• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3-(2-吡啶基)-1,2,4-三唑配體CoCu和Cd配合物的合成、結構及熒光性質

    2017-09-12 08:59:35杜層層范建中李金萍王多志
    無機化學學報 2017年9期
    關鍵詞:吡啶基分子結構三唑

    杜層層范建中李金萍王多志

    3-(2-吡啶基)-1,2,4-三唑配體CoCu和Cd配合物的合成、結構及熒光性質

    杜層層范建中李金萍王多志*

    (新疆大學化學化工學院,烏魯木齊830046)

    利用3-(2-吡啶基)-1,2,4-三唑配體(HL)和不同的金屬鹽設計合成了5個配合物[Co(HL)2(H2O)2](NO3)2(1)、[Cu2(L)2(NO3)2(H2O)4](2)、[Cu2(L)2(AcO)2(H2O)2]·6H2O(3)、[Cu2(L)2(HL)2(ClO4)2]·2CH3CN(4)和[Cd2(L)2(HL)2(NO3)2]·2H2O(5),并通過X射線單晶衍射、紅外、元素分析、X射線粉末衍射和熱重對配合物結構進行了表征。測試結果表明配合物1具有單核結構,并且可以通過氫鍵的相互作用形成二維超分子結構。配合物2~5為雙核結構。配合物2和5可以通過氫鍵的相互作用形成二維超分子結構。配合物3通過氫鍵的相互作用形成三維超分子結構。研究了配合物中HL配體的配位模式。此外,研究了配體HL和配合物1和5的固態(tài)熒光性質及熒光壽命。

    配合物;晶體結構;熒光性質

    0 Introduction

    During the past decades,many efforts have been devoted to coordination polymers(CPs)and metalorganic frameworks(MOFs)with interesting topological architectures,expanding functionalities and performances in many fields of catalysis[1],photoluminescence[2-3], magnetism[4-5],gas storage[6-7],electrochromism[8-9],drug delivery,and so on.However,it is still difficult to design and synthesis metal-organic frameworks with an intriguing diversity of architectures and properties[10-11]composed of simple inorganic salts and organic ligands due to the self-assembly progress highly influenced by several factors such as building units,temperature,pH value,reaction time,solvent,and metal-to-ligand ratio, etc[12-14].Among these,the design and selection of organic ligands with appropriate sites capable of coordinating with metal ions are quite critical in the construction of coordination polymers(CPs)and metalorganic frameworks(MOFs)[15-16],showing diversified structures and functional properties.

    Great efforts have been focused on ligands based on azole heterocycle,which have both good coordination abilities and diverse coordination modes.As simple small molecular ligands,triazole and its derivatives are potential multi-topic ligands in constructions of coordination complexes[17-18].Ligand 1,2,4-Triazole is a very significant five-membered heterocyclic compound with good biological activity and widespread applications in medicament and pesticide such as weed removal,antimicrobials,decreasing blood pressure, antifungus,anti-convulsion,acariddisinfestations, insect disinfestations,plant growth regulator[19].In addition,3-(2-pyridyl)-1,2,4-triazole,as a polydentate ligand,can bind metal ions and provide a possible way to achieve more robust polymeric structure using nitrogen atoms with lone-pair electron,meanwhile the nitrogen atom existing in the form of N-H in the triazole ring can not only lose the hydrogen ion but also retain the hydrogen ion to coordinate with the metal.It is well known that metallic di-,tri-and tetranuclear complexes,so called small-size clusters, have attracted increasing attention owing to their potential to promote new catalytic reactions,which are no longer established by each mononuclear system andtobe minimal models for mixed-metal heterogeneous catalysts as well as photochemical devices[20-22].

    Considering these aspects above mentioned,in this study,five transition metals complexes with mononuclear and dinuclear structure units were synthesized and structurally characterized by single crystal X-ray diffraction,infrared spectroscopy(IR),elemental analysis,powder X-ray diffraction(PXRD)and thermogravimetric analysis(TGA),using 3-(2-pyridyl)-1,2,4-triazole(HL)ligand as building blocks.We discussed the coordination modes of the ligand.Furthermore,the luminescent properties and fluorescence lifetimes of ligand HL,complexes 1 and 5 have been investigated.

