• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bi2WO6/TiO2納米管異質(zhì)結(jié)構(gòu)復(fù)合材料的多模式下的光催化活性比較

    2017-09-12 08:59:35馬鳳延楊陽(yáng)李娜楊麒麟李尚錦申路嚴(yán)
    關(guān)鍵詞:楊陽(yáng)納米管李娜

    馬鳳延楊陽(yáng)李娜楊麒麟李尚錦申路嚴(yán)

    Bi2WO6/TiO2納米管異質(zhì)結(jié)構(gòu)復(fù)合材料的多模式下的光催化活性比較

    馬鳳延*,1楊陽(yáng)1李娜1楊麒麟1李尚錦2申路嚴(yán)2

    (1齊齊哈爾大學(xué)化學(xué)與化學(xué)工程學(xué)院,齊齊哈爾161006)
    (2齊齊哈爾大學(xué)材料科學(xué)與工程學(xué)院,齊齊哈爾161006)

    以TiO2納米管為模板,采用多組分自組裝結(jié)合水熱法制備Bi2WO6/TiO2納米管異質(zhì)結(jié)構(gòu)復(fù)合材料。通過(guò)多種技術(shù)如X射線衍射(XRD),X射線光電子能譜(XPS),N2吸附-脫附,掃描電鏡(SEM),高分辨透射電鏡(HRTEM)和紫外可見(jiàn)漫反射吸收光譜(UV-Vis DRS)考察所制備樣品的組成、結(jié)構(gòu)、形貌、光吸收和電子性質(zhì)。Bi2WO6納米片或納米粒子分布在TiO2納米管上,形成異質(zhì)結(jié)構(gòu)。隨后,通過(guò)在紫外、可見(jiàn)和微波輔助光催化模式下降解染料羅丹明B(RhB)來(lái)評(píng)價(jià)復(fù)合催化劑的光催化活性。與TiO2納米管和Bi2WO6相比,Bi2WO6/TiO2-35納米管在多模式下表現(xiàn)出更優(yōu)異的光催化活性。與紫外和可見(jiàn)降解模式相比,Bi2WO6/TiO2-35納米管在微波輔助光催化模式下對(duì)RhB的降解效率最高。這種增強(qiáng)的光催化活性源于適量Bi2WO6的引入、納米管獨(dú)特的形貌特征和降解模式所引起的增強(qiáng)的量子效率。降解過(guò)程中的活性物種被證明是h+,·OH和·O2-自由基。而且,在微波輔助光催化模式下,可產(chǎn)生更多的·OH和·O2-自由基。

    TiO2納米管;Bi2WO6;多模式降解;光催化

    0 Introduction

    Titanium dioxide(TiO2)has attracted a great deal of research attention because of their potential applications in the photodegradation of organic pollutants, photocatalytic water splitting for hydrogen generation, dye-sensitized solar cells,and even gas sensors and biosensors,due to its low cost and abundant elements (Ti and O),long-term stability,and environmentalfriendly characteristics[1-3].However,its wide band gap and fast recombination of the photogenerated electronhole(e--h+)are two limitations for its contemporary applications[4].

    To overcome the above limitations,some measures have been taken.At present,one effective approach is to adjust TiO2morphology.One-dimensional(1D)TiO2nanomaterialshavebeenreceivingextensiveinterests[5-8]. Moreover,compared with other forms of TiO2,titania nanotubespossessthedistinguishingfeaturesof nanotubes including large specific surface area,good electron/proton conductivity,and high aspect ratio.In addition,the open mesoporous morphology of TiO2nanotubes can efficiently transfer the electrons along the 1D path without grain boundaries and junctions, while hollow space can capture scattered light to increase light harvesting as well as easier separation and recovery than TiO2nanoparticles due to the length in the micrometer range[9].

    Another strategy is to construct the heterostructures by the wide band-gap semiconductor with a narrow band-gap semiconductor(with the proper band positions)[1,10].Yu and Li fabricated and reported Agbased heterojunction[11-16],Au NPs loaded onto the α-Bi2O3/Bi2O2CO3[17],F-Bi2MoO6[18],anatase/rutileTiO2particles[19],and MoS2/CdS composite[20],which are more efficient than individual component in photocatalytic properties.Inparticular,QianandMagroups successfullyfabricatedUCNPs/semiconductorsfor NIR-driven photocatalysis,such as UCNPs/TiO2nanofiber[21],UCNPs/TiO2/CdS nanofibers[22],NYF@TiO2-Au core@shell microspheres[23].They show unique optical propertieswithwideabsorptionandenhanced photocatalytic abilities towards to organic dye removal efficiency under irradiation with NIR.Such synergistic interactions of heterojunction between two kinds of semiconductorsarefairlypowerfulnotonlyin improving the visible light harvesting ability but also in extending the lifetime of photoinduced electrons and holes via an internal charge transfer,facilitating the separation of electron-hole pairs and reducing the chance of recombination[24-26].

    Among these,bismuth tungstate(Bi2WO6),as a typical Aurivillius oxide,has a layered structure with perovskite-like slabs of WO6and[Bi2O2]2+layer and has important physical and chemical properties such as ferroelectric piezoelectricity,catalytic behavior and nonlinear dielectric susceptibility[27-28].More importantly,Bi2WO6is a promising visible light-driven photocatalyst with high photocatalytic activity[29-30].However, the photocatalytic activity of pure Bi2WO6is limited by difficult migration and high recombination probability of photogenerated e--h+pairs.Therefore,the combination of tubular morphology and heterostructure construction is a useful approach for designing heterostructure photocatalysts with high charge separation efficiency.

    In order to improve the photocatalytic activity, the construction of TiO2-Bi2WO6heterostructures has become a hot research,and some achievement has been obtained in recent years.For instance,Wang et al.successfully synthesized TiO2-Bi2WO6nanofibers by electrospinning technique[31].Colón et al.and other groups have reported TiO2modified flower[32]/sphere[33]/ hollow tube-like Bi2WO6[34].Wu and Luo et al.reported the preparation TiO2nanobelts[35]/TiO2nanotubes[36]grown on titanium(Ti)foil decorated with Bi2WO6nanocrystals,respectively.These results indicate that the photocatalytic activities of TiO2-Bi2WO6heterojunctions show enhanced photocatalytic performance in comparison with individual components of Bi2WO6or TiO2.To the best of our knowledge,much less notice has been taken of the preparation of TiO2nanotubes synthesized by alkali hydrothermal treatment modified with Bi2WO6.Moreover,few investigations were carried on the comparative mechanism of the enhanced photocatalytic activity for organic pollutants under multiple modes including UV,visible,and microwave-assisted photocatalysis.What is more,they lack direct evidence to explain photocatalytic mechanism under multiple modes that serve as background datafortheenvironmentalbehavioroforganic pollutants.

    In this work,Bi2WO6/TiO2nanotubes(Bi2WO6/ TiO2-NTs)heterostructures were fabricated by multicomponent assembly approach combined with hydrothermal treatment,which is free from the usage of additives or surfactants.Subsequently,the photocatalytic activities of Bi2WO6/TiO2nanotubes under multiple modes including UV,visible,and microwave-assisted photocatalysis were also studied in this work.Direct evidencetoexplaincomparativelyphotocatalytic mechanism under multiple modes was supplied by free radical andholetrappingexperiments.The relationship between the morphology,structure,optical properties and the photocatalytic activities of Bi2WO6/ TiO2heterostructuresundermultiplemodeswas investigated in detail.

