• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bi2WO6/TiO2納米管異質(zhì)結(jié)構(gòu)復(fù)合材料的多模式下的光催化活性比較

    2017-09-12 08:59:35馬鳳延楊陽(yáng)李娜楊麒麟李尚錦申路嚴(yán)
    關(guān)鍵詞:楊陽(yáng)納米管李娜

    馬鳳延楊陽(yáng)李娜楊麒麟李尚錦申路嚴(yán)

    Bi2WO6/TiO2納米管異質(zhì)結(jié)構(gòu)復(fù)合材料的多模式下的光催化活性比較

    馬鳳延*,1楊陽(yáng)1李娜1楊麒麟1李尚錦2申路嚴(yán)2

    (1齊齊哈爾大學(xué)化學(xué)與化學(xué)工程學(xué)院,齊齊哈爾161006)
    (2齊齊哈爾大學(xué)材料科學(xué)與工程學(xué)院,齊齊哈爾161006)

    以TiO2納米管為模板,采用多組分自組裝結(jié)合水熱法制備Bi2WO6/TiO2納米管異質(zhì)結(jié)構(gòu)復(fù)合材料。通過(guò)多種技術(shù)如X射線衍射(XRD),X射線光電子能譜(XPS),N2吸附-脫附,掃描電鏡(SEM),高分辨透射電鏡(HRTEM)和紫外可見(jiàn)漫反射吸收光譜(UV-Vis DRS)考察所制備樣品的組成、結(jié)構(gòu)、形貌、光吸收和電子性質(zhì)。Bi2WO6納米片或納米粒子分布在TiO2納米管上,形成異質(zhì)結(jié)構(gòu)。隨后,通過(guò)在紫外、可見(jiàn)和微波輔助光催化模式下降解染料羅丹明B(RhB)來(lái)評(píng)價(jià)復(fù)合催化劑的光催化活性。與TiO2納米管和Bi2WO6相比,Bi2WO6/TiO2-35納米管在多模式下表現(xiàn)出更優(yōu)異的光催化活性。與紫外和可見(jiàn)降解模式相比,Bi2WO6/TiO2-35納米管在微波輔助光催化模式下對(duì)RhB的降解效率最高。這種增強(qiáng)的光催化活性源于適量Bi2WO6的引入、納米管獨(dú)特的形貌特征和降解模式所引起的增強(qiáng)的量子效率。降解過(guò)程中的活性物種被證明是h+,·OH和·O2-自由基。而且,在微波輔助光催化模式下,可產(chǎn)生更多的·OH和·O2-自由基。

    TiO2納米管;Bi2WO6;多模式降解;光催化

    0 Introduction

    Titanium dioxide(TiO2)has attracted a great deal of research attention because of their potential applications in the photodegradation of organic pollutants, photocatalytic water splitting for hydrogen generation, dye-sensitized solar cells,and even gas sensors and biosensors,due to its low cost and abundant elements (Ti and O),long-term stability,and environmentalfriendly characteristics[1-3].However,its wide band gap and fast recombination of the photogenerated electronhole(e--h+)are two limitations for its contemporary applications[4].

    To overcome the above limitations,some measures have been taken.At present,one effective approach is to adjust TiO2morphology.One-dimensional(1D)TiO2nanomaterialshavebeenreceivingextensiveinterests[5-8]. Moreover,compared with other forms of TiO2,titania nanotubespossessthedistinguishingfeaturesof nanotubes including large specific surface area,good electron/proton conductivity,and high aspect ratio.In addition,the open mesoporous morphology of TiO2nanotubes can efficiently transfer the electrons along the 1D path without grain boundaries and junctions, while hollow space can capture scattered light to increase light harvesting as well as easier separation and recovery than TiO2nanoparticles due to the length in the micrometer range[9].

    Another strategy is to construct the heterostructures by the wide band-gap semiconductor with a narrow band-gap semiconductor(with the proper band positions)[1,10].Yu and Li fabricated and reported Agbased heterojunction[11-16],Au NPs loaded onto the α-Bi2O3/Bi2O2CO3[17],F-Bi2MoO6[18],anatase/rutileTiO2particles[19],and MoS2/CdS composite[20],which are more efficient than individual component in photocatalytic properties.Inparticular,QianandMagroups successfullyfabricatedUCNPs/semiconductorsfor NIR-driven photocatalysis,such as UCNPs/TiO2nanofiber[21],UCNPs/TiO2/CdS nanofibers[22],NYF@TiO2-Au core@shell microspheres[23].They show unique optical propertieswithwideabsorptionandenhanced photocatalytic abilities towards to organic dye removal efficiency under irradiation with NIR.Such synergistic interactions of heterojunction between two kinds of semiconductorsarefairlypowerfulnotonlyin improving the visible light harvesting ability but also in extending the lifetime of photoinduced electrons and holes via an internal charge transfer,facilitating the separation of electron-hole pairs and reducing the chance of recombination[24-26].

    Among these,bismuth tungstate(Bi2WO6),as a typical Aurivillius oxide,has a layered structure with perovskite-like slabs of WO6and[Bi2O2]2+layer and has important physical and chemical properties such as ferroelectric piezoelectricity,catalytic behavior and nonlinear dielectric susceptibility[27-28].More importantly,Bi2WO6is a promising visible light-driven photocatalyst with high photocatalytic activity[29-30].However, the photocatalytic activity of pure Bi2WO6is limited by difficult migration and high recombination probability of photogenerated e--h+pairs.Therefore,the combination of tubular morphology and heterostructure construction is a useful approach for designing heterostructure photocatalysts with high charge separation efficiency.

    In order to improve the photocatalytic activity, the construction of TiO2-Bi2WO6heterostructures has become a hot research,and some achievement has been obtained in recent years.For instance,Wang et al.successfully synthesized TiO2-Bi2WO6nanofibers by electrospinning technique[31].Colón et al.and other groups have reported TiO2modified flower[32]/sphere[33]/ hollow tube-like Bi2WO6[34].Wu and Luo et al.reported the preparation TiO2nanobelts[35]/TiO2nanotubes[36]grown on titanium(Ti)foil decorated with Bi2WO6nanocrystals,respectively.These results indicate that the photocatalytic activities of TiO2-Bi2WO6heterojunctions show enhanced photocatalytic performance in comparison with individual components of Bi2WO6or TiO2.To the best of our knowledge,much less notice has been taken of the preparation of TiO2nanotubes synthesized by alkali hydrothermal treatment modified with Bi2WO6.Moreover,few investigations were carried on the comparative mechanism of the enhanced photocatalytic activity for organic pollutants under multiple modes including UV,visible,and microwave-assisted photocatalysis.What is more,they lack direct evidence to explain photocatalytic mechanism under multiple modes that serve as background datafortheenvironmentalbehavioroforganic pollutants.

    In this work,Bi2WO6/TiO2nanotubes(Bi2WO6/ TiO2-NTs)heterostructures were fabricated by multicomponent assembly approach combined with hydrothermal treatment,which is free from the usage of additives or surfactants.Subsequently,the photocatalytic activities of Bi2WO6/TiO2nanotubes under multiple modes including UV,visible,and microwave-assisted photocatalysis were also studied in this work.Direct evidencetoexplaincomparativelyphotocatalytic mechanism under multiple modes was supplied by free radical andholetrappingexperiments.The relationship between the morphology,structure,optical properties and the photocatalytic activities of Bi2WO6/ TiO2heterostructuresundermultiplemodeswas investigated in detail.