    1 Experimental

    1.1 Materials and general methods

    All the other reagents used for the syntheses were commercially available and employed without further purification.The ligand HL was prepared according to reported procedures[23].IR spectra were measured on a Brucker Equinox 55 FT-IR spectrometer with KBr Pellets in the range of 4 000~400 cm-1. Elemental analyses of C,H and N were performed on a Thermo Flash EA 1112-NCHS-O analyzer.Thermogravimetric analysis(TGA)measurements were on a Perkin-Elmer TG-7 analyzer heated from 25 to 800℃at the rate of 10℃·min-1under nitrogen atmosphere. The X-ray powder diffraction(PXRD)was recorded over the 2θ range of 5°~50°on a Bruker D8 Advance X-ray diffractometer operated at 40 kV and 40 mA using Cu Kα radiation(λ=0.154 8 nm).The fluorescence spectra of ligands and its complexes were obtained using a Hitachi F-4500 Fluorescence Spectrophotometer with a Xe arc lamp as the light source and bandwidths of 2.5 nm at room temperature.Fluorescence lifetime data were obtained on a Fluorolog-3 spectrofluorometer.

    1.2 Synthesis of complex 1

    A mixture of Co(NO3)2·6H2O(0.3 mmol),HL(0.3 mmol)and distilled water(5 mL)was sealed in a Teflon-lined reactor and heated at 130℃for 3 days,after the mixture was cooled to room temperature at a rate of 5℃·h-1.The pink block crystals were gained (ca.35%yield based on HL).Anal.Calcd.for C14H16CoN10O8(%):C,32.89;H,3.15;N,27.40.Found(%): C,32.60;H,3.48;N,27.95.IR(KBr,cm-1):3 377(s), 3 063(m),2 315(w),1 990(m),1 743(w),1 647(w), 1 568(m),1 514(m),1 472(s),1 447(s),1 412(m), 1 384(m),1 360(m),1 276(m),1 253(m),1 204(m), 1 147(m),1 116(m),1 093(m),1 030(m),1 010(m), 875(m),798(m),749(m),724(m),674(m),637(m), 495(m),412(m)(Fig.S1 of Supporting information).

    1.3 Synthesis of complex 2

    A mixture of Cu(NO3)2·3H2O(0.3 mmol)and HL (0.3 mmol)in methanol solution(15 mL)was refluxed for 3 h.After being cooled and filtrated,blue block crystals were obtained after several days with the evaporation of the filtrate(ca.45%yield based on HL). Anal.Calcd.for C14H16Cu2N10O10(%):C,27.49;H,2.64; N,22.90.Found(%):C,27.14;H,2.48;N,22.37.IR (KBr,cm-1):3 440(m),3 140(m),2 424(w),1 768(w), 1 658(m),1 613(m),1 529(w),1 485(m),1 452(m), 1 416(m),1 416(m),1 383(s),1 289(m),1 149(m), 1 097(m),1 047(m),1 020(m),952(w),894(w), 821(m),789(m),749(m),717(m),658(m),517(m), 415(m)(Fig.S1).

    1.4 Synthesis of complex 3

    A mixture of Cu(OAc)2·H2O(0.3 mmol)and HL (0.3 mmol)was dissolved in methanol solution(15 mL) and filtrated.Blue block crystals were formed after several days with the evaporation of the filtrate(ca. 34%yield based on HL).Anal.Calcd for C18H32Cu2N8O12(%):C,31.81;H,4.74;N,16.48.Found(%):C, 31.52;H,4.32;N,16.06.IR(KBr,cm-1):3 443(s), 3 135(m),2 495(w),2 202(w),1 956(w),1 878(w), 1 787(w),1 614(s),1 574(s),1 484(s),1 450(m), 1 403(m),1 340(m),1 286(m),1 260(m),1 213(w), 1 149(m),1 100(m),1 048(m),1 021(m),930(m), 899(m),801(m),758(m),720(m),686(m),645(m), 624(m),516(m),415(w)(Fig.S1).

    1.5 Synthesis of complex 4

    Complex 4 was obtained by a procedure similar to that for 3 except for using acetonitrile solution instead of methanol solution andCu(ClO4)2·6H2O instead of Cu(OAc)2·H2O.Blue block crystals were formed after several days with the evaporation of the filtrate.(ca.40%yield based on HL).Anal.Calcd.for C32H26Cl2Cu2N18O8(%):C,38.87;H,2.65;N,25.49. Found(%):C,38.54;H,2.22;N,25.08.IR(KBr,cm-1): 3 132(m),2 939(m),2 257(m),2 014(w),1 815(w), 1 732(w),1 615(m),1 571(m),1 544(w),1 480(m), 1 454(m),1 417(m),1 371(m),1 342(m),1 285(m), 1 264(m),1 214(w),1 178(m),1 146(m),1 105(s), 1 079(s),970(m),926(m),868(m),797(m),760(m), 747(m),720(m),663(m),620(m),515(m),483(m) (Fig.S1).