    1 Experimental

    1.1 Preparation of Bi2WO6/TiO2nanotubes

    In a typical procedure[37],TiO2nanotubes were dispersed in H2O(5 mL)under vigorously stirring for 0.5 h.Meanwhile,Bi(NO3)3·5H2O(0.972 g)and Na2WO4·2H2O(0.329 g)were dissolved in glacial acetic acid (HAc,10 mL)and H2O(5 mL),respectively.Subsequently,the above solutions were added into TiO2nanotubes suspension to form a white suspension. After stirring for 2 h,the resulting mixture was suffered from hydrothermal treatment at 150℃for 4 h,and the resulting precipitate was dried and washed with deionized water for three times.The obtained powder was further dried at 80℃for 24 h.The final product was denoted as Bi2WO6/TiO2-NTs-x,where x representsthedopingofTiO2nanotubes(mass percentage).

    1.2 Characterization of the catalyst

    X-ray diffraction patterns were obtained on a Bruker-AXS(D8)X-ray diffractometer with Cu Kα radiation(λ=0.154 06 nm)at 40 kV and 40 mA in 2θ ranging from 20°to 80°.X-ray photoelectron spectroscopy(XPS)characterization was carried out on an ESCALAB 250Xi spectrometer equipped with Al Kα radiation at 300 W.N2adsorption-desorption isotherm analyses of samples were obtained at 77 K using Micromeritics3H-2000PS2.Themorphologiesof synthesized samples were analyzed using a scanning electron microscope(SEM)(HitachiS-4300)and transmission electron microscope(TEM)and high resolution transmission electron microscope(HRTEM)(JEM-2100F).UV-Vis diffused absorption spectra(UV-Vis DRS)were recorded using a UV-Vis spectrophotometer(TU-1901)over the wavelength range of 200~800 nm and BaSO4as a reference material.

    1.3 Photocatalytic tests

    Photocatalytic activities of the Bi2WO6/TiO2-NTs composite were studied by monitoring the degradation behaviors of rhodamine B(RhB)under multimode (including UV,visible,and microwave-assisted photocatalysis mode).The 125 W high pressure mercury lamp(λ=313.2 nm),400 W Xe lamp(λ=410.0 nm; moreover,the inner sleeve was made of No.11 glass to filter out ultraviolet from the Xe lamp),and 15 W microwave electrodeless lamp(MEL,UV emission wavelength mainly located at 278 nm,U shape,100 W output power of microwave reactor),were used as UV,visible light,and microwave-assisted photocatalysis mode light source,respectively.The concetration of RhB was 50 mg·L-1.Moreover,the amounts of the catalyst(liquid volume)for the three modes(UV, visible,and microwave-assisted photocatalysis)were 100 mg(100 mL),200 mg(220 mL),and 300 mg(500 mL),respectively.

    The photocatalytic reaction was carried out in a quartz photoreactor.Prior to irradiation,the suspension containing the solid catalyst and an aqueous solution of the contaminant was ultrasonicated for 10 min and then stirred for 1.5 h in the dark to ensure adsorption-desorption equilibrium.The reaction temperature was maintained at(30±2)℃by circulation of waterthroughanexternalcoolingjacketorby circulating solution to a cooler with the peristaltic pump.At certain time intervals,suspensions(5 mL) were sampled and centrifuged to remove the photocatalyst particles.Decreases in the concentrations of RhB,methyl orange(MO),crystal violet(CV),and methylene blue(MB)were analyzed by TU-1901 UVVis spectrophotometer at λ=553,464,582,and 664 nm,respectively.

    2 Results and discussion

    2.1 Compositional and structural information

    XRDwasusedtocharacterizethecrystal structure of the as-prepared Bi2WO6/TiO2-NTs,as well as pure TiO2-NTs and Bi2WO6(Fig.1).The diffraction peaks of pure TiO2-NTs and Bi2WO6are well matched with the standard patterns of anatase phase of TiO2(PDF No.21-1272)[37]andorthorhombicphaseof Bi2WO6(PDF No.39-0256),respectively.After the coupling of Bi2WO6and TiO2-NTs,when the TiO2-NTs loading increases from 25%to 50%,the diffraction peaks of TiO2intensify gradually,whereas the peak intensities of Bi2WO6decrease.No impurity peak is found in Bi2WO6/TiO2-NTs composites,suggesting that the composites exhibit a coexistence of both Bi2WO6and TiO2phases.

    Fig.1 XRD patterns of the samples

    Valence states and the surface chemical composition of the as-prepared samples were investigated by XPS technique.As shown in Fig.2a,the peaks at 458.68 and 464.48 eV are attributed to Ti2p3/2and Ti2p1/2,respectively,confirming the titanium species in the composite is Ti4+.After introduction of the Bi2WO6into the TiO2nanotubes,the binding energies of Ti2p3/2and Ti2p1/2shift to higher values(458.78 and 465.28 eV,respectively),which is attributed to diffusion of W6+ions into the TiO2lattice and further generation of WOTi bond linkage[35,37].As displayed in Fig.2b and c,for pure Bi2WO6,the characteristic peaks at 164.58 and 159.28 eV are ascribed to Bi4f5/2and Bi4f7/2from Bi3+in the lattice and the binding energy of W4f5/2and W4f7/2at 37.88 and 35.78 eV, respectively,are corresponded to W6+[35].In the XPS spectrum of Bi2WO6/TiO2-NTs,in contrast with Bi2WO6, the binding energy of Bi4f5/2(164.38 eV)and Bi4f7/2(159.08 eV)decreases by 0.2 eV while that of W4f5/2(37.58 eV)and W4f7/2(35.58 eV)decreases by 0.3 eV. The results suggest that the chemical environment surrounding Bi and W has changed,which is possiblyinfluenced by TiO2-NTs.Thus,we can confirm that the TiO2-NTs successfully modified by Bi2WO6.

    Fig.2 XPS spectra of Ti2p(a),Bi4f(b),and W4f(c)regions for TiO2-NTs,Bi2WO6,and Bi2WO6/TiO2-NTs-35

    Fig.3 Nitrogen adsorption-desorption isotherms(a)and BJH pore size distribution curves(b)of samples

    Table1 Textural parameters of various TiO2-based materials

    The porosity of the Bi2WO6/TiO2-NTs heterostructures is investigated by N2adsorption-desorption isotherms and the corresponding BJH pore size distribution.As shown in Fig.3a,the isotherms exhibit typeⅣwith an H3 hysteresis loop characteristic of mesoporous material[37],which is confirmed by the pore size distribution(Fig.3b).Moreover,the formation of such mesoporous materials is attributed to the aggregation of the Bi2WO6nanoparticles adhering to the surface of the TiO2nanotubes.More importantly,as shown in Table 1,the measured BET surface areas of Bi2WO6/ TiO2-NTs-25(80 m2·g-1),Bi2WO6/TiO2-NTs-35(88 m2· g-1)and Bi2WO6/TiO2-NTs-50(101 m2·g-1)are greatly enhanced compared with that of Bi2WO6(44 m2·g-1). Meanwhile,the specific surface areas of composite materials increase indeed together with the increase of TiO2-NTs contents from 25%to 50%.