    1 Experimental

    1.1 Preparation of Bi2WO6/TiO2nanotubes

    In a typical procedure[37],TiO2nanotubes were dispersed in H2O(5 mL)under vigorously stirring for 0.5 h.Meanwhile,Bi(NO3)3·5H2O(0.972 g)and Na2WO4·2H2O(0.329 g)were dissolved in glacial acetic acid (HAc,10 mL)and H2O(5 mL),respectively.Subsequently,the above solutions were added into TiO2nanotubes suspension to form a white suspension. After stirring for 2 h,the resulting mixture was suffered from hydrothermal treatment at 150℃for 4 h,and the resulting precipitate was dried and washed with deionized water for three times.The obtained powder was further dried at 80℃for 24 h.The final product was denoted as Bi2WO6/TiO2-NTs-x,where x representsthedopingofTiO2nanotubes(mass percentage).

    1.2 Characterization of the catalyst

    X-ray diffraction patterns were obtained on a Bruker-AXS(D8)X-ray diffractometer with Cu Kα radiation(λ=0.154 06 nm)at 40 kV and 40 mA in 2θ ranging from 20°to 80°.X-ray photoelectron spectroscopy(XPS)characterization was carried out on an ESCALAB 250Xi spectrometer equipped with Al Kα radiation at 300 W.N2adsorption-desorption isotherm analyses of samples were obtained at 77 K using Micromeritics3H-2000PS2.Themorphologiesof synthesized samples were analyzed using a scanning electron microscope(SEM)(HitachiS-4300)and transmission electron microscope(TEM)and high resolution transmission electron microscope(HRTEM)(JEM-2100F).UV-Vis diffused absorption spectra(UV-Vis DRS)were recorded using a UV-Vis spectrophotometer(TU-1901)over the wavelength range of 200~800 nm and BaSO4as a reference material.

    1.3 Photocatalytic tests

    Photocatalytic activities of the Bi2WO6/TiO2-NTs composite were studied by monitoring the degradation behaviors of rhodamine B(RhB)under multimode (including UV,visible,and microwave-assisted photocatalysis mode).The 125 W high pressure mercury lamp(λ=313.2 nm),400 W Xe lamp(λ=410.0 nm; moreover,the inner sleeve was made of No.11 glass to filter out ultraviolet from the Xe lamp),and 15 W microwave electrodeless lamp(MEL,UV emission wavelength mainly located at 278 nm,U shape,100 W output power of microwave reactor),were used as UV,visible light,and microwave-assisted photocatalysis mode light source,respectively.The concetration of RhB was 50 mg·L-1.Moreover,the amounts of the catalyst(liquid volume)for the three modes(UV, visible,and microwave-assisted photocatalysis)were 100 mg(100 mL),200 mg(220 mL),and 300 mg(500 mL),respectively.

    The photocatalytic reaction was carried out in a quartz photoreactor.Prior to irradiation,the suspension containing the solid catalyst and an aqueous solution of the contaminant was ultrasonicated for 10 min and then stirred for 1.5 h in the dark to ensure adsorption-desorption equilibrium.The reaction temperature was maintained at(30±2)℃by circulation of waterthroughanexternalcoolingjacketorby circulating solution to a cooler with the peristaltic pump.At certain time intervals,suspensions(5 mL) were sampled and centrifuged to remove the photocatalyst particles.Decreases in the concentrations of RhB,methyl orange(MO),crystal violet(CV),and methylene blue(MB)were analyzed by TU-1901 UVVis spectrophotometer at λ=553,464,582,and 664 nm,respectively.

    2 Results and discussion

    2.1 Compositional and structural information

    XRDwasusedtocharacterizethecrystal structure of the as-prepared Bi2WO6/TiO2-NTs,as well as pure TiO2-NTs and Bi2WO6(Fig.1).The diffraction peaks of pure TiO2-NTs and Bi2WO6are well matched with the standard patterns of anatase phase of TiO2(PDF No.21-1272)[37]andorthorhombicphaseof Bi2WO6(PDF No.39-0256),respectively.After the coupling of Bi2WO6and TiO2-NTs,when the TiO2-NTs loading increases from 25%to 50%,the diffraction peaks of TiO2intensify gradually,whereas the peak intensities of Bi2WO6decrease.No impurity peak is found in Bi2WO6/TiO2-NTs composites,suggesting that the composites exhibit a coexistence of both Bi2WO6and TiO2phases.

    Fig.1 XRD patterns of the samples

    Valence states and the surface chemical composition of the as-prepared samples were investigated by XPS technique.As shown in Fig.2a,the peaks at 458.68 and 464.48 eV are attributed to Ti2p3/2and Ti2p1/2,respectively,confirming the titanium species in the composite is Ti4+.After introduction of the Bi2WO6into the TiO2nanotubes,the binding energies of Ti2p3/2and Ti2p1/2shift to higher values(458.78 and 465.28 eV,respectively),which is attributed to diffusion of W6+ions into the TiO2lattice and further generation of WOTi bond linkage[35,37].As displayed in Fig.2b and c,for pure Bi2WO6,the characteristic peaks at 164.58 and 159.28 eV are ascribed to Bi4f5/2and Bi4f7/2from Bi3+in the lattice and the binding energy of W4f5/2and W4f7/2at 37.88 and 35.78 eV, respectively,are corresponded to W6+[35].In the XPS spectrum of Bi2WO6/TiO2-NTs,in contrast with Bi2WO6, the binding energy of Bi4f5/2(164.38 eV)and Bi4f7/2(159.08 eV)decreases by 0.2 eV while that of W4f5/2(37.58 eV)and W4f7/2(35.58 eV)decreases by 0.3 eV. The results suggest that the chemical environment surrounding Bi and W has changed,which is possiblyinfluenced by TiO2-NTs.Thus,we can confirm that the TiO2-NTs successfully modified by Bi2WO6.

    Fig.2 XPS spectra of Ti2p(a),Bi4f(b),and W4f(c)regions for TiO2-NTs,Bi2WO6,and Bi2WO6/TiO2-NTs-35

    Fig.3 Nitrogen adsorption-desorption isotherms(a)and BJH pore size distribution curves(b)of samples

    Table1 Textural parameters of various TiO2-based materials

    The porosity of the Bi2WO6/TiO2-NTs heterostructures is investigated by N2adsorption-desorption isotherms and the corresponding BJH pore size distribution.As shown in Fig.3a,the isotherms exhibit typeⅣwith an H3 hysteresis loop characteristic of mesoporous material[37],which is confirmed by the pore size distribution(Fig.3b).Moreover,the formation of such mesoporous materials is attributed to the aggregation of the Bi2WO6nanoparticles adhering to the surface of the TiO2nanotubes.More importantly,as shown in Table 1,the measured BET surface areas of Bi2WO6/ TiO2-NTs-25(80 m2·g-1),Bi2WO6/TiO2-NTs-35(88 m2· g-1)and Bi2WO6/TiO2-NTs-50(101 m2·g-1)are greatly enhanced compared with that of Bi2WO6(44 m2·g-1). Meanwhile,the specific surface areas of composite materials increase indeed together with the increase of TiO2-NTs contents from 25%to 50%.