    1.6 Synthesis of complex 5

    Complex 5 was obtained via a similar method used for complex 3 except that Cu(OAc)2·H2O was replaced by Cd(NO3)2·4H2O,as well as methanol solution was replaced by deionized water.Colorless block crystals were formed after several days with the evaporation of the filtrate(ca.41%yield based on HL). Anal.Calcd.for C28H26Cd2N18O8(%):C,34.76;H,2.70; N,26.06.Found(%):C,34.49;H,2.31;N,25.83.IR (cm-1,KBr pellets):3 374(m),3 083(m),3 058(m), 3 022(m),2 978(m),2 947(m),2 714(w),2 621(w), 2 550(w),2 469(w),2 403(w),2 317(w),2 225(w), 2 142(w),1 974(w),1 903(w),1 864(w),1 737(w), 1 645(w),1 601(s),1 569(m),1 510(m),1 472(s), 1 446(m),1 415(s),1 349(s),1 273(s),1 251(m), 1 205(m),1 143(m),1 116(s),1 046(m),1 025(s), 1 006(m),874(m),802(m),751(m),725(m),671(m), 633(m),508(w),477(m)(Fig.S1).

    1.7 Structure determination

    X-ray single-crystal diffraction data for complex 1~5 were collected on a Bruker APEXⅡSmart CCD diffractometer at 293(2)K with Mo Kα radiation(λ= 0.071 073 nm)by ω-φ scan mode.The program SAINT[24]was used for integration of the diffraction profiles. Semi-empirical absorption corrections were applied using SADABS program.All the structures were solved by direct methods using the SHELXS program of the SHELXTL package and refined by full-matrix leastsquares methods with SHELXL[25].PLATON/SQUEEZE 55 was used to correct the data in the refinement process[26].Metal atoms in each complex were locatedfrom the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F2. Hydrogen atoms of carbon were included in calculated positions and refined with fixed thermal parametersriding on their parent atoms.Crystallographic data and experimentaldetailsforstructuralanalysesare summarized in Table 1.

    Table1 Crystallographic data for complexes 1~5

    CCDC:1054520,1;1054521,2;1054522,3; 1054523,4;1054524,5.

    2 Results and discussion

    2.1 Structure description of 1

    Complex 1 crystallizes in the monoclinic symmetry space group P21/n.Crystallographic data and experimental details for structural analyses were summarized in Table 1,and the selected bond distances and angles were listed in Table 2.The X-ray diffraction analysis shows that 1 has a mononuclear structure. The centrosymmetric unit contains a half of Cocenter,one HL ligand,one coordinated water molecule and one NO3-anion.The center Coion is coordinated to four N atoms from two distinct chelating HL ligands in the equatorial plane and two O atoms from two distinct water molecules at the axial positions to completeitsdistortedoctahedroncoordination geometry(Fig.1a).Ligand HL,a typical chelating ligand,adopts a coordination mode(modeⅠin Scheme 1)to link the Coion with the Co-N bond distances of 0.215 15(12)and 0.216 12(12)nm,respectively,which are in the normal range.The N(2)#1-Co(1)-N(3)and N(2)-Co(1)-N(3)angels are 77.62(5)° and 102.38(5)°,respectively(Table 2).It should be pointed out that O(4)-H(5)…O(3)#1 and N(5)-H(8)…O(1)intermolecular hydrogen-bonding interactions are observed between adjacent mononuclear structures. Thus the adjacent mononuclear structures are arranged into a one-dimensional chain by the intermolecular hydrogen-bonding interactions(Fig.1b)(O(4)…O(3)#1 andN(5)…O(1)separations are 0.284 03(19)and 0.292 5(2)nm,respectively).The chains are further expandedbytheO(4)-H(6)…O(2)#2hydrogenbonding interactions to generate a two-dimensionalsupramolecular sheet with the distance of 0.280 33(19) nm between O(4)and O(2)#2(Fig.1c).In complex 1, the uncoordinated NO3-anions serving as counteranions locate at the cavities of the sheets and form O-H…O hydrogen-bondingswiththecoordinatedwater molecules(Table 3).