    2.2 Morphology

    Fig.4 SEM images of the samples

    Themorphologyandmicrostructureofthe photocatalysts were also investigated.As shown in the SEM image(Fig.4a),TiO2-NTs show the nanotubular morphology with an average diameter of 30 nm andlength of 1 μm.While Bi2WO6exhibits a typical structure of nanosheet consist of nanoparticles with the side length of 50~250 nm and thickness of 20~40 nm(Fig.4b).As displayed in Fig.4c~e,morphologies of TiO2and Bi2WO6change obviously afterthe combination by TiO2-NTs and Bi2WO6through hydrothermal treatment.The typical morphology structure of Bi2WO6/TiO2-NTs-25 consists of smooth TiO2nanotubes and curled Bi2WO6flakes,which link mutually to each other.Moreover,the surface of TiO2nanotubes becomes rough obviously after Bi2WO6modification when TiO2nanotubes loading increases from 35%to 50%.While Bi2WO6changes from flakes to smaller nanoparticles.Furthermore,smaller Bi2WO6nanoparticles homogeneously disperse on the surface of TiO2nanotubes in-situ growth process.Compared with TiO2-NTs and Bi2WO6,aggregation of Bi2WO6/TiO2-NTs has intensively alleviated with the loading of TiO2nanotubes increasing from 0 to 50%.

    In order to further confirm the Bi2WO6/TiO2-NTs heterostructures,HRTEM was used to investigate the detailed structure information of the Bi2WO6/TiO2-NTs. The corresponding HRTEM image displays two types of clear lattice fringes,as shown in Fig.4f.The interplanar spacing of 0.35 and 0.315 nm corresponds to the(101)crystal plane of TiO2-NTs and the(131) crystal plane of the orthorhombic phase of Bi2WO6, respectively[18-19].According to the results of XRD,XPS, SEM and HRTEM,we assume that Bi2WO6/TiO2-NTs heterostructures with Bi2WO6nanoparticles on the surfaceofTiO2nanotubeshavebeenprepared successfully.

    Based on the above results and discussion,we put forward the plausible formation of Bi2WO6/TiO2-NTs heterojunction.Considering Bi(NO3)3with crystal water,Bi2O2(OH)NO3is formed through the following hydrolysis and condensation reaction in the glacial acetic acid-water system(Eq.1~2).When Na2WO4solution is added to the above reaction solution,Bi2WO6nanoparticles are obtained(Eq.3)[38].Then the introduction of TiO2-NTs into Bi2WO6suspension,Bi2WO6nanoparticles aggregate around TiO2-NTs.Subsequently,at high temperature and high pressure,Bi2WO6nanoparticlesgrowintocurledflakesorsmaller nanoparticles and homogeneously dispersed on the surface of TiO2nanotubes in-situ growth process,resulting in the formation of Bi2WO6/TiO2-NTs heterojunction[31].

    2.3 Optical property

    UV-Visdiffusedabsorptionspectra(UV-Vis DRS)were carried out to investigate the optical properties of the photocatalysts.As shown in Fig.5a, the pure TiO2-NTs and Bi2WO6exhibit a fundamental absorption edge at around 388 and 450 nm,which originate from the charge transfer response of TiO2-NTs and Bi2WO6from the valence band to the conduction band,respectively[39].Compared with pure TiO2-NTs,the absorption edges of Bi2WO6/TiO2-NTs showed obvious red-shift to the longer wavelength within the range of visible light.

    It is known that the optical absorption near the band edge of prepared samples obeys the following equation:(αhν)n=K(hν-Eg).In this equation,K,α,h, hν,Egare constant,absorption coefficient,Planck constant,energy of the incident photon,band gap, respectively,and n is 0.5 and 1 for a direct and indirect band gap semi-conductor[38].According to the formula, the calculated band gaps(Eg)of samples are 2.75 eV(Bi2WO6),2.87 eV(Bi2WO6/TiO2-NTs-25),2.94 eV (Bi2WO6/TiO2-NTs-35),3.00 eV(Bi2WO6/TiO2-NTs-50), and 3.20 eV(TiO2-NTs),respectively.

    Fig.5 UV-Vis DRS(a)and plot of(αhν)1/2versus hν(b)for Bi2WO6,TiO2-NTs and the Bi2WO6/TiO2-NTs materials

    The conduction band(CB)and valence band (VB)positions of the Bi2WO6and TiO2samples are estimated by the following equations:EVB=X-Ee+0.5Eg; ECB=EVB-Eg,where EVBand ECBare the VB and CB edge potentials,Eeis the energy of free electrons on the hydrogen scale(about 4.5 eV vs NHE).The X values for the Bi2WO6and TiO2materials are 6.21 and 5.81 eV,respectively[40-41].The Egof Bi2WO6and TiO2-NTs are estimated to be 2.75 and 3.20 eV,respectively. Herein,the CB and VB edge potentials of Bi2WO6and TiO2-NTs are calculated at 0.34 and 3.09 eV,and -0.29 and 2.91 eV,respectively.

    2.4 Photocatalytic activity

    The photocatalytic performance of the Bi2WO6/ TiO2-NTs heterostructures in terms of photodegradation of RhB molecules under multiple modes including UV,visible,and microwave-assisted photocatalysis was investigated.

    Fig.6 ashowsthephotocatalyticactivitiesof photocatalysts.UnderUVlightirradiationalone (without catalyst),only 3%RhB is degraded,which means the RhB can remain stability under long time irradiation.However,apparent changes in the concentration of RhB are observed in the existence of both light and catalyst.After irradiation for 90 min,46.8%, 61.5%,70.0%,88.9%,82.4%and 74.1%of the RhB is degraded by using the TiO2-NTs,Bi2WO6,Bi2WO6/TiO2-NTs-25,Bi2WO6/TiO2-NTs-35,Bi2WO6/TiO2-NTs-50,and P25,respectively.

    Fig.6 Normalized decrease concentration of Ct/C0of RhB solution containing different photocatalysts under UV(a) and visible(b)light irradiation;(c)-ln(Ct/C0)as a function of irradiation time for RhB degradation over photocatalysts;(d)Photocatalytic degradation RhB profiles obtained using different photocatalysts under microwave-assisted photocatalysis mode for 15 min;(e)Photocatalytic degradation RhB profiles by Bi2WO6/TiO2-NTs-35 obtained under multimode for 15 min;(f)Normalized decrease concentrations of Ct/C0of different dyes using Bi2WO6/TiO2-NTs-35 under UV light irradiation

    Fig.6 b displays the photocatalytic activity of prepared samples under the visible light irradiation.It isfoundthatthephotocatalyticperformanceof Bi2WO6/TiO2-NTs-35 to degrade RhB under visible lightirradiationsurpassesthatofitsindividual counterparts.

    At the same time,the kinetics of photocatalytic degradation of RhB is investigated by simplified Langmuir-Hinshelwood model.The pseudo-first-order rate constant(kapp)is calculated using the formula -ln(Ct/C0)=kappt,where C0and Ctare the initial concentration and concentration at reaction time t of RhB, respectively.From Fig.6c,under visible irradiation, the rate constant over Bi2WO6/TiO2-NTs-35,Bi2WO6, P25,and TiO2-NTs is 1.10×10-2,8.45×10-3,3.71×10-3, and 1.27×10-3min-1,respectively.Moreover,Bi2WO6/ TiO2-NTs-35 shows the highest first-order rate constant, which is about 1.2 and 8.7 times greater than that of pure Bi2WO6and TiO2-NTs,respectively.