    2.2 Morphology

    Fig.4 SEM images of the samples

    Themorphologyandmicrostructureofthe photocatalysts were also investigated.As shown in the SEM image(Fig.4a),TiO2-NTs show the nanotubular morphology with an average diameter of 30 nm andlength of 1 μm.While Bi2WO6exhibits a typical structure of nanosheet consist of nanoparticles with the side length of 50~250 nm and thickness of 20~40 nm(Fig.4b).As displayed in Fig.4c~e,morphologies of TiO2and Bi2WO6change obviously afterthe combination by TiO2-NTs and Bi2WO6through hydrothermal treatment.The typical morphology structure of Bi2WO6/TiO2-NTs-25 consists of smooth TiO2nanotubes and curled Bi2WO6flakes,which link mutually to each other.Moreover,the surface of TiO2nanotubes becomes rough obviously after Bi2WO6modification when TiO2nanotubes loading increases from 35%to 50%.While Bi2WO6changes from flakes to smaller nanoparticles.Furthermore,smaller Bi2WO6nanoparticles homogeneously disperse on the surface of TiO2nanotubes in-situ growth process.Compared with TiO2-NTs and Bi2WO6,aggregation of Bi2WO6/TiO2-NTs has intensively alleviated with the loading of TiO2nanotubes increasing from 0 to 50%.

    In order to further confirm the Bi2WO6/TiO2-NTs heterostructures,HRTEM was used to investigate the detailed structure information of the Bi2WO6/TiO2-NTs. The corresponding HRTEM image displays two types of clear lattice fringes,as shown in Fig.4f.The interplanar spacing of 0.35 and 0.315 nm corresponds to the(101)crystal plane of TiO2-NTs and the(131) crystal plane of the orthorhombic phase of Bi2WO6, respectively[18-19].According to the results of XRD,XPS, SEM and HRTEM,we assume that Bi2WO6/TiO2-NTs heterostructures with Bi2WO6nanoparticles on the surfaceofTiO2nanotubeshavebeenprepared successfully.

    Based on the above results and discussion,we put forward the plausible formation of Bi2WO6/TiO2-NTs heterojunction.Considering Bi(NO3)3with crystal water,Bi2O2(OH)NO3is formed through the following hydrolysis and condensation reaction in the glacial acetic acid-water system(Eq.1~2).When Na2WO4solution is added to the above reaction solution,Bi2WO6nanoparticles are obtained(Eq.3)[38].Then the introduction of TiO2-NTs into Bi2WO6suspension,Bi2WO6nanoparticles aggregate around TiO2-NTs.Subsequently,at high temperature and high pressure,Bi2WO6nanoparticlesgrowintocurledflakesorsmaller nanoparticles and homogeneously dispersed on the surface of TiO2nanotubes in-situ growth process,resulting in the formation of Bi2WO6/TiO2-NTs heterojunction[31].

    2.3 Optical property

    UV-Visdiffusedabsorptionspectra(UV-Vis DRS)were carried out to investigate the optical properties of the photocatalysts.As shown in Fig.5a, the pure TiO2-NTs and Bi2WO6exhibit a fundamental absorption edge at around 388 and 450 nm,which originate from the charge transfer response of TiO2-NTs and Bi2WO6from the valence band to the conduction band,respectively[39].Compared with pure TiO2-NTs,the absorption edges of Bi2WO6/TiO2-NTs showed obvious red-shift to the longer wavelength within the range of visible light.

    It is known that the optical absorption near the band edge of prepared samples obeys the following equation:(αhν)n=K(hν-Eg).In this equation,K,α,h, hν,Egare constant,absorption coefficient,Planck constant,energy of the incident photon,band gap, respectively,and n is 0.5 and 1 for a direct and indirect band gap semi-conductor[38].According to the formula, the calculated band gaps(Eg)of samples are 2.75 eV(Bi2WO6),2.87 eV(Bi2WO6/TiO2-NTs-25),2.94 eV (Bi2WO6/TiO2-NTs-35),3.00 eV(Bi2WO6/TiO2-NTs-50), and 3.20 eV(TiO2-NTs),respectively.

    Fig.5 UV-Vis DRS(a)and plot of(αhν)1/2versus hν(b)for Bi2WO6,TiO2-NTs and the Bi2WO6/TiO2-NTs materials

    The conduction band(CB)and valence band (VB)positions of the Bi2WO6and TiO2samples are estimated by the following equations:EVB=X-Ee+0.5Eg; ECB=EVB-Eg,where EVBand ECBare the VB and CB edge potentials,Eeis the energy of free electrons on the hydrogen scale(about 4.5 eV vs NHE).The X values for the Bi2WO6and TiO2materials are 6.21 and 5.81 eV,respectively[40-41].The Egof Bi2WO6and TiO2-NTs are estimated to be 2.75 and 3.20 eV,respectively. Herein,the CB and VB edge potentials of Bi2WO6and TiO2-NTs are calculated at 0.34 and 3.09 eV,and -0.29 and 2.91 eV,respectively.

    2.4 Photocatalytic activity

    The photocatalytic performance of the Bi2WO6/ TiO2-NTs heterostructures in terms of photodegradation of RhB molecules under multiple modes including UV,visible,and microwave-assisted photocatalysis was investigated.

    Fig.6 ashowsthephotocatalyticactivitiesof photocatalysts.UnderUVlightirradiationalone (without catalyst),only 3%RhB is degraded,which means the RhB can remain stability under long time irradiation.However,apparent changes in the concentration of RhB are observed in the existence of both light and catalyst.After irradiation for 90 min,46.8%, 61.5%,70.0%,88.9%,82.4%and 74.1%of the RhB is degraded by using the TiO2-NTs,Bi2WO6,Bi2WO6/TiO2-NTs-25,Bi2WO6/TiO2-NTs-35,Bi2WO6/TiO2-NTs-50,and P25,respectively.

    Fig.6 Normalized decrease concentration of Ct/C0of RhB solution containing different photocatalysts under UV(a) and visible(b)light irradiation;(c)-ln(Ct/C0)as a function of irradiation time for RhB degradation over photocatalysts;(d)Photocatalytic degradation RhB profiles obtained using different photocatalysts under microwave-assisted photocatalysis mode for 15 min;(e)Photocatalytic degradation RhB profiles by Bi2WO6/TiO2-NTs-35 obtained under multimode for 15 min;(f)Normalized decrease concentrations of Ct/C0of different dyes using Bi2WO6/TiO2-NTs-35 under UV light irradiation

    Fig.6 b displays the photocatalytic activity of prepared samples under the visible light irradiation.It isfoundthatthephotocatalyticperformanceof Bi2WO6/TiO2-NTs-35 to degrade RhB under visible lightirradiationsurpassesthatofitsindividual counterparts.

    At the same time,the kinetics of photocatalytic degradation of RhB is investigated by simplified Langmuir-Hinshelwood model.The pseudo-first-order rate constant(kapp)is calculated using the formula -ln(Ct/C0)=kappt,where C0and Ctare the initial concentration and concentration at reaction time t of RhB, respectively.From Fig.6c,under visible irradiation, the rate constant over Bi2WO6/TiO2-NTs-35,Bi2WO6, P25,and TiO2-NTs is 1.10×10-2,8.45×10-3,3.71×10-3, and 1.27×10-3min-1,respectively.Moreover,Bi2WO6/ TiO2-NTs-35 shows the highest first-order rate constant, which is about 1.2 and 8.7 times greater than that of pure Bi2WO6and TiO2-NTs,respectively.