    Scheme 1Coordination modes of the ligand

    Table2 Selected bond distances(nm)and angles(°)for complexes 1~5

    2.2 Structure description of 2

    Complex2hasacentrosymmetricdinuclear structure.Single-crystalX-raydiffractionanalysis reveals that complex 2 crystallizes in the orthorhombic system,with space group Pbcn.The asymmetric unit of complex 2 contains one Cucation,one L ligand, two coordinated water molecules and one NO3-anion. The center Cuion is six-coordinated by three nitrogen atoms from two distinct L-ligands(Cu(1)-N(1) 0.196 86(18)nm,Cu(1)-N(3)0.197 43(18)nm),two Oatoms from four distinct water molecules(Cu(1)-O(1) 0.223 71(18)nm,Cu(1)-O(2)0.200 58(16)nm),one oxygen atom from one nitrate ion(Cu(1)-O(3)0.276 8(18) nm,Fig.2a).The equatorial plane of slightly distorted octahedral coordination geometry is occupied by atoms N1,N3,N4 and O2,while O1 and O3 occupy axial positions withthe O(1)-Cu-O(3)bond angle of 164.82(3)°.The ligand adopts one single coordination mode(modeⅡin Scheme 1)acting as a tridentate linker to connect two Cucations with the nonbonding Cu…Cu distance being 0.399 3 nm.It is worth noting that O(4)and O(5)atoms of NO3-which adopts monodentate coordination mode are not coordinated to Cuions,which present intermolecular hydrogenbonding interactions with O(2)atoms of water molecules (the distances of O(2)…O(4)#2 and O(2)…O(5)are 0.281 3(3)and 0.274 9(3)nm,respectively.O(2)-H(3w)…O(4)#2 and O(2)-H(4w)…O(5)angles are 173(3)°and 165(3)°,respectively).Therefore,such molecules are interconnected via the O-H…O hydrogen bonding interactions to give an infinite 1D chain along the b-axis as shown in Fig.2b.Additionally, the nitrogen atoms of the triazole rings and coordinated water molecules are involved in the strong and directional O(1)-H(1W)…N(2)#1 hydrogen bonds, which connect the adjacent dimer units to generate a 2D supramolecular network(Fig.2c,Table 3).

    Table3 Hydrogen bonding geometry for 1~3 and 5

    Fig.1 View of the coordination environment of Coion in 1(a);(b)One dimensional chain formed by hydrogen bonding interactions;(c)Two dimensional network formed by hydrogen bonding interactions

    Fig.2 (a)View of the coordination environment of Cuion in 2;(b)One dimensional chain formed by hydrogen bonding interactions;(c)Two dimensional network formed by hydrogen bonding interactions

    2.3 Structure description of 3

    The molecular structure of 3 is shown in Fig.3a. The X-ray diffraction analysis shows that 3 crystallizes in the monoclinic space group P21/c.There are one Cucation,one L-ligand,one acetate ion,one coordinated water molecule and three lattice water molecules in the asymmetric unit of complex 3.The center Cuion is six-coordinated by three N atoms from two distinct L-ligands,one O atom from a water molecule and two O atoms from one acetate ion.Acetate ion acts as a typical chelating ligand coordinated to the Cuion with the Cu-O bond distances being 0.196 5(2) and 0.273 9(2)nm,the O-Cu-O angel being 53.31°. The ligand is tridentate linker to concatenate Cuions(modeⅡin Scheme 1),two nitrogen atoms(N1 and N2)of which chelate and coordinate one center cation to form a five-membered ring,at the same time, two central copper atoms and four nitrogen atoms make a six-membered ring improving the stability of the molecule to a large extent.Additionally,the hydrogenbonding interactions are observed between the adjacent structures with the O(1W)…O(2W),O(1W)…N(4)#2, O(2W)…O(2)#1,O(3W)…O(2),O(3W)…O(4W),O(4W)…O(1)and O(4W)…O(2W)separation of 0.277 7(3), 0.2756(3),0.2874(3),0.287 2(3),0.274 8(3),0.280 1(3) and0.2752(4)nm,respectively.Therefore,thedinuclear structure are expanded by O(1W)-H(1W)…O(2W), O(2W)-H(8W)…O(2)#1,O(3W)-H(5W)…O(2),O(3W) -H(6W)…O(4W),O(4W)-H(3W)…O(1)and O(4W)-H(4W)…O(2W)to form a two-dimensional network (Fig.3b),then further expanded by the O(1W)-H(2W)…N(4)#2 hydrogen-bonding interactions to form a three-dimensional framework(Fig.3c).The hydrogenbonding parameters are listed in Table 3.