    Fig.6 d also exhibits the photocatalytic activity of differentphotocatalystsundermicrowave-assisted photocatalysis mode with electrodeless discharge lamp activated by microwaves as the light source.Bi2WO6/ TiO2-NTs-35showshighestphotocatalyticactivity towards RhB degradation under microwave-assisted photocatalysis mode.Moreover,Fig.6e displays photocatalytic activities of Bi2WO6/TiO2-NTs-35 under different modes after irradiation for 15 min.In contrast with UV and visible mode,the Bi2WO6/TiO2-NTs-35 shows higher activity under microwave-assisted photocatalytic mode.In addition,different kinds of dyes were selected to evaluate the photocatalytic activity under UV light irradiation(Fig.6f).The cationic dyes (CV,MB,and RhB)are effectively degraded,while the degradation of anionic dye(MO)is poor,which is attributed to the different structure and adsorption of dyes.

    Toevaluatethestabilityandreusabilityof Bi2WO6/TiO2-NTs-35heterostructuresforpractical application,the photocatalytic degradation of RhB with the same photocatalyst is carried out for several times.As displayed in Fig.7,degradation curve has no obvious decline after four cycles of RhB degradation reaction under UV light irradiation,which indicates Bi2WO6/TiO2-NTs-35 heterostructures maintain high stability.

    Fig.7 Recycling for the photodegradation of RhB in the presence of Bi2WO6/TiO2-NTs-35 under UV light irradiation

    2.5 Possible pathway of RhB degradation in Bi2WO6/TiO2-NTs system

    The above photocatalytic tests indicate that:(i) the photocatalytic activity of pure TiO2-NTs can be furtherincreasedbyintroductionproperBi2WO6loading under multimode;(ii)in contrast to UV and visible mode,Bi2WO6/TiO2-NTs showed higher photocatalyticactivityundermicrowave-assistedphotocatalysis mode.The influence factors towards the excellent photocatalytic activity of Bi2WO6/TiO2-NTs are discussed.

    Firstly,Bi2WO6modified TiO2nanotubes play a major role in improving the photocatalytic activity of TiO2nanotubes.On one hand,according to UV-Vis DRS analysis,Bi2WO6/TiO2-NTs heterostructures have a narrow band gap and exhibit enhanced UV and visible light absorption,consequently increases the utilization of light.On the other hand,the formed heterostructuresbetweenBi2WO6andTiO2-NTs photocatalysts can extend the lifetime of photoinduced electrons and holes via an internal charge transfer, further facilitate the separation of e--h+pairs and reduce the chance of recombination.These wellseparated electrons and holes can participate in the overall photocatalysis process.

    Secondly,the open mesoporous morphology of nanotubescan enhance the contactbetweenthe substance and photocatalysts during the photocatalytic reaction.Meanwhile,the nanotubes provide an efficient transport channel for photogenerated electrons.

    Thirdly,degradation mode influences the photocatalytic activity of Bi2WO6/TiO2-NTs heterostructures. Compared with UV and visible mode,Bi2WO6/TiO2-NTs heterostructures display highest photocatalytic activity under microwave-assisted photocatalysis mode. Microwave enhances the reactants mobility and diffusion leading to increased exchange of reactants between catalyst surface and solution[42].Moreover,more·OH and·O2-radicals are generated by photocatalysis with microwave irradiation than photocatalysis alone to enhance the separation of e--h+pairs[43-45],which will be confirmed by the following trapping experiments.

    Fig.8 Controlled experiments using different radical scavengers for the degradation of RhB by Bi2WO6/TiO2-NTs-35 under different modes

    As shown in Fig.8,the RhB degradation rate under UV degraded mode decreases obviously with the addition of disodium ethylenediaminetetraacetate (EDTA-2Na,1 mmol·L-1)as scavenger for h+(from 88.9%to 9.3%),is moderately reduced with the addition of benzoquinone(BQ,1 mmol·L-1)as scavenger for·O2-(from 88.9%to 58.6%)and tert-butyl alcohol (t-BuOH,1 mmol·L-1)as scavenger for·OH(from 88.9%to 73.7%)[46-48].Similar results are found in RhB photodegradationoverBi2WO6/TiO2-NTs-35under visible mode.Compared with UV and visible mode, under microwave-assisted mode,there isa little difference.The degradation rate toward RhB exhibits a significant decrease when EDTA-2Na,BQ,and t-BuOH are introduced.Furthermore,RhB degradation rate is reduced from the original 77.4%to 23.9%, 30.7%,and 37.5%,respectively.These results suggest that:(i)under the three modes,the degradation of RhB is primarily driven by h+,·OH,and·O2-;(ii) under the UV and visible mode,h+is the dominant reactive oxidants;(iii)under microwave-assisted mode, h+,·OH and·O2-make nearly equal contribution to RhB degradation.That is to say,more·OH and·O2-are generated under microwave-assisted photocatalysis mode compared with UV and visible mode.

    Based on the above results,the photocatalytic mechanismforBi2WO6/TiO2-NTsheterostructures photocatalyst is tentatively proposed and schematically illustrated in Scheme 1.The conduction bands(CB) (the valence band(VB),band gap)of TiO2-NTs and Bi2WO6are at-0.29 and 0.34 eV,respectively. Hence,under UV or MEL irradiation,both TiO2-NTs and Bi2WO6are excited,and photogenerated electrons and holes are in their CB and VB,respectively. Subsequently,the photoexcited electrons in the CB of TiO2-NTs transfer to the CB of Bi2WO6,which is due to that ECBof TiO2-NTs is more negative than that of Bi2WO6.Simultaneously,the holes in the EVBof Bi2WO6move to TiO2-NTs due to that the EVBof Bi2WO6is more positive than that of TiO2-NTs.The hVB+reacts withtheabsorbedH2Omoleculesordeoxidizes dioxygen dissolved in the aqueous solution to form·OH radicals.In addition,the ECBcan be easily oxidized by dioxygen to produce·O2-radicals.With the help of·OH,hVB+and·O2-species,RhB is degraded and then mineralized.The photocatalytic process under visible light irradiation is similar with UV(microwave-assisted photocatalytic mode)except TiO2-NTs are not excited.

    Scheme 1Photodegradation mechanism of Bi2WO6/TiO2-NTs-35 heterostructures photocatalyst under UV mode

    3 Conclusions

    In summary,Bi2WO6/TiO2-NTs heterostructures were fabricated by multicomponent assembly approach combined with hydrothermal treatment.Bi2WO6flakes or nanoparticles dispersed on the surface of TiO2nanotubes to form heterostructures.The prepared Bi2WO6/TiO2-NTs heterostructures exhibit considerably high photocatalytic activity towards the degradation of RhB under multimode including UV,visible and microwave-assistedphotocatalysis.Thisenhanced photocatalytic activity is due to more efficient separation of the e--h+pairs,originating from the introduction of Bi2WO6modified TiO2-NTs,the nanotubular geometries,and the degradation mode.The h+,·OH, and·O2-radicals are the main active species during the photocatalysis process under multimode.Moreover, more·OH and·O2-radicals are generated by photocatalyst with microwave-assisted irradiation.This work can provide important inspirations in developing the photocatalytic heterostructures materials.

    Acknowledgments:Thisworkissupportedbythe Natural Science Foundation of China(Grants No.21376126, 81403067),the Program for Young Teachers Scientific Research in Qiqihar University(Grant No.2014K-M03),and the Basic Business Special Scientific Research of Heilongjiang Province Education Department(Grant No.135109204).