    Fig.6 d also exhibits the photocatalytic activity of differentphotocatalystsundermicrowave-assisted photocatalysis mode with electrodeless discharge lamp activated by microwaves as the light source.Bi2WO6/ TiO2-NTs-35showshighestphotocatalyticactivity towards RhB degradation under microwave-assisted photocatalysis mode.Moreover,Fig.6e displays photocatalytic activities of Bi2WO6/TiO2-NTs-35 under different modes after irradiation for 15 min.In contrast with UV and visible mode,the Bi2WO6/TiO2-NTs-35 shows higher activity under microwave-assisted photocatalytic mode.In addition,different kinds of dyes were selected to evaluate the photocatalytic activity under UV light irradiation(Fig.6f).The cationic dyes (CV,MB,and RhB)are effectively degraded,while the degradation of anionic dye(MO)is poor,which is attributed to the different structure and adsorption of dyes.

    Toevaluatethestabilityandreusabilityof Bi2WO6/TiO2-NTs-35heterostructuresforpractical application,the photocatalytic degradation of RhB with the same photocatalyst is carried out for several times.As displayed in Fig.7,degradation curve has no obvious decline after four cycles of RhB degradation reaction under UV light irradiation,which indicates Bi2WO6/TiO2-NTs-35 heterostructures maintain high stability.

    Fig.7 Recycling for the photodegradation of RhB in the presence of Bi2WO6/TiO2-NTs-35 under UV light irradiation

    2.5 Possible pathway of RhB degradation in Bi2WO6/TiO2-NTs system

    The above photocatalytic tests indicate that:(i) the photocatalytic activity of pure TiO2-NTs can be furtherincreasedbyintroductionproperBi2WO6loading under multimode;(ii)in contrast to UV and visible mode,Bi2WO6/TiO2-NTs showed higher photocatalyticactivityundermicrowave-assistedphotocatalysis mode.The influence factors towards the excellent photocatalytic activity of Bi2WO6/TiO2-NTs are discussed.

    Firstly,Bi2WO6modified TiO2nanotubes play a major role in improving the photocatalytic activity of TiO2nanotubes.On one hand,according to UV-Vis DRS analysis,Bi2WO6/TiO2-NTs heterostructures have a narrow band gap and exhibit enhanced UV and visible light absorption,consequently increases the utilization of light.On the other hand,the formed heterostructuresbetweenBi2WO6andTiO2-NTs photocatalysts can extend the lifetime of photoinduced electrons and holes via an internal charge transfer, further facilitate the separation of e--h+pairs and reduce the chance of recombination.These wellseparated electrons and holes can participate in the overall photocatalysis process.

    Secondly,the open mesoporous morphology of nanotubescan enhance the contactbetweenthe substance and photocatalysts during the photocatalytic reaction.Meanwhile,the nanotubes provide an efficient transport channel for photogenerated electrons.

    Thirdly,degradation mode influences the photocatalytic activity of Bi2WO6/TiO2-NTs heterostructures. Compared with UV and visible mode,Bi2WO6/TiO2-NTs heterostructures display highest photocatalytic activity under microwave-assisted photocatalysis mode. Microwave enhances the reactants mobility and diffusion leading to increased exchange of reactants between catalyst surface and solution[42].Moreover,more·OH and·O2-radicals are generated by photocatalysis with microwave irradiation than photocatalysis alone to enhance the separation of e--h+pairs[43-45],which will be confirmed by the following trapping experiments.

    Fig.8 Controlled experiments using different radical scavengers for the degradation of RhB by Bi2WO6/TiO2-NTs-35 under different modes

    As shown in Fig.8,the RhB degradation rate under UV degraded mode decreases obviously with the addition of disodium ethylenediaminetetraacetate (EDTA-2Na,1 mmol·L-1)as scavenger for h+(from 88.9%to 9.3%),is moderately reduced with the addition of benzoquinone(BQ,1 mmol·L-1)as scavenger for·O2-(from 88.9%to 58.6%)and tert-butyl alcohol (t-BuOH,1 mmol·L-1)as scavenger for·OH(from 88.9%to 73.7%)[46-48].Similar results are found in RhB photodegradationoverBi2WO6/TiO2-NTs-35under visible mode.Compared with UV and visible mode, under microwave-assisted mode,there isa little difference.The degradation rate toward RhB exhibits a significant decrease when EDTA-2Na,BQ,and t-BuOH are introduced.Furthermore,RhB degradation rate is reduced from the original 77.4%to 23.9%, 30.7%,and 37.5%,respectively.These results suggest that:(i)under the three modes,the degradation of RhB is primarily driven by h+,·OH,and·O2-;(ii) under the UV and visible mode,h+is the dominant reactive oxidants;(iii)under microwave-assisted mode, h+,·OH and·O2-make nearly equal contribution to RhB degradation.That is to say,more·OH and·O2-are generated under microwave-assisted photocatalysis mode compared with UV and visible mode.

    Based on the above results,the photocatalytic mechanismforBi2WO6/TiO2-NTsheterostructures photocatalyst is tentatively proposed and schematically illustrated in Scheme 1.The conduction bands(CB) (the valence band(VB),band gap)of TiO2-NTs and Bi2WO6are at-0.29 and 0.34 eV,respectively. Hence,under UV or MEL irradiation,both TiO2-NTs and Bi2WO6are excited,and photogenerated electrons and holes are in their CB and VB,respectively. Subsequently,the photoexcited electrons in the CB of TiO2-NTs transfer to the CB of Bi2WO6,which is due to that ECBof TiO2-NTs is more negative than that of Bi2WO6.Simultaneously,the holes in the EVBof Bi2WO6move to TiO2-NTs due to that the EVBof Bi2WO6is more positive than that of TiO2-NTs.The hVB+reacts withtheabsorbedH2Omoleculesordeoxidizes dioxygen dissolved in the aqueous solution to form·OH radicals.In addition,the ECBcan be easily oxidized by dioxygen to produce·O2-radicals.With the help of·OH,hVB+and·O2-species,RhB is degraded and then mineralized.The photocatalytic process under visible light irradiation is similar with UV(microwave-assisted photocatalytic mode)except TiO2-NTs are not excited.

    Scheme 1Photodegradation mechanism of Bi2WO6/TiO2-NTs-35 heterostructures photocatalyst under UV mode

    3 Conclusions

    In summary,Bi2WO6/TiO2-NTs heterostructures were fabricated by multicomponent assembly approach combined with hydrothermal treatment.Bi2WO6flakes or nanoparticles dispersed on the surface of TiO2nanotubes to form heterostructures.The prepared Bi2WO6/TiO2-NTs heterostructures exhibit considerably high photocatalytic activity towards the degradation of RhB under multimode including UV,visible and microwave-assistedphotocatalysis.Thisenhanced photocatalytic activity is due to more efficient separation of the e--h+pairs,originating from the introduction of Bi2WO6modified TiO2-NTs,the nanotubular geometries,and the degradation mode.The h+,·OH, and·O2-radicals are the main active species during the photocatalysis process under multimode.Moreover, more·OH and·O2-radicals are generated by photocatalyst with microwave-assisted irradiation.This work can provide important inspirations in developing the photocatalytic heterostructures materials.

    Acknowledgments:Thisworkissupportedbythe Natural Science Foundation of China(Grants No.21376126, 81403067),the Program for Young Teachers Scientific Research in Qiqihar University(Grant No.2014K-M03),and the Basic Business Special Scientific Research of Heilongjiang Province Education Department(Grant No.135109204).