    Fig.3 (a)Coordination environment of Cuion in 3;(b)Two dimensional network formed by hydrogen bonding interactions;(c)Three dimensional framework formed by hydrogen bonding interactions

    2.4 Structure description of 4

    X-ray single crystal diffraction reveals that 4 indicates a dinuclear structure crystallizing in the monoclinic space group P21/c.Each asymmetric unit of 4 contains one Cucation,one L-ligand,one HL ligand,one ClO4-anion and two lattice CH3CN molecules.Similar to 2 and 3,complex 4 also has a dinuclear structure which consists of two Cuions, two ClO4-anions,four ligands and two CH3CN molecules(Fig.4).The Cuion is linked to one oxygen atom from one ClO4-anion and five nitrogen atoms from three different ligands,demonstrating a distorted octahedral coordination environment.The best equatorial plane is formed by four nitrogen atoms(N3,N6, N7 and N8),and the axial positions are occupied by N2 and O1A.The Cu-N bond distances range from 0.198 3(4)to 0.235 0(4)nm,and the Cu-O length is0.263 3(11)nm,which are in the normal range of those observed in copper complexes.Interestingly,there are two types of coordination modes of the ligands in the structure(modeⅡandⅢin Scheme 1).One acts as a bidentate ligand to collaborate one Cuion,while the other adopts a tridentate chelating-bridging coordination mode to connect two crystallography equivalent Cuions with a Cu…Cu distance of 0.401 5 nm,slightly longer than that of 2(0.399 3 nm)and that of 3(0.398 8 nm).Moreover,two-coordinated ClO4-anions serve as counter-anions synchronously adopting a monodentate coordination mode.

    Fig.4 View of the coordination environment of Cuion in 4

    2.5 Structure description of 5

    The asymmetric unit of 5 consists of one Cdcation,one L-ligand,one HL ligand and one NO3-anion,which crystallizes in the orthorhombic space group Pbca.Structure determination indicates that complex 5 possesses a dinuclear structure,similar to 2,3 and 4,constructed from the ligands,NO3-anions and the center Cdions,which are seven-coordinated by five N atoms from three distinct chelating ligands and two O atoms from nitrate ions(Cd(1)-O(1)0.241 8(5) nm,Cd(1)-O(3)0.272 8(5)nm,Fig.5a).The Cd-N bond lengths are in the range of 0.225 8(4)~0.247 4(5) nm.The CdO2N5seven-coordination fashion can be treated as a distorted pentagonal bipyramidal geometry, where O(1),O(3),N(1),N(5)and N(8)atoms comprise the equatorial plane,while N(2)and N(4)atoms occupy the axial positions.In complex 5,the coordination modes of the ligands are the same as that of complex 4.In the dinuclear unit,the non-bonding Cd…Cd length is 0.434 8 nm.The two-coordinated nitrate ions serve as counter-anions synchronously.The hydrogen bonds are formed between uncoordinated nitrate atom and nitrate oxygen atom,and the distance of N(6)and O(2)is 0.291 5 nm(Table 3).Finally,intermolecular hydrogen-bonding(N(6)-H(6A)…O(2))interactions assembleneighboringstructureunitstoforma two-dimensional(2D)sheet(Fig.5b).The SQUEEZE/ SQUEEZE 55 program was used to remove the contributions of the lattice water molecules for complex 5,so part of the hydrogen-bonding parameters are listed in Table 3.

    Fig.5 (a)Coordination environment of Cdion in 5;(b)Two dimensional network formed by hydrogen bonding interactions

    2.6 PXRD patterns

    To confirm the mass identity and phase purity of 1~5,X-ray powder diffraction(XRPD)experiments were carried out for complexes 1~5.The XRPD experimental and simulated patterns of the corresponding complexes are shown in Fig.6.The PXRD patterns of as-synthesizedcomplexes1~5areapproximately coincident with the simulated ones from the singlecrystal data,indicating high purity and homogeneity of them.

