免费视频| 日本-黄色视频高清免费观看| 亚洲va在线va天堂va国产| 一级黄色大片毛片| 午夜福利在线观看吧| 亚洲经典国产精华液单| 亚洲五月天丁香| 人人妻人人澡人人爽人人夜夜 | 成人永久免费在线观看视频| 一级毛片久久久久久久久女| 天天一区二区日本电影三级| 少妇猛男粗大的猛烈进出视频 | 精品一区二区免费观看| 乱码一卡2卡4卡精品| 国产蜜桃级精品一区二区三区| 亚洲不卡免费看| 国产高清激情床上av| 九九爱精品视频在线观看| 国产一区二区在线观看日韩| 亚洲美女搞黄在线观看 | 美女被艹到高潮喷水动态| 国产av不卡久久| 国产高清三级在线| 国产成年人精品一区二区| 国产色爽女视频免费观看| 丰满人妻一区二区三区视频av| 尤物成人国产欧美一区二区三区| 色吧在线观看| 淫妇啪啪啪对白视频| 亚洲一级一片aⅴ在线观看| 亚洲天堂国产精品一区在线| 亚洲18禁久久av| 在线播放国产精品三级| 国产精品国产三级国产av玫瑰| 中文在线观看免费www的网站| 国产私拍福利视频在线观看| 亚洲在线观看片| 深夜精品福利| 免费一级毛片在线播放高清视频| 乱人视频在线观看| 天天一区二区日本电影三级| 嫩草影院入口| 成年女人看的毛片在线观看| 国产片特级美女逼逼视频| 国产精品一区二区性色av| 久久久国产成人免费| 麻豆久久精品国产亚洲av| 别揉我奶头~嗯~啊~动态视频| ponron亚洲| 午夜爱爱视频在线播放| 日日啪夜夜撸| 欧美成人精品欧美一级黄| 最新中文字幕久久久久| 国产综合懂色| 亚洲内射少妇av| 成人精品一区二区免费| 亚洲av一区综合| 亚洲欧美日韩东京热| 69av精品久久久久久| 国产精品1区2区在线观看.| 午夜福利在线观看吧| 99视频精品全部免费 在线| 最近手机中文字幕大全| 免费在线观看影片大全网站| 麻豆乱淫一区二区| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| 亚洲av免费在线观看| 精品国内亚洲2022精品成人| or卡值多少钱| 日韩国内少妇激情av| 男女视频在线观看网站免费| 日本黄色视频三级网站网址| 亚洲国产色片| 国产精品久久久久久亚洲av鲁大| 男人狂女人下面高潮的视频| 草草在线视频免费看| 国产 一区 欧美 日韩| 长腿黑丝高跟| 久久久久免费精品人妻一区二区| 欧美在线一区亚洲| 99视频精品全部免费 在线| 日韩亚洲欧美综合| 日本五十路高清| 久久草成人影院| 国产高清激情床上av| 久久人妻av系列| 少妇的逼好多水| 亚洲成av人片在线播放无| 最近中文字幕高清免费大全6| 国产黄片美女视频| 亚洲av免费高清在线观看| 精品人妻偷拍中文字幕| 成年女人毛片免费观看观看9| 亚洲美女视频黄频| 亚洲三级黄色毛片| 偷拍熟女少妇极品色| 不卡视频在线观看欧美| 一区二区三区免费毛片| 身体一侧抽搐| 麻豆av噜噜一区二区三区| 少妇丰满av| 中文字幕人妻熟人妻熟丝袜美| 亚洲av成人av| 国产伦在线观看视频一区| 69av精品久久久久久| 熟女电影av网| 午夜激情福利司机影院| 色噜噜av男人的天堂激情| 国产大屁股一区二区在线视频| 哪里可以看免费的av片| 熟妇人妻久久中文字幕3abv| 日韩欧美精品免费久久| 国产爱豆传媒在线观看| 女人被狂操c到高潮| 国产高清激情床上av| 精品一区二区三区av网在线观看| 亚洲久久久久久中文字幕| av天堂在线播放| 欧美成人免费av一区二区三区| 精品一区二区免费观看| 国产欧美日韩精品一区二区| 深爱激情五月婷婷| 三级男女做爰猛烈吃奶摸视频| 久久九九热精品免费| 欧美又色又爽又黄视频| 国产91av在线免费观看| 国产亚洲91精品色在线| 国产精品99久久久久久久久| 一级毛片我不卡| 天天躁夜夜躁狠狠久久av| 久久草成人影院| 国产私拍福利视频在线观看| 久久久久久久久中文| 