    [1]Tian J,Zhao Z H,Kumar A,et al.Chem.Soc.Rev.,2014, 43:6920-6937

    [2]Daghrir R,Drogui P,Robert D.Ind.Eng.Chem.Res.,2013, 52:3581-3599

    [3]Sang L X,Zhao Y X,Burda C.Chem.Rev.,2014,114:9283-9318

    [4]ZHANG Chao-Ying(張超穎),WANG Ping(王蘋(píng)),LIU Yan-Yan(劉巖巖),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2017,33(7):1132-1138

    [5]Murciano L T,Lapkin A A,Chadwick D.J.Mater.Chem., 2010,20:6484-6489

    [6]Zhang Y L,Han C,Zhang G S,et al.Chem.Eng.J.,2015, 268:170-179

    [7]Lee K,Mazare A,Schmuki P.Chem.Rev.,2014,114:9385-9454

    [8]Wang X D,Li Z D,Shi J,et al.Chem.Rev.,2014,114:9346 -9384

    [9]Wehrenfennig C,Palumbiny C M,Snaith H J,et al.J.Phys. Chem.C,2015,119:9159-9168

    [10]Wang H L,Zhang L S,Chen Z G,et al.Chem.Soc.Rev., 2014,43:5234-5244

    [11]Li J,Fang W,Yu C L,et al.Appl.Surf.Sci.,2015,358:46-56

    [12]Yu C L,Zhou W Q,Yu J C,et al.Chin.J.Catal.,2014,35: 1609-1618

    [13]Yu C L,Wei L F,Chen J C,et al.Ind.Eng.Chem.Res., 2014,53:5759-5766

    [14]Yu C L,Li G,Kumar S,et al.Adv.Mater.,2014,26:892-898

    [15]Yu C L,Wei L F,Zhou W Q,et al.Chemosphere,2016, 157:250-261

    [16]Yu C L,Zhou W Q,Liu H,et al.Chem.Eng.J.,2016,287: 117-129

    [17]Yu C L,Zhou W Q,Zhu L H,et al.Appl.Catal.B,2016, 184:1-11

    [18]Yu C L,Wu Z,Liu R Y,et al.Appl.Catal.B,2017,209:1-11

    [19]Zhang J,Xu Q,Feng Z C,et al.Angew.Chem.Int.Ed., 2008,47:1766-1769

    [20]Zong X,Yan H J,Wu G P,et al.J.Am.Chem.Soc.,2008, 130:7176-7177

    [21]Zhang F,Zhang C L,Peng H Y,et al.Part.Part.Syst.Char., 2016,33:248-253

    [22]Zhang F,Zhang C L,Wang W N,et al.ChemSusChem, 2016,9:1449-1454

    [23]Xu Z H,Quintanilla M,Vetrone F,et al.Adv.Funct.Mater., 2015,25:2950-2960

    [24]Zhou F Q,Fan J C,Xu Q J,et al.Appl.Catal.B,2017,201: 77-83

    [25]Zhang F,Wang W N,Cong H P,et al.Part.Part.Syst.Char., 2017,34(2):1600222(6 pages)

    [26]Min Y L,He G Q,Xu Q J,et al.J.Mater.Chem.A,2014, 2:2578-2584

    [27]Zhang L S,Wang H L,Chen Z G,et al.Appl.Catal.B, 2011,106:1-13

    [28]ZHANG Tian(張?zhí)?,ZOU Zheng-Guang(鄒正光),HE Jin-Yun(何金云),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2017,33(6):954-962

    [29]Huang J,Tan G Q,Ren H J,et al.ACS Appl.Mater.Interfaces,2014,6:21041-21050

    [30]Zhang L W,Zhu Y F.Catal.Sci.Technol.,2012,2:694-706

    [31]Zhang Y P,Fei L F,Jiang X D,et al.J.Am.Ceram.Soc., 2011,94:4157-4161

    [32]López S M,Hidalgo M C,Navío J A,et al.J.Hazard.Mater., 2011,185:1425-1434

    [33]Liu Z,Liu X Z,Lu D Z,et al.Mater.Lett.,2014,130:143-145

    [34]Hou Y F,Liu S J,Zhang J H,et al.Dalton Trans.,2014,43: 1025-1031

    [35]Li Y,Wu W J,Wu M Z,et al.Mater.Res.Bull.,2014,55: 121-125

    [36]Deng F,Liu Y,Luo X B,et al.Sep.Purif.Technol.,2013, 120:156-161

    [37]Ma F Y,Geng Z,Yang X,et al.RSC Adv.,2015,5:46677-46685

    [38]Chen S F,Tang W M,Hu Y F,et al.CrystEngComm,2013, 15:7943-7950

    [39]Di J,Xia J X,Ge Y P,et al.Appl.Catal.B,2015,168-169: 51-61

    [40]Li L,Huang X D,Hu T Y,et al.New J.Chem.,2014,38: 5293-5302

    [41]Dai K,Lu L H,Liang C H,et al.Appl.Catal.B,2014,156-157:331-340

    [42]Zhang X W,Li G T,Wang Y Z.Dyes Pigm.,2007,74:536-544

    [43]Genuino H C,Hamal D B,Fu Y J,et al.J.Phys.Chem.C, 2012,116:14040-14051

    [44]Zhang Z H,Yu F Y,Huang L R,et al.J.Hazard.Mater., 2014,278:152-157

    [45]Zhang X W,Sun D D,Li G T,et al.J.Photochem.Photobiol. A,2008,199:311-315

    [46]Xiao J D,Xie Y B,Cao H B,et al.Catal.Commun.,2015, 66:10-14

    [47]Lin S L,Liu L,Hu J S,et al.Appl.Surf.Sci.,2015,324:20-29

    [48]Ma F Y,Shi T,Gao J,et al.Colloids Surf.A,2012,401:116-125

    Comparison of Photocatalytic Activity of Bi2WO6/TiO2Nanotubes Heterostructures Composite under Multimode

    MA Feng-Yan*,1YANG Yang1LI Na1YANG Qi-Lin1LI Shang-Jin2SHEN Lu-Yan2
    (1College of Chemistry and Chemical Engineering,Qiqihar University,Qiqihar,Heilongjiang 161006,China)
    (2College of Materials Science and Engineering,Qiqihar University,Qiqihar,Heilongjiang 161006,China)

    Bi2WO6/TiO2nanotubes(Bi2WO6/TiO2-NTs)heterostructures composite were synthesized by multicomponent assembly approach combined with hydrothermal treatment employed TiO2nanotubes as template.Multiple techniques such as X-ray powder diffraction(XRD),X-ray photo-electron spectroscopy(XPS),N2adsorptiondesorption,scanning electron microscopy(SEM),high resolution transmission electron microscopy(HRTEM),and UV-Vis diffused absorption spectra(UV-Vis DRS)were applied to investigate the composition,structures, morphologies,optical and electronic properties of as-prepared samples.The heterostructures were formed with Bi2WO6nanoflakes or nanoparticles attached on the surface of TiO2nanotubes.The photocatalytic activity of Bi2WO6/TiO2-NTs heterostructures was evaluated sufficiently by photodegradation of rhodamine B(RhB)under multimode including UV,visible and microwave-assisted photocatalysis.Compared to TiO2nanotubes and Bi2WO6,Bi2WO6/TiO2-NTs-35 shows the highest photocatalytic activity under multimode.In contrast with UV, visible mode,the Bi2WO6/TiO2-NTs-35 shows the highest activity toward RhB degradation under microwaveassisted photocatalytic mode.This enhanced photocatalytic activity is due to the more efficient separation of thee--h+pairs,originating from the introduction of Bi2WO6modified TiO2-NTs,the nanotubular geometries,and degradation mode.The main active species of the degradation process are proven to be h+,·OH,and·O2-radicals. Moreover,more·OH and·O2-radicals were generated under microwave-assisted photocatalytic mode.