    2.7 Thermogravimetric analysis

    Fig.6 PXRD patterns of complexes 1~5

    To examine the thermal stability of complexes 1~5,the TGA analyses of complexes 1~5 were carried out(Fig.7).The TGA curves indicate the weight loss of 1 can mainly be divided into two steps.The first step shows a weight loss from 130 to 260℃corresponding to the loss of two lattice NO3-anions and two coordinated water molecules(Obsd.31.93%;Calcd. 31.3%),then the removal of ligands occurs within the range of 260~650℃.The residue,estimated as CoO, has an observed mass of 16.51%compared with the calculated value of 14.60%.The TG analysis of 2 demonstrates a curve gradient phase about the weight loss of 11.10%in the temperature range of 130~240℃corresponding to the loss of four coordinated water molecules(Calcd.11.46%).After that,a weight loss of 23.20%rapidly occurs from 280 to 450℃where the NO3-anions are destroyed(Calcd.20.27%).Then, complex 2 undergoes a weight loss of L-ligands.The percentage of residual weight obtained from the graph (26.88%)is in well agreement with the calculated value of 26.01%indicating that the final product obtained is copper oxide(CuO).The first stage of weight loss of complex 3 from 130 to 260℃corresponds to the release of six lattice water molecules and two coordinated water molecules(Obsd.19.25%;Calcd. 21.21%).The second stage of weight loss from 300 to 650℃is ascribed to the gradual loss of CH3COO-and the decomposition of L-ligands.The residue is calculated to be Cu(Obsd.16.20%;Calcd.18.70%).For 4, the first step of consecutive weight loss of 7.85% taking place in the temperature range of 100~180℃is attributed to the evacuation of two lattice CH3CN molecules(Calcd.8.29%).The dehydration product experiences almost one-step weight loss from 250 to 650℃,which can be attributed to the thermal decomposition of the ligands and ClO4-.The remaining fraction is 18.70%of the initial one,which is well consistent with the expected value for the formation of a stoichiometric quantity of CuO(Calcd.16.05%).TheTG curve of 5 shows a weight loss from 100 to 150℃, and the further decomposition occurs in the range of 230~650℃,which is attributed to the elimination of NO3-anions,L-and HL ligands,whose losses have no definite boundary.The final residual may be CdO (Obsd.26.30%;Calcd.26.55%).

    Fig.7 TGA curves of complexes 1~5

    2.8 Luminescent properties

    The solid-state photoluminescence properties of complexes 1 and 5 as well as the free nitrogencontainingligandHLwereinvestigatedatroom temperature,as shown in Fig.8.The free ligand HL exhibits blue fluorescent emission band at 405 nm upon excitation at 245 nm.Upon the same excitation at 245 nm,the emission spectra of complexes 1 and 5 exhibit similar shapes and maximums at 413 and 405 nm,respectively.Since the d10metal ions are difficult to oxidize or reduce due to their d10configuration,the emission band of 1 is neither metal-to-ligand charge transfer(MLCT)nor ligand-to-metal charge transfer (LMCT)in nature.It can probably be assigned to the intraligand π→π*transitions[27].In spite of Coions probablyquenchingtheluminescenceemissions, fortunately,the complex 1 also shows emission.The slight red-shift of complex 1 compared to that of the ligand HL may be ascribed to the fact that the coordination of Coion increases the conformation rigidity of the ligand and reduces the loss of energy[28]. Their emission bands in the blue area suggest that two complexes may be potential candidates as blue-light emitting materials.Furthermore,the emission decay lifetimes of HL ligand and complexes 1 and 5 were measuredundercorrespondingexcitation/emission maxima at room temperature as shown in Fig.9.Luminescent lifetimes of HL ligand and complexes 1 and 5 are fitted by triexponential curves with τ1=2.41 ns (15.19%),τ2=16.71ns(51.39%),τ3=0.54ns(33.41%)for HL,τ1=2.25 ns(9.52%),τ2=17.58 ns(46.17%),τ3=0.57 ns(44.31%)for 1 and τ1=3.27 ns(64.13%),τ2=15.71 ns(19.17%)τ3=1.06 ns(16.71%)for 5,respectively.

    Fig.8 Emission spectra of 1,5 and HL in the solid state at room temperature

    Fig.9 Luminescence decays of HL and 1,5 under corresponding excitation/emission maxima at room temperature