一区二区三区四区激情视频 | 久久精品国产亚洲av香蕉五月| 国内精品久久久久精免费| 国产精品精品国产色婷婷| 精品福利观看| 人妻少妇偷人精品九色| 美女免费视频网站| 国产 一区 欧美 日韩| 欧美性猛交黑人性爽| 成人高潮视频无遮挡免费网站| 99riav亚洲国产免费| 日本免费一区二区三区高清不卡| 如何舔出高潮| 五月玫瑰六月丁香| 特级一级黄色大片| 美女cb高潮喷水在线观看| 日韩一本色道免费dvd| 欧美成人免费av一区二区三区| 亚洲av美国av| 国产伦在线观看视频一区| 成人无遮挡网站| 大型黄色视频在线免费观看| 精品99又大又爽又粗少妇毛片| 精品午夜福利在线看| 国产伦在线观看视频一区| 在线观看午夜福利视频| 97碰自拍视频| 国内久久婷婷六月综合欲色啪| 精品久久国产蜜桃| 国产成人freesex在线 | 国产精品无大码| 国产aⅴ精品一区二区三区波| 久久久精品94久久精品| 国产成人freesex在线 | 亚洲国产精品sss在线观看| 国产 一区 欧美 日韩| 舔av片在线| 一个人看的www免费观看视频| 人妻少妇偷人精品九色| 日韩精品有码人妻一区| 欧美最黄视频在线播放免费| 美女xxoo啪啪120秒动态图| 国产精品亚洲一级av第二区| 韩国av在线不卡| 国产成人91sexporn| 日韩欧美在线乱码| 97热精品久久久久久| 久久欧美精品欧美久久欧美| 国产av一区在线观看免费| 久久久久久大精品| 小说图片视频综合网站| 亚洲成a人片在线一区二区| 精品一区二区免费观看| 亚洲成av人片在线播放无| 一边摸一边抽搐一进一小说| 国产av在哪里看| 乱码一卡2卡4卡精品| 99九九线精品视频在线观看视频| 中文亚洲av片在线观看爽| aaaaa片日本免费| 国产精品一及| 中文资源天堂在线| 99久久精品国产国产毛片| 国产精品无大码| 淫妇啪啪啪对白视频| 亚洲av第一区精品v没综合| 精品一区二区三区人妻视频| 晚上一个人看的免费电影| 九色成人免费人妻av| 欧美激情久久久久久爽电影| 给我免费播放毛片高清在线观看| 波多野结衣高清无吗| 在线播放国产精品三级| 久久久精品欧美日韩精品| 国产熟女欧美一区二区| 男人狂女人下面高潮的视频| 长腿黑丝高跟| 免费无遮挡裸体视频| 最近2019中文字幕mv第一页| 免费av毛片视频| 搡老熟女国产l中国老女人| 禁无遮挡网站| www日本黄色视频网| 可以在线观看毛片的网站| 日日摸夜夜添夜夜爱| 国产乱人视频| 日韩欧美国产在线观看| 综合色丁香网| 国产精品一区二区性色av| 精品久久久久久成人av| 露出奶头的视频| 在线观看免费视频日本深夜| 女人被狂操c到高潮| 天堂√8在线中文| 日韩精品中文字幕看吧| 三级毛片av免费| 色吧在线观看| 亚洲欧美日韩东京热| 国产成人aa在线观看| 久久99热这里只有精品18| av在线亚洲专区| 麻豆国产av国片精品| 亚洲美女视频黄频| 久久久久免费精品人妻一区二区| 在现免费观看毛片| 搡女人真爽免费视频火全软件 | 欧美精品国产亚洲| 精品福利观看| 国产视频内射| 久久人人爽人人爽人人片va| 黄色日韩在线| 亚洲一区高清亚洲精品| 国产精品av视频在线免费观看| 成人美女网站在线观看视频| 舔av片在线| 色哟哟哟哟哟哟| 亚洲不卡免费看| АⅤ资源中文在线天堂| 欧美日本视频| 免费搜索国产男女视频| 日本五十路高清| 中文字幕久久专区| 亚洲婷婷狠狠爱综合网| 国产精品福利在线免费观看| 国内精品久久久久精免费| 天天躁日日操中文字幕| 亚洲自拍偷在线| 国产av麻豆久久久久久久| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩无卡精品| 国产精品野战在线观看| 一本久久中文字幕| 婷婷色综合大香蕉| 日韩在线高清观看一区二区三区| 久久久色成人| 丰满的人妻完整版| 免费看光身美女|