    [1]Tian J,Zhao Z H,Kumar A,et al.Chem.Soc.Rev.,2014, 43:6920-6937

    [2]Daghrir R,Drogui P,Robert D.Ind.Eng.Chem.Res.,2013, 52:3581-3599

    [3]Sang L X,Zhao Y X,Burda C.Chem.Rev.,2014,114:9283-9318

    [4]ZHANG Chao-Ying(張超穎),WANG Ping(王蘋(píng)),LIU Yan-Yan(劉巖巖),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2017,33(7):1132-1138

    [5]Murciano L T,Lapkin A A,Chadwick D.J.Mater.Chem., 2010,20:6484-6489

    [6]Zhang Y L,Han C,Zhang G S,et al.Chem.Eng.J.,2015, 268:170-179

    [7]Lee K,Mazare A,Schmuki P.Chem.Rev.,2014,114:9385-9454

    [8]Wang X D,Li Z D,Shi J,et al.Chem.Rev.,2014,114:9346 -9384

    [9]Wehrenfennig C,Palumbiny C M,Snaith H J,et al.J.Phys. Chem.C,2015,119:9159-9168

    [10]Wang H L,Zhang L S,Chen Z G,et al.Chem.Soc.Rev., 2014,43:5234-5244

    [11]Li J,Fang W,Yu C L,et al.Appl.Surf.Sci.,2015,358:46-56

    [12]Yu C L,Zhou W Q,Yu J C,et al.Chin.J.Catal.,2014,35: 1609-1618

    [13]Yu C L,Wei L F,Chen J C,et al.Ind.Eng.Chem.Res., 2014,53:5759-5766

    [14]Yu C L,Li G,Kumar S,et al.Adv.Mater.,2014,26:892-898

    [15]Yu C L,Wei L F,Zhou W Q,et al.Chemosphere,2016, 157:250-261

    [16]Yu C L,Zhou W Q,Liu H,et al.Chem.Eng.J.,2016,287: 117-129

    [17]Yu C L,Zhou W Q,Zhu L H,et al.Appl.Catal.B,2016, 184:1-11

    [18]Yu C L,Wu Z,Liu R Y,et al.Appl.Catal.B,2017,209:1-11

    [19]Zhang J,Xu Q,Feng Z C,et al.Angew.Chem.Int.Ed., 2008,47:1766-1769

    [20]Zong X,Yan H J,Wu G P,et al.J.Am.Chem.Soc.,2008, 130:7176-7177

    [21]Zhang F,Zhang C L,Peng H Y,et al.Part.Part.Syst.Char., 2016,33:248-253

    [22]Zhang F,Zhang C L,Wang W N,et al.ChemSusChem, 2016,9:1449-1454

    [23]Xu Z H,Quintanilla M,Vetrone F,et al.Adv.Funct.Mater., 2015,25:2950-2960

    [24]Zhou F Q,Fan J C,Xu Q J,et al.Appl.Catal.B,2017,201: 77-83

    [25]Zhang F,Wang W N,Cong H P,et al.Part.Part.Syst.Char., 2017,34(2):1600222(6 pages)

    [26]Min Y L,He G Q,Xu Q J,et al.J.Mater.Chem.A,2014, 2:2578-2584

    [27]Zhang L S,Wang H L,Chen Z G,et al.Appl.Catal.B, 2011,106:1-13

    [28]ZHANG Tian(張?zhí)?,ZOU Zheng-Guang(鄒正光),HE Jin-Yun(何金云),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2017,33(6):954-962

    [29]Huang J,Tan G Q,Ren H J,et al.ACS Appl.Mater.Interfaces,2014,6:21041-21050

    [30]Zhang L W,Zhu Y F.Catal.Sci.Technol.,2012,2:694-706

    [31]Zhang Y P,Fei L F,Jiang X D,et al.J.Am.Ceram.Soc., 2011,94:4157-4161

    [32]López S M,Hidalgo M C,Navío J A,et al.J.Hazard.Mater., 2011,185:1425-1434

    [33]Liu Z,Liu X Z,Lu D Z,et al.Mater.Lett.,2014,130:143-145

    [34]Hou Y F,Liu S J,Zhang J H,et al.Dalton Trans.,2014,43: 1025-1031

    [35]Li Y,Wu W J,Wu M Z,et al.Mater.Res.Bull.,2014,55: 121-125

    [36]Deng F,Liu Y,Luo X B,et al.Sep.Purif.Technol.,2013, 120:156-161

    [37]Ma F Y,Geng Z,Yang X,et al.RSC Adv.,2015,5:46677-46685

    [38]Chen S F,Tang W M,Hu Y F,et al.CrystEngComm,2013, 15:7943-7950

    [39]Di J,Xia J X,Ge Y P,et al.Appl.Catal.B,2015,168-169: 51-61

    [40]Li L,Huang X D,Hu T Y,et al.New J.Chem.,2014,38: 5293-5302

    [41]Dai K,Lu L H,Liang C H,et al.Appl.Catal.B,2014,156-157:331-340

    [42]Zhang X W,Li G T,Wang Y Z.Dyes Pigm.,2007,74:536-544

    [43]Genuino H C,Hamal D B,Fu Y J,et al.J.Phys.Chem.C, 2012,116:14040-14051

    [44]Zhang Z H,Yu F Y,Huang L R,et al.J.Hazard.Mater., 2014,278:152-157

    [45]Zhang X W,Sun D D,Li G T,et al.J.Photochem.Photobiol. A,2008,199:311-315

    [46]Xiao J D,Xie Y B,Cao H B,et al.Catal.Commun.,2015, 66:10-14

    [47]Lin S L,Liu L,Hu J S,et al.Appl.Surf.Sci.,2015,324:20-29

    [48]Ma F Y,Shi T,Gao J,et al.Colloids Surf.A,2012,401:116-125

    Comparison of Photocatalytic Activity of Bi2WO6/TiO2Nanotubes Heterostructures Composite under Multimode

    MA Feng-Yan*,1YANG Yang1LI Na1YANG Qi-Lin1LI Shang-Jin2SHEN Lu-Yan2
    (1College of Chemistry and Chemical Engineering,Qiqihar University,Qiqihar,Heilongjiang 161006,China)
    (2College of Materials Science and Engineering,Qiqihar University,Qiqihar,Heilongjiang 161006,China)

    Bi2WO6/TiO2nanotubes(Bi2WO6/TiO2-NTs)heterostructures composite were synthesized by multicomponent assembly approach combined with hydrothermal treatment employed TiO2nanotubes as template.Multiple techniques such as X-ray powder diffraction(XRD),X-ray photo-electron spectroscopy(XPS),N2adsorptiondesorption,scanning electron microscopy(SEM),high resolution transmission electron microscopy(HRTEM),and UV-Vis diffused absorption spectra(UV-Vis DRS)were applied to investigate the composition,structures, morphologies,optical and electronic properties of as-prepared samples.The heterostructures were formed with Bi2WO6nanoflakes or nanoparticles attached on the surface of TiO2nanotubes.The photocatalytic activity of Bi2WO6/TiO2-NTs heterostructures was evaluated sufficiently by photodegradation of rhodamine B(RhB)under multimode including UV,visible and microwave-assisted photocatalysis.Compared to TiO2nanotubes and Bi2WO6,Bi2WO6/TiO2-NTs-35 shows the highest photocatalytic activity under multimode.In contrast with UV, visible mode,the Bi2WO6/TiO2-NTs-35 shows the highest activity toward RhB degradation under microwaveassisted photocatalytic mode.This enhanced photocatalytic activity is due to the more efficient separation of thee--h+pairs,originating from the introduction of Bi2WO6modified TiO2-NTs,the nanotubular geometries,and degradation mode.The main active species of the degradation process are proven to be h+,·OH,and·O2-radicals. Moreover,more·OH and·O2-radicals were generated under microwave-assisted photocatalytic mode.