    3 Conclusions

    In summary,Five new complexes[Co(HL)2(H2O)2] (NO3)2(1),[Cu2(L)2(NO3)2(H2O)4](2),[Cu2(L)2(AcO)2(H2O)2]·6H2O(3),[Cu2(L)2(HL)2(ClO4)2]·2CH3CN(4) and[Cd2(L)2(HL)2(NO3)2]·2H2O(5)(HL=3-(2-pyridyl)-1,2,4-triazole)have been synthesized and structurally characterizedbysinglecrystalX-raydiffraction, infrared spectroscopy(IR),elemental analysis,powder X-ray diffraction(PXRD)and thermogravimetric analysis(TGA).Complex 1 was prepared under the hydrothermal condition,complex 2 was produced via reflux, complexes 3~5 were synthesized by the evaporation of the solvent at room temperature.Complex 1 has a mononuclear structure and complexes 2~5 have dinuclear structures.It is interesting that 1,2 and 5 are further assembled to form two dimensional(2D)supramolecular structures as well as 3 is further assembled to form three dimensional(3D)supramolecular structure by hydrogen-bonding interactions.This result indicates that hydrogen-bonding interactions play an important role in the formation of supramolecular networks. Moreover,the ligand HL and corresponding complexes 1 and 5 display strong blue fluorescent emission at room temperature and shorter fluorescence lifetimes, which shows that they may be potential candidates as blue-light emitting materials.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Zhou Z,He C,Xiu J H,et al.J.Am.Chem.Soc.,2015,137: 15066-15069

    [2]JI Qi(吉沁),CHEN Li-Zhuang(陳立莊).Chinese J.Inorg. Chem.(無機化學學報),2017,33(5):874-880

    [3]WANG Xin-PING(王新萍),LI Ying-Ying(李瑩瑩),LIU Yong(劉勇),et al.Chinese J.Inorg.Chem.(無機化學學報), 2017,33(5):823-829

    [4]Xia B,Wang K,Wang Q L,et al.CrystEngComm,2017,19: 811-816

    [5]Armentano D,Martínez-Lillo J.Cryst.Growth Des.,2016,16: 1812-1816

    [6]Chen Q,Chang Z,Song W C,et al.Angew.Chem.Int.Ed., 2013,52:11550-11553

    [7]Gao Q,Xu J,Cao D P,et al.Angew.Chem.Int.Ed.,2016, 55:15027-15030

    [8]Procopio E Q,Bonometti V,Panigati M,et al.Inorg.Chem., 2014,53:11242-11251

    [9]Choi T L,Lee K H,Joo W J,et al.J.Am.Chem.Soc.,2007, 129:9842-9843

    [10]Tranchemontagne D J,Mendoza-Cortés J L,OKeeffe M,et al. Chem.Soc.Rev.,2009,38:1257-1283

    [11]Jiang H L,Tatsu Y,Lu Z H,et al.J.Am.Chem.Soc.,2010, 132:5586-5587

    [12]Ni J,Wei K J,Liu Y Z,et al.Cryst.Growth Des.,2010,10: 3964-3976

    [13]Ou G C,Feng X L,Lu T B.Cryst.Growth Des.,2011,11: 851-856

    [14]Stephenson A,Argent S P,Riis-Johannessen T,et al.J.Am. Chem.Soc.,2011,133:858-870

    [15]Wang D Z.Polyhedron,2012,35:142-148

    [16]Chu Q,Su Z,Fan J,et al.Cryst.Growth Des.,2011,11:3885 -3894

    [17]Wang D Z,Zhang Q,Zhang J B,et al.Polyhedron,2012,42: 216-226

    [18]Sun C Y,Zheng X J,Gao S,et al.Eur.J.Inorg.Chem.,2005: 4150-4159

    [19]Sahin O,Kantar C,Sasmaz S,et al.J.Struct.Chem.,2014, 1067:83-87

    [20]Tanase T,Toda H,Yamamoto Y.Inorg.Chem.,1997,36: 1571-1577

    [21]Zhao M,Xue S S,Jiang X Q,et al.J.Mol.Catal.A.Chem., 2015,396:346-352

    [22]Das M,Harms K,Ghosh B N,et al.Polyhedron,2015,87: 286-292

    [23]Zhang J J,Zhang C H,Yang N F,et al.Chem.Res.Appl., 2010,22:749-753

    [24]SAINT Software Reference Manual,Madison,WI,1998.

    [25]Sheldrick G M.SHELXS-97,Program for Solution and Refinement of Crystal Structures,University of G?ttingen, Germany,1997.

    [26]Spek A L.Acta Crystallogr.Sect.A,1990.