    TiO2nanotubes;Bi2WO6;multimode degradation;photocatalysis

    TB33

    A

    1001-4861(2017)09-1656-11

    10.11862/CJIC.2017.199

    2017-04-18。收修改稿日期:2017-07-18。

    國(guó)家自然科學(xué)基金(No.21376126,81403067)、齊齊哈爾大學(xué)青年教師科學(xué)技術(shù)類(lèi)科研啟動(dòng)支持計(jì)劃項(xiàng)目(No.2014K-M03)和黑龍江省教育廳基本業(yè)務(wù)專(zhuān)項(xiàng)理工面上項(xiàng)目(No.135109204)資助。

    *通信聯(lián)系人。E-mail:mafengyan989@163.com

    猜你喜歡
    楊陽(yáng)納米管李娜
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    EXISTENCE OF SOULUTIONS FOR THE FRACTIONAL (p,q)-LAOLACIAN PROBLEMS INVOLVING A CRITICL SOBLEV EXPNN*
    Application research of bamboo materials in interior design
    Analysis of the Effects of Introversion and Extroversion Personality Traits on Students’ English Reading And Writing Abilities with its Relevant Teaching Advice
    李娜作品
    藝術(shù)家(2017年2期)2017-11-26 21:26:20
    數(shù)學(xué)的簡(jiǎn)潔美
    東方教育(2017年17期)2017-10-31 19:10:58
    A Historical View on Translation Theory and Practice in China
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    99国产精品99久久久久| 免费在线观看影片大全网站| 丁香六月天网| 国产一卡二卡三卡精品| a级毛片在线看网站| 99热网站在线观看| 黑人操中国人逼视频| 国产日韩欧美视频二区| 国产av一区二区精品久久| videosex国产| h视频一区二区三区| av在线播放免费不卡| 午夜福利一区二区在线看| 亚洲精品美女久久av网站| 在线天堂中文资源库| 国内毛片毛片毛片毛片毛片| 丝袜美腿诱惑在线| 精品福利永久在线观看| 久久久国产精品麻豆| 国产精品自产拍在线观看55亚洲 | 在线观看免费视频网站a站| 成年动漫av网址| 在线观看免费视频网站a站| 人人妻人人爽人人添夜夜欢视频| 大香蕉久久网| 精品久久久久久久毛片微露脸| 51午夜福利影视在线观看| 久久国产精品大桥未久av| 久久人妻福利社区极品人妻图片| 性少妇av在线| av不卡在线播放| 丁香六月天网| 欧美在线一区亚洲| 欧美中文综合在线视频| 麻豆成人av在线观看| 久久亚洲精品不卡| 久久久久国内视频| 人人妻人人添人人爽欧美一区卜| 久久婷婷成人综合色麻豆| 黄片小视频在线播放| 十八禁人妻一区二区| 亚洲国产中文字幕在线视频| 女同久久另类99精品国产91| 中文字幕人妻丝袜一区二区| 大香蕉久久成人网| 久久午夜综合久久蜜桃| 黄色 视频免费看| 国产又爽黄色视频| 成年人免费黄色播放视频| 亚洲精品自拍成人| 日本vs欧美在线观看视频| 最近最新中文字幕大全电影3 | 成人国产av品久久久| 久久精品国产a三级三级三级| 久热这里只有精品99| 久久久国产精品麻豆| 满18在线观看网站| 久久久久久久久久久久大奶| 亚洲国产欧美一区二区综合| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 亚洲成人国产一区在线观看| 国产欧美日韩一区二区精品| 亚洲 欧美一区二区三区| 欧美亚洲日本最大视频资源| 国产在线免费精品| av片东京热男人的天堂| 亚洲自偷自拍图片 自拍| 色在线成人网| cao死你这个sao货| 制服人妻中文乱码| 国产欧美日韩一区二区三区在线| 女人久久www免费人成看片| 亚洲精品av麻豆狂野| 这个男人来自地球电影免费观看| 免费看十八禁软件| 国产精品美女特级片免费视频播放器 | av福利片在线| 欧美黄色淫秽网站| 黄色a级毛片大全视频| 久久青草综合色| 老熟妇乱子伦视频在线观看| 亚洲全国av大片| 日本欧美视频一区| 亚洲精品美女久久久久99蜜臀| 黑丝袜美女国产一区| 老司机靠b影院| 久久av网站| 欧美精品一区二区免费开放| 少妇猛男粗大的猛烈进出视频| 亚洲国产成人一精品久久久| 国产精品av久久久久免费| 在线av久久热| 麻豆成人av在线观看| 免费在线观看完整版高清| 久久九九热精品免费| 怎么达到女性高潮| 女人高潮潮喷娇喘18禁视频| 中文字幕另类日韩欧美亚洲嫩草| 精品欧美一区二区三区在线| 一区二区三区激情视频| 91精品三级在线观看| bbb黄色大片| 99九九在线精品视频| 国产亚洲一区二区精品| 久久精品熟女亚洲av麻豆精品| 啪啪无遮挡十八禁网站| 国产日韩一区二区三区精品不卡| 91字幕亚洲| 国产亚洲欧美在线一区二区| 国产区一区二久久| 亚洲专区国产一区二区| 欧美av亚洲av综合av国产av| 国产在线视频一区二区| 国产男女超爽视频在线观看| 日韩视频一区二区在线观看| 亚洲国产欧美一区二区综合| 在线观看免费午夜福利视频| 国产高清videossex| 一区二区三区国产精品乱码| 欧美人与性动交α欧美软件| 999久久久国产精品视频| 伊人久久大香线蕉亚洲五| 免费黄频网站在线观看国产| 亚洲成av片中文字幕在线观看| 一夜夜www| 99热国产这里只有精品6| 久久久久精品国产欧美久久久| 香蕉久久夜色| 国产精品久久久久久精品古装| 午夜福利一区二区在线看| 中文字幕另类日韩欧美亚洲嫩草| 国产高清国产精品国产三级| 飞空精品影院首页| 亚洲av美国av| 国产亚洲精品久久久久5区| 欧美日韩亚洲高清精品| 色婷婷久久久亚洲欧美| 午夜视频精品福利| 国产在线观看jvid| 女人久久www免费人成看片| 十八禁人妻一区二区| 一边摸一边抽搐一进一小说 | 如日韩欧美国产精品一区二区三区| 亚洲成a人片在线一区二区| 看免费av毛片| 黄色 视频免费看| 91精品三级在线观看| 成人手机av| 久久热在线av| 老熟妇乱子伦视频在线观看| 日韩精品免费视频一区二区三区| 99国产综合亚洲精品| 亚洲伊人久久精品综合| 国产成人免费无遮挡视频| 午夜视频精品福利| 欧美日韩中文字幕国产精品一区二区三区 | 大片免费播放器 马上看| 在线观看免费视频日本深夜| 99re在线观看精品视频| 日韩欧美免费精品| 香蕉国产在线看| 丰满人妻熟妇乱又伦精品不卡| 无限看片的www在线观看| 亚洲熟女毛片儿| 日韩视频在线欧美| 露出奶头的视频| 成人手机av| 久久人妻av系列| av免费在线观看网站| 日韩欧美国产一区二区入口| 欧美日本中文国产一区发布| 天天操日日干夜夜撸| 久久这里只有精品19| 国精品久久久久久国模美| 久久久久久免费高清国产稀缺| 欧美在线黄色| 亚洲人成电影观看| av不卡在线播放| kizo精华| 18禁裸乳无遮挡动漫免费视频| 97人妻天天添夜夜摸| 免费av中文字幕在线| 中文字幕制服av| 国产亚洲精品久久久久5区| 欧美精品av麻豆av| www.