    TiO2nanotubes;Bi2WO6;multimode degradation;photocatalysis

    TB33

    A

    1001-4861(2017)09-1656-11

    10.11862/CJIC.2017.199

    2017-04-18。收修改稿日期:2017-07-18。

    國(guó)家自然科學(xué)基金(No.21376126,81403067)、齊齊哈爾大學(xué)青年教師科學(xué)技術(shù)類(lèi)科研啟動(dòng)支持計(jì)劃項(xiàng)目(No.2014K-M03)和黑龍江省教育廳基本業(yè)務(wù)專(zhuān)項(xiàng)理工面上項(xiàng)目(No.135109204)資助。

    *通信聯(lián)系人。E-mail:mafengyan989@163.com

    猜你喜歡
    楊陽(yáng)納米管李娜
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    EXISTENCE OF SOULUTIONS FOR THE FRACTIONAL (p,q)-LAOLACIAN PROBLEMS INVOLVING A CRITICL SOBLEV EXPNN*
    Application research of bamboo materials in interior design
    Analysis of the Effects of Introversion and Extroversion Personality Traits on Students’ English Reading And Writing Abilities with its Relevant Teaching Advice
    李娜作品
    藝術(shù)家(2017年2期)2017-11-26 21:26:20
    數(shù)學(xué)的簡(jiǎn)潔美
    東方教育(2017年17期)2017-10-31 19:10:58
    A Historical View on Translation Theory and Practice in China
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    av福利片在线观看| 久久这里只有精品中国| 亚洲中文字幕日韩| 国产成人freesex在线| 中文字幕久久专区| 欧美极品一区二区三区四区| 1024手机看黄色片| 亚洲国产最新在线播放| 日本爱情动作片www.在线观看| 又粗又硬又长又爽又黄的视频| 国产不卡一卡二| 亚洲精品日韩在线中文字幕| 国产极品精品免费视频能看的| 成人高潮视频无遮挡免费网站| 国产又色又爽无遮挡免| 老师上课跳d突然被开到最大视频| 麻豆精品久久久久久蜜桃| 简卡轻食公司| 亚洲欧美清纯卡通| 97热精品久久久久久| 国产黄a三级三级三级人| 婷婷六月久久综合丁香| 深夜a级毛片| 日本五十路高清| 大话2 男鬼变身卡| 小说图片视频综合网站| 不卡视频在线观看欧美| 久久这里有精品视频免费| 久久久久久久久久久丰满| 特大巨黑吊av在线直播| 国产精品一区www在线观看| 国产美女午夜福利| 一边摸一边抽搐一进一小说| 久久精品综合一区二区三区| 99热网站在线观看| 国产亚洲5aaaaa淫片| 精品一区二区三区人妻视频| 黄色配什么色好看| 天堂网av新在线| 啦啦啦啦在线视频资源| 午夜福利视频1000在线观看| 免费观看人在逋| av又黄又爽大尺度在线免费看 | 成年女人看的毛片在线观看| 熟妇人妻久久中文字幕3abv| 青春草视频在线免费观看| 国产91av在线免费观看| 中文字幕免费在线视频6| 老司机福利观看| 99热全是精品| 插阴视频在线观看视频| 中国国产av一级| АⅤ资源中文在线天堂| 高清日韩中文字幕在线| 3wmmmm亚洲av在线观看| 久久99精品国语久久久| 国产免费一级a男人的天堂| 国产精品一区二区三区四区免费观看| 国内精品一区二区在线观看| 日韩国内少妇激情av| 嘟嘟电影网在线观看| 国产精品久久久久久av不卡| 久久6这里有精品| 国产高清有码在线观看视频| 国产黄色小视频在线观看| 超碰av人人做人人爽久久| 久久久精品欧美日韩精品| 国产亚洲最大av| 久久久久久大精品| 久久精品综合一区二区三区| 男女边吃奶边做爰视频| 亚洲精品色激情综合| 亚洲av中文av极速乱| 国产午夜福利久久久久久| 精品熟女少妇av免费看| 精品国产露脸久久av麻豆 | 女人被狂操c到高潮| 国产v大片淫在线免费观看| 十八禁国产超污无遮挡网站| 亚洲国产精品久久男人天堂| 国产91av在线免费观看| 蜜桃久久精品国产亚洲av| 亚洲美女搞黄在线观看| 国产av一区在线观看免费| videos熟女内射| 国产一区有黄有色的免费视频 | 日韩av在线大香蕉| 69人妻影院| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜爱| 卡戴珊不雅视频在线播放| 男女视频在线观看网站免费| 99久久无色码亚洲精品果冻| 久久午夜福利片| 久久99精品国语久久久| 免费黄色在线免费观看| 秋霞在线观看毛片| 日本黄色片子视频| 色视频www国产| 久热久热在线精品观看| 晚上一个人看的免费电影| 久久草成人影院| 欧美极品一区二区三区四区| 亚洲av电影不卡..在线观看| a级毛色黄片| 亚洲图色成人| 99热精品在线国产| 天堂av国产一区二区熟女人妻| 级片在线观看| 国产久久久一区二区三区| 高清在线视频一区二区三区 | 赤兔流量卡办理| 成人午夜精彩视频在线观看| 97超碰精品成人国产| 欧美人与善性xxx| 黄色一级大片看看| 内射极品少妇av片p| 大香蕉久久网| 精品国产露脸久久av麻豆 | 成人综合一区亚洲| 国产免费男女视频| 国产极品精品免费视频能看的| 亚洲自拍偷在线| 色噜噜av男人的天堂激情| 亚洲伊人久久精品综合 | 嫩草影院新地址| 亚洲国产精品成人综合色| 插阴视频在线观看视频| 国产黄色视频一区二区在线观看 | 成年女人看的毛片在线观看| 男女啪啪激烈高潮av片| 国产极品天堂在线| 少妇人妻一区二区三区视频| 草草在线视频免费看| 九九久久精品国产亚洲av麻豆| 丰满人妻一区二区三区视频av| 97超视频在线观看视频| 一级毛片久久久久久久久女| 最近手机中文字幕大全| 成人鲁丝片一二三区免费| 亚洲国产成人一精品久久久| 久久久a久久爽久久v久久| 中文字幕久久专区| 亚洲无线观看免费| 网址你懂的国产日韩在线| 高清午夜精品一区二区三区| 日韩人妻高清精品专区| 中文欧美无线码| 精品一区二区免费观看| 国产成人精品婷婷| 久久综合国产亚洲精品| 18禁裸乳无遮挡免费网站照片| 久久久色成人| 久久久久网色| 亚洲成人久久爱视频| 久久精品久久久久久久性| 国产精品久久电影中文字幕| 99久久成人亚洲精品观看| 中文字幕久久专区| 国产成人freesex在线| 九九在线视频观看精品| 亚洲精品,欧美精品| 精品国产三级普通话版| 五月玫瑰六月丁香| 九九热线精品视视频播放| 久久6这里有精品| 欧美色视频一区免费| 国产单亲对白刺激| 高清毛片免费看| 久久久欧美国产精品| 美女脱内裤让男人舔精品视频| 91午夜精品亚洲一区二区三区| 国内揄拍国产精品人妻在线| 亚洲av男天堂| 亚洲精品国产成人久久av| 亚洲va在线va天堂va国产| 能在线免费观看的黄片| 欧美极品一区二区三区四区| 国产日韩欧美在线精品| a级一级毛片免费在线观看| 免费看光身美女| 永久网站在线| 亚洲av中文av极速乱| 久久亚洲精品不卡| 国产一区二区在线av高清观看| 国产精品女同一区二区软件| 欧美xxxx黑人xx丫x性爽| 狂野欧美白嫩少妇大欣赏| 免费黄网站久久成人精品| 国产探花在线观看一区二区| 亚洲欧美日韩东京热| 日韩欧美 国产精品| 亚洲欧美日韩无卡精品| 国产一区亚洲一区在线观看| 狠狠狠狠99中文字幕| 国产人妻一区二区三区在| 蜜桃亚洲精品一区二区三区| videos熟女内射| 国产探花极品一区二区| 国产一级毛片七仙女欲春2| 91aial.com中文字幕在线观看| 七月丁香在线播放| 少妇裸体淫交视频免费看高清| 国产亚洲av嫩草精品影院| 成人鲁丝片一二三区免费| 国产综合懂色| 国产成人freesex在线| 精品一区二区三区人妻视频| 久久亚洲精品不卡| 国产精品女同一区二区软件| 欧美激情在线99| 亚洲成人久久爱视频| 亚洲不卡免费看| 小蜜桃在线观看免费完整版高清| 在线a可以看的网站| 日本与韩国留学比较| 欧美精品国产亚洲| 日日干狠狠操夜夜爽| 狂野欧美白嫩少妇大欣赏| 国产色爽女视频免费观看| 免费看光身美女| 22中文网久久字幕| 亚洲怡红院男人天堂| 国产高清国产精品国产三级 | 男女国产视频网站| 能在线免费看毛片的网站| 又爽又黄无遮挡网站| 99热这里只有是精品50| 国产免费男女视频| 午夜福利高清视频| 国产精品一及| 国产精品精品国产色婷婷| 好男人在线观看高清免费视频| 免费黄网站久久成人精品| 国产精品电影一区二区三区| 国产白丝娇喘喷水9色精品| 波多野结衣高清无吗| 亚洲熟妇中文字幕五十中出| 亚洲精品影视一区二区三区av| 韩国高清视频一区二区三区| 国产淫语在线视频| 国产av码专区亚洲av| 丰满人妻一区二区三区视频av| 亚洲精品影视一区二区三区av| 水蜜桃什么品种好| 观看免费一级毛片| 亚洲色图av天堂| av在线观看视频网站免费| 五月玫瑰六月丁香| 卡戴珊不雅视频在线播放| 成人av在线播放网站| 日韩欧美国产在线观看| 日韩国内少妇激情av| 亚洲av中文av极速乱| 国产精品一区二区三区四区久久| 91在线精品国自产拍蜜月| 国产真实乱freesex| 级片在线观看| 国产精品一区二区在线观看99 | 中文字幕久久专区| 婷婷色av中文字幕| 国产成人a区在线观看| 波野结衣二区三区在线| 亚洲精品日韩av片在线观看| 国产视频首页在线观看| 精品一区二区三区视频在线| 国产 一区 欧美 日韩| 精品酒店卫生间| 久久国产乱子免费精品| 色哟哟·www| 午夜福利视频1000在线观看| 99热这里只有精品一区| 搞女人的毛片| 又粗又爽又猛毛片免费看| 爱豆传媒免费全集在线观看| 美女内射精品一级片tv| 蜜桃亚洲精品一区二区三区| 国产精品不卡视频一区二区| 91久久精品电影网| 欧美性猛交黑人性爽| 乱系列少妇在线播放| a级一级毛片免费在线观看| 最近中文字幕2019免费版| 国产不卡一卡二| 久久精品久久精品一区二区三区| 成人鲁丝片一二三区免费| 亚洲国产日韩欧美精品在线观看| 亚洲电影在线观看av| 哪个播放器可以免费观看大片| 久久精品综合一区二区三区| 欧美色视频一区免费| 亚洲av成人精品一区久久| 在线观看66精品国产| 中文欧美无线码| 激情 狠狠 欧美| 三级毛片av免费| 精品久久久噜噜| 亚洲欧美精品自产自拍| 久久99热这里只有精品18| 两个人视频免费观看高清| 成人二区视频| 日日摸夜夜添夜夜添av毛片| 国产女主播在线喷水免费视频网站 | 成人性生交大片免费视频hd| 国产一区有黄有色的免费视频 | 午夜精品国产一区二区电影 | 26uuu在线亚洲综合色| 精品免费久久久久久久清纯| 国产一级毛片在线| 两性午夜刺激爽爽歪歪视频在线观看| 少妇人妻一区二区三区视频| 免费大片18禁| 亚洲人与动物交配视频| 看片在线看免费视频| 久久欧美精品欧美久久欧美| 色综合站精品国产| 蜜桃亚洲精品一区二区三区| www.av在线官网国产| 久久精品人妻少妇| av又黄又爽大尺度在线免费看 | 嘟嘟电影网在线观看| 国产成人freesex在线| 精品人妻视频免费看| 嫩草影院新地址| 中文字幕免费在线视频6| 白带黄色成豆腐渣| 九九久久精品国产亚洲av麻豆| 最后的刺客免费高清国语| 十八禁国产超污无遮挡网站| 亚洲电影在线观看av| 精品午夜福利在线看| 久久久国产成人免费| 黄色欧美视频在线观看| 两个人的视频大全免费| 久久人人爽人人爽人人片va| 国产淫片久久久久久久久| 亚洲丝袜综合中文字幕| 2022亚洲国产成人精品| or卡值多少钱| 干丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看| 精品久久久久久久久亚洲| 亚洲综合精品二区| 在线播放无遮挡| 2021天堂中文幕一二区在线观| 亚洲最大成人av| 日本黄色片子视频| 国产精品一区二区三区四区免费观看| 少妇被粗大猛烈的视频| 天天躁日日操中文字幕| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| av又黄又爽大尺度在线免费看 | 欧美成人免费av一区二区三区| 不卡视频在线观看欧美| 精品国产三级普通话版| 男插女下体视频免费在线播放| 最近最新中文字幕大全电影3| 国产女主播在线喷水免费视频网站 | 久久鲁丝午夜福利片| 日韩制服骚丝袜av| 亚洲五月天丁香| 老女人水多毛片| 91久久精品电影网| 淫秽高清视频在线观看| 欧美丝袜亚洲另类| 中文资源天堂在线| 黄片wwwwww| 一边摸一边抽搐一进一小说| 亚洲av成人精品一区久久| 中文字幕av成人在线电影| 亚洲av一区综合| 国产精品永久免费网站| 亚洲欧美精品自产自拍| 一级毛片电影观看 | 小蜜桃在线观看免费完整版高清| 久久欧美精品欧美久久欧美| 日本爱情动作片www.