自偷自拍.com| 十八禁人妻一区二区| 99国产精品99久久久久| 亚洲第一青青草原| 午夜激情久久久久久久| 亚洲专区中文字幕在线| 久久精品成人免费网站| 99国产精品99久久久久| 免费在线观看完整版高清| av片东京热男人的天堂| 亚洲国产欧美日韩在线播放| 免费观看人在逋| 老司机福利观看| 美国免费a级毛片| 伊人久久大香线蕉亚洲五| 极品教师在线免费播放| 国产精品亚洲av一区麻豆| 欧美 亚洲 国产 日韩一| 美女高潮喷水抽搐中文字幕| 日本wwww免费看| 成人永久免费在线观看视频 | 黄色 视频免费看| 免费在线观看影片大全网站| 久久天堂一区二区三区四区| 日韩人妻精品一区2区三区| 欧美中文综合在线视频| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 1024视频免费在线观看| 精品一区二区三区四区五区乱码| 国产aⅴ精品一区二区三区波| 免费在线观看视频国产中文字幕亚洲| 亚洲伊人色综图| 久久久久精品人妻al黑| 国产精品 国内视频| 亚洲精品乱久久久久久| 99九九在线精品视频| 国产欧美日韩一区二区三区在线| 欧美黄色片欧美黄色片| 大型av网站在线播放| 亚洲avbb在线观看| 美女国产高潮福利片在线看| 国产亚洲精品第一综合不卡| 精品国产乱码久久久久久男人| 操美女的视频在线观看| 在线观看舔阴道视频| 国产亚洲精品第一综合不卡| 日韩视频一区二区在线观看| 国产人伦9x9x在线观看| 91麻豆精品激情在线观看国产 | 成人三级做爰电影| 国产精品欧美亚洲77777| 国产精品98久久久久久宅男小说| 亚洲成人免费电影在线观看| 亚洲精品久久成人aⅴ小说| 免费观看人在逋| 操美女的视频在线观看| 脱女人内裤的视频| 欧美成人午夜精品| 1024香蕉在线观看| 国产黄色免费在线视频| 高清在线国产一区| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av香蕉五月 | 国产单亲对白刺激| 欧美国产精品va在线观看不卡| 男人舔女人的私密视频| 亚洲精品粉嫩美女一区| 99热国产这里只有精品6| av不卡在线播放| 亚洲精品国产精品久久久不卡| 午夜久久久在线观看| 伊人久久大香线蕉亚洲五| 这个男人来自地球电影免费观看| 曰老女人黄片| 香蕉丝袜av| 国精品久久久久久国模美| 日韩欧美一区二区三区在线观看 | 在线播放国产精品三级| 国产一区有黄有色的免费视频| 中文字幕人妻熟女乱码| 999久久久精品免费观看国产| 男女免费视频国产| 丝袜美足系列| 久久av网站| 午夜久久久在线观看| videos熟女内射| 最黄视频免费看| 在线观看免费视频日本深夜| 天天操日日干夜夜撸| 丰满少妇做爰视频| 天天添夜夜摸| 国产成人精品久久二区二区免费| 啦啦啦 在线观看视频| 久久久精品94久久精品| 久久精品熟女亚洲av麻豆精品| 操美女的视频在线观看| 亚洲国产成人一精品久久久| 麻豆国产av国片精品| 国产精品99久久99久久久不卡| 91av网站免费观看| 咕卡用的链子| 久久久水蜜桃国产精品网| 伦理电影免费视频| 久热这里只有精品99| 狂野欧美激情性xxxx| 久久人人97超碰香蕉20202| 汤姆久久久久久久影院中文字幕| 少妇 在线观看| 日韩欧美免费精品| 午夜福利影视在线免费观看| 黑丝袜美女国产一区| 国精品久久久久久国模美| 日韩欧美三级三区| 久久ye,这里只有精品| 天天影视国产精品| 一本色道久久久久久精品综合| 韩国精品一区二区三区| 国产极品粉嫩免费观看在线| 三上悠亚av全集在线观看| 高清毛片免费观看视频网站 | 高清av免费在线| 涩涩av久久男人的天堂| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 成人手机av| 国产亚洲av高清不卡| 欧美精品人与动牲交sv欧美| 欧美性长视频在线观看| 国产亚洲精品久久久久5区| 亚洲国产欧美网| 免费在线观看完整版高清| 法律面前人人平等表现在哪些方面| 在线观看人妻少妇| 国产区一区二久久| 亚洲美女黄片视频| 色婷婷av一区二区三区视频| 国产在线一区二区三区精| 美女主播在线视频| 天天躁夜夜躁狠狠躁躁| 欧美日韩视频精品一区| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 亚洲色图av天堂| 日韩欧美免费精品| 国产精品熟女久久久久浪| 天天添夜夜摸| 少妇猛男粗大的猛烈进出视频| 精品少妇黑人巨大在线播放| 看免费av毛片| 国产精品九九99| xxxhd国产人妻xxx| 亚洲精品粉嫩美女一区| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区| 美女福利国产在线| 亚洲性夜色夜夜综合| 一区二区三区国产精品乱码| 亚洲av电影在线进入| 精品少妇内射三级| 俄罗斯特黄特色一大片| 99国产精品一区二区三区| 免费观看人在逋| 一本综合久久免费| 亚洲国产精品一区二区三区在线| 亚洲午夜精品一区,二区,三区| 免费观看av网站的网址| 久久精品亚洲熟妇少妇任你| 精品福利永久在线观看| 侵犯人妻中文字幕一二三四区| 欧美精品人与动牲交sv欧美| 精品少妇一区二区三区视频日本电影| 大香蕉久久成人网| 国产无遮挡羞羞视频在线观看| 免费看十八禁软件| 精品少妇一区二区三区视频日本电影| 91国产中文字幕| 久久久精品区二区三区| 久久久国产成人免费| 12—13女人毛片做爰片一| 久9热在线精品视频| 飞空精品影院首页| 女警被强在线播放| 精品人妻1区二区| 操美女的视频在线观看| 亚洲第一av免费看| 免费av中文字幕在线| 另类亚洲欧美激情| 亚洲情色 制服丝袜| 亚洲av美国av| 日日爽夜夜爽网站| 黄色视频,在线免费观看| 一本久久精品| 国产成人精品久久二区二区91| 岛国在线观看网站| a级毛片在线看网站| 又紧又爽又黄一区二区| 