在线观看| 欧美高清性xxxxhd video| 夜夜看夜夜爽夜夜摸| 亚洲av成人av| 精品无人区乱码1区二区| 国产麻豆成人av免费视频| 国产日韩欧美在线精品| 亚洲精品亚洲一区二区| 一级毛片久久久久久久久女| 中文字幕免费在线视频6| 日本黄色视频三级网站网址| 国产精品三级大全| 国产v大片淫在线免费观看| 国产精品一区二区在线观看99 | 波野结衣二区三区在线| 亚洲精品乱久久久久久| 热99re8久久精品国产| 国产成人freesex在线| 国产精品一及| 亚洲欧美中文字幕日韩二区| 麻豆成人av视频| 亚洲怡红院男人天堂| 成人性生交大片免费视频hd| 亚洲国产日韩欧美精品在线观看| 久久精品国产自在天天线| 久久6这里有精品| 久久久欧美国产精品| 免费观看a级毛片全部| 丰满少妇做爰视频| 成人一区二区视频在线观看| 国产一区二区三区av在线| 午夜福利在线观看吧| 秋霞伦理黄片| 3wmmmm亚洲av在线观看| 日本一二三区视频观看| 久久久欧美国产精品| 欧美日韩精品成人综合77777| 亚洲高清免费不卡视频| 大又大粗又爽又黄少妇毛片口| 村上凉子中文字幕在线| 久久午夜福利片| 亚洲在线自拍视频| 2022亚洲国产成人精品| 女人十人毛片免费观看3o分钟| 99热这里只有是精品50| 蜜臀久久99精品久久宅男| 日韩av在线大香蕉| 观看免费一级毛片| 免费看a级黄色片| 亚洲精品影视一区二区三区av| 免费人成在线观看视频色| 久久99精品国语久久久| 天天躁日日操中文字幕| 亚洲丝袜综合中文字幕| eeuss影院久久| 老司机影院成人| 不卡视频在线观看欧美| 国产成人精品婷婷| 国产69精品久久久久777片| 老司机影院毛片| 国产视频首页在线观看| 在线播放国产精品三级| 天天躁夜夜躁狠狠久久av| 亚洲aⅴ乱码一区二区在线播放| 日本一本二区三区精品| 2022亚洲国产成人精品| 午夜免费激情av| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| 我的老师免费观看完整版| 日本爱情动作片www.在线观看| 又黄又爽又刺激的免费视频.| 亚洲欧美精品专区久久| 亚洲最大成人手机在线| 搞女人的毛片| av又黄又爽大尺度在线免费看 | 美女被艹到高潮喷水动态| 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| .国产精品久久| 激情 狠狠 欧美| 国产 一区 欧美 日韩| 国产真实伦视频高清在线观看| 午夜精品在线福利| 成人高潮视频无遮挡免费网站| 麻豆国产97在线/欧美| 九九爱精品视频在线观看| 久久欧美精品欧美久久欧美| 能在线免费看毛片的网站| 91狼人影院| 久久精品影院6| 精品99又大又爽又粗少妇毛片| 久久久久久九九精品二区国产| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜添av毛片| 国产一区亚洲一区在线观看| 又爽又黄a免费视频| 日韩欧美精品v在线| 久久人人爽人人片av| 欧美三级亚洲精品| 日日干狠狠操夜夜爽| 人人妻人人看人人澡| 国产精品一及| 精品99又大又爽又粗少妇毛片| 日韩精品青青久久久久久| 一级毛片我不卡| 亚洲,欧美,日韩| 少妇的逼好多水| 久久精品国产亚洲av天美| 神马国产精品三级电影在线观看| 国产亚洲精品久久久com| 九草在线视频观看| 综合色av麻豆| 久久久久久久亚洲中文字幕| 国产不卡一卡二| 99热全是精品| 国产免费一级a男人的天堂| 男插女下体视频免费在线播放| 夫妻性生交免费视频一级片| 97热精品久久久久久| 免费无遮挡裸体视频| 综合色av麻豆| 联通29元200g的流量卡| www.色视频.com| 老司机福利观看| 2022亚洲国产成人精品| 久久久色成人| 九九在线视频观看精品| 91久久精品国产一区二区成人| 亚洲精华国产精华液的使用体验| 国产精品一区二区三区四区久久| av线在线观看网站| 国产一区二区三区av在线| 三级毛片av免费| 国产精品一区二区性色av| 午夜免费激情av| 国产黄片美女视频| 91在线精品国自产拍蜜月| 中文资源天堂在线| 国国产精品蜜臀av免费| 亚洲在线观看片| 亚洲av.av天堂| 中文字幕免费在线视频6| 深夜a级毛片| 色视频www国产| 又粗又爽又猛毛片免费看| 日韩亚洲欧美综合| 色网站视频免费| 少妇猛男粗大的猛烈进出视频 | 国产黄a三级三级三级人| 日本一本二区三区精品| 日本wwww免费看| 在线观看av片永久免费下载| 性色avwww在线观看| 国产白丝娇喘喷水9色精品| 欧美性感艳星| 国产午夜精品一二区理论片| 国产av不卡久久| 日本一本二区三区精品| 精品久久久久久电影网 | 国产亚洲5aaaaa淫片| 国产麻豆成人av免费视频| 一区二区三区高清视频在线| 日本一二三区视频观看| 波野结衣二区三区在线| 亚洲aⅴ乱码一区二区在线播放| 日韩在线高清观看一区二区三区| 亚洲欧洲日产国产| 一级毛片aaaaaa免费看小| 国产亚洲91精品色在线| 欧美一级a爱片免费观看看| 99久久中文字幕三级久久日本| 尤物成人国产欧美一区二区三区| 男女下面进入的视频免费午夜| 18禁动态无遮挡网站| 国内揄拍国产精品人妻在线| 99久久成人亚洲精品观看| 日日撸夜夜添| 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 91精品国产九色| 91av网一区二区| 久久99热6这里只有精品| 国产av在哪里看| 秋霞在线观看毛片| 亚洲精品亚洲一区二区| 免费黄色在线免费观看| 亚洲精品自拍成人| 狂野欧美白嫩少妇大欣赏| 日韩人妻高清精品专区| 能在线免费观看的黄片| 91久久精品电影网| 国产淫片久久久久久久久| 国产精品综合久久久久久久免费| 久久久色成人| 国产免费一级a男人的天堂| 亚洲av免费高清在线观看| 九九在线视频观看精品| 能在线免费看毛片的网站| 夜夜看夜夜爽夜夜摸| 免费观看的影片在线观看| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 国产极品精品免费视频能看的| 日本一二三区视频观看| 免费观看在线日韩| 精品一区二区三区视频在线| 两个人的视频大全免费| 国产美女午夜福利| 久久久亚洲精品成人影院| 免费黄色在线免费观看| 2022亚洲国产成人精品| 国产精品国产三级国产专区5o | 精品欧美国产一区二区三| 国产免费一级a男人的天堂| 久久久久网色| 日韩人妻高清精品专区| 99热6这里只有精品| 只有这里有精品99| 干丝袜人妻中文字幕| 亚洲精品日韩av片在线观看| 国产单亲对白刺激| 精品久久久久久久久亚洲| 精品久久久久久成人av| 99热网站在线观看| 观看免费一级毛片| 久久人人爽人人爽人人片va| 天堂av国产一区二区熟女人妻| 九九热线精品视视频播放| 日日摸夜夜添夜夜添av毛片| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区 | 日韩欧美在线乱码| av在线天堂中文字幕| 天天一区二区日本电影三级| 国产免费视频播放在线视频 |