久久午夜亚洲精品久久| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| av天堂在线播放| 亚洲免费av在线视频| videos熟女内射| 狂野欧美激情性xxxx| 99re在线观看精品视频| 伦理电影免费视频| 捣出白浆h1v1| 亚洲国产欧美网| 久久人妻福利社区极品人妻图片| 亚洲一区中文字幕在线| 18在线观看网站| 热re99久久精品国产66热6| 亚洲熟女精品中文字幕| 伊人久久大香线蕉亚洲五| 日本vs欧美在线观看视频| 精品亚洲成国产av| 午夜久久久在线观看| 欧美午夜高清在线| 精品国内亚洲2022精品成人 | 亚洲av美国av| 在线天堂中文资源库| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频 | 国产一区二区在线观看av| 国产高清视频在线播放一区| 国产一区二区三区综合在线观看| 国产精品免费大片| 国产日韩欧美在线精品| 欧美日韩一级在线毛片| 久久久精品区二区三区| 母亲3免费完整高清在线观看| 99九九在线精品视频| 女性生殖器流出的白浆| 50天的宝宝边吃奶边哭怎么回事| 免费少妇av软件| 一进一出抽搐动态| 妹子高潮喷水视频| 中国美女看黄片| 国产老妇伦熟女老妇高清| 国产亚洲欧美在线一区二区| 两个人看的免费小视频| 国产av精品麻豆| 窝窝影院91人妻| 日韩欧美三级三区| 国产精品一区二区在线不卡| 国产不卡一卡二| 在线观看免费午夜福利视频| 999久久久精品免费观看国产| 日韩大码丰满熟妇| 午夜激情av网站| 人成视频在线观看免费观看| 超碰成人久久| 丝袜美腿诱惑在线| 欧美日韩国产mv在线观看视频| 日韩熟女老妇一区二区性免费视频| 淫妇啪啪啪对白视频| 人妻一区二区av| 亚洲情色 制服丝袜| 国产91精品成人一区二区三区 | 一区二区日韩欧美中文字幕| 欧美一级毛片孕妇| 九色亚洲精品在线播放| 亚洲av欧美aⅴ国产| 亚洲色图av天堂| 国产成人精品无人区| 欧美国产精品va在线观看不卡| 精品国产乱码久久久久久男人| 午夜日韩欧美国产| 欧美激情极品国产一区二区三区| 国精品久久久久久国模美| 国产午夜精品久久久久久| 亚洲精品久久午夜乱码| 老汉色av国产亚洲站长工具| 久久久久精品国产欧美久久久| 午夜福利一区二区在线看| 欧美国产精品一级二级三级| 午夜福利乱码中文字幕| 婷婷丁香在线五月| 国产亚洲精品第一综合不卡| 国产一区二区在线观看av| 午夜视频精品福利| 99精品久久久久人妻精品| 动漫黄色视频在线观看| 国产精品 国内视频| 成年版毛片免费区| 亚洲av第一区精品v没综合| 日韩免费高清中文字幕av| 亚洲七黄色美女视频| 亚洲三区欧美一区| 菩萨蛮人人尽说江南好唐韦庄| 免费少妇av软件| 最近最新中文字幕大全电影3 | 精品国产乱码久久久久久男人| 女人爽到高潮嗷嗷叫在线视频| 成在线人永久免费视频| 最近最新中文字幕大全电影3 | 香蕉丝袜av| 高潮久久久久久久久久久不卡| 一进一出好大好爽视频| 免费久久久久久久精品成人欧美视频| 国产又爽黄色视频| 久久精品国产99精品国产亚洲性色 | 美国免费a级毛片| 老司机影院毛片| 国产成人精品久久二区二区免费| 视频区欧美日本亚洲| 热re99久久国产66热| 精品久久久久久久毛片微露脸| 精品少妇内射三级| 视频区欧美日本亚洲| 丝袜美足系列| 免费高清在线观看日韩| 美女福利国产在线| 久久精品人人爽人人爽视色| 精品少妇内射三级| 午夜福利在线免费观看网站| 亚洲午夜理论影院| 中文字幕人妻丝袜制服| 无限看片的www在线观看| 狠狠婷婷综合久久久久久88av| 夜夜骑夜夜射夜夜干| 中文字幕另类日韩欧美亚洲嫩草| 亚洲专区字幕在线| 亚洲一码二码三码区别大吗| 色老头精品视频在线观看| 精品福利永久在线观看| 一边摸一边做爽爽视频免费| 青草久久国产| 飞空精品影院首页| 亚洲国产av新网站| 欧美av亚洲av综合av国产av| 亚洲综合色网址| 在线观看一区二区三区激情| 亚洲成国产人片在线观看| 波多野结衣av一区二区av| 国产单亲对白刺激| 国产又爽黄色视频| 国产精品免费大片| 两个人免费观看高清视频| svipshipincom国产片| 蜜桃在线观看..| av天堂久久9| 久久中文看片网| 色视频在线一区二区三区| 精品少妇黑人巨大在线播放| 国精品久久久久久国模美| 露出奶头的视频| 日韩免费高清中文字幕av| 久久精品国产亚洲av高清一级| 757午夜福利合集在线观看| 亚洲国产欧美一区二区综合| 欧美成人午夜精品| 制服诱惑二区| 狠狠精品人妻久久久久久综合| 日本wwww免费看| 一个人免费看片子| 高清av免费在线| 亚洲三区欧美一区| 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| 亚洲五月婷婷丁香| 动漫黄色视频在线观看| 99香蕉大伊视频| 自线自在国产av| 成人国产av品久久久| 母亲3免费完整高清在线观看| 麻豆成人av在线观看| 成年人黄色毛片网站| 老熟妇仑乱视频hdxx| 日本vs欧美在线观看视频| 国产日韩欧美在线精品| 黑人猛操日本美女一级片| 免费在线观看完整版高清| 啦啦啦在线免费观看视频4| 成在线人永久免费视频| 在线十欧美十亚洲十日本专区| 啪啪无遮挡十八禁网站| 亚洲熟女毛片儿| 久久香蕉激情| 午夜免费成人在线视频| 欧美日韩亚洲国产一区二区在线观看 | 99久久99久久久精品蜜桃| 久久久水蜜桃国产精品网| 久久久久久久久久久久大奶| a级毛片黄视频| 视频在线观看一区二区三区| 亚洲三区欧美一区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美日韩在线播放| 69精品国产乱码久久久| 99国产极品粉嫩在线观看| 久久久久视频综合| 久久精品aⅴ一区二区三区四区| 在线播放国产精品三级| 亚洲精品美女久久久久99蜜臀| 99九九在线精品视频| 18禁美女被吸乳视频| 亚洲午夜精品一区,二区,三区| 一边摸一边抽搐一进一小说 | 国产精品国产高清国产av | 久久国产精品影院| 国产精品久久久人人做人人爽| 国产aⅴ精品一区二区三区波| 日韩熟女老妇一区二区性免费视频| 我要看黄色一级片免费的| 久久久久国内视频| 亚洲三区欧美一区| 久久久国产成人免费| 国产日韩欧美亚洲二区| 精品午夜福利视频在线观看一区 | 亚洲av日韩精品久久久久久密| 亚洲国产欧美网| 亚洲精品中文字幕一二三四区 | a在线观看视频网站| 在线亚洲精品国产二区图片欧美| 国产97色在线日韩免费| 日韩欧美一区二区三区在线观看 | 国产成人欧美在线观看 | 欧美+亚洲+日韩+国产| 人妻 亚洲 视频| 精品少妇黑人巨大在线播放| 日韩免费高清中文字幕av| 亚洲五月婷婷丁香| 黄色成人免费大全| 午夜精品久久久久久毛片777| 日韩成人在线观看一区二区三区| 最近最新中文字幕大全电影3 | 一区二区av电影网| 精品国产一区二区三区四区第35|