    [27]LI Jin-Ping(李金萍),FAN Jian-Zhong(范建中),WANG Duo-Zhi(王多志).Chinese J.Inorg.Chem.(無機化學學報), 2016,32(5):753-761

    [28]Wang X W,Chen J Z,Liu J H.Cryst.Growth Des.,2007,7: 1227-1229

    Co,Cuand CdComplexes Based on 3-(2-Pyridyl)-1,2,4-triazole: Syntheses,Structures,and Fluorescent Properties

    DU Ceng-CengFAN Jian-ZhongLI Jin-PingWANG Duo-Zhi*
    (College of Chemistry and Chemical Engineering,Xinjiang University,Urumqi 830046,China)

    Five complexes[Co(HL)2(H2O)2](NO3)2(1),[Cu2(L)2(NO3)2(H2O)4](2),[Cu2(L)2(AcO)2(H2O)2]·6H2O(3), [Cu2(L)2(HL)2(ClO4)2]·2CH3CN(4)and[Cd2(L)2(HL)2(NO3)2]·2H2O(5)utilizing 3-(2-pyridyl)-1,2,4-triazole ligand (HL)as well as different metal salts have been synthesized and structurally characterized by single crystal X-ray diffraction,infrared spectroscopy(IR),elemental analysis,powder X-ray diffraction(PXRD)and thermogravimetric analysis(TGA).The structural analyses reveal that complex 1 has a mononuclear structure and forms a 2D supramolecular structure via hydrogen bonding interactions.Complexes 2~5 have dinuclear structures.Complexes 2 and 5 are arranged into 2D supramolecular structurs by the corresponding hydrogen bonding interactions,and complex 3 is also arranged into a 3D supramolecular structure through hydrogen bonding interactions.The coordination modes of HL ligand in the complexes were studied.Moreover,the fluorescent properties and fluorescence lifetimes of ligand HL,complexes 1 and 5 were investigated in the solid at room temperature. CCDC:1054520,1;1054521,2;1054522,3;1054523,4;1054524,5.

    complex;crystal structure;luminescent property

    O614.81+2;O614.121;O614.24+2

    A

    1001-4861(2017)09-1685-12

    10.11862/CJIC.2017.194

    2017-04-22。收修改稿日期:2017-06-01。

    新疆維吾爾自治區(qū)自然科學基金(No.2015211C266)資助項目。*

    。E-mail:wangdz@xju.edu.cn

    猜你喜歡
    吡啶基分子結構三唑
    把握分子結構理解物質的性質
    中學化學(2024年5期)2024-07-08 09:24:57
    三步法確定有機物的分子結構
    解讀分子結構考點
    中學化學(2016年10期)2017-01-07 08:37:06
    外電場中BiH分子結構的研究
    不同濃度三唑錫懸浮劑防治效果研究
    中國果菜(2016年9期)2016-03-01 01:28:41
    三組分反應高效合成1,2,4-三唑烷類化合物
    1,1′-二(硝氧甲基)-3,3′-二硝基-5,5′-聯(lián)-1,2,4-三唑的合成及性能
    火炸藥學報(2014年5期)2014-03-20 13:17:47
    一個基于β-[Mo8O26]和5-(3-吡啶基)-四唑橋連的二核鎳配合物構筑的無機-有機雜化化合物
    1,3-二吡啶基苯和4,4′-二羧基二苯砜構筑的鈷(Ⅱ)配合物合成、結構和性質
    2,4-二氨基-6-(2'-吡啶基)均三嗪銅(Ⅱ)配合物的結構、抗菌活性及DNA作用
    俄罗斯特黄特色一大片| 国产免费男女视频| 精品一区二区三区视频在线| 日韩亚洲欧美综合| 99热这里只有精品一区| av在线播放精品| 99视频精品全部免费 在线| 亚洲国产精品国产精品| 久久6这里有精品| 久久久精品94久久精品| 午夜影院日韩av| 国产成人a区在线观看| 亚洲人成网站在线播| 国产中年淑女户外野战色| 一级毛片电影观看 | 成年女人看的毛片在线观看| 欧美激情国产日韩精品一区| 51国产日韩欧美| 欧美最黄视频在线播放免费| 久久精品91蜜桃| 国产探花在线观看一区二区| 啦啦啦观看免费观看视频高清| 精品久久久久久成人av| 日日摸夜夜添夜夜爱| 欧美日韩乱码在线| av.在线天堂| 内地一区二区视频在线| 国产精华一区二区三区| 丝袜美腿在线中文| 狠狠狠狠99中文字幕| 俄罗斯特黄特色一大片| 99九九线精品视频在线观看视频| 亚洲国产欧洲综合997久久,| av免费在线看不卡| 国产成人91sexporn| 搡女人真爽免费视频火全软件 | 五月玫瑰六月丁香| 久久久久久久午夜电影| 国产精品av视频在线免费观看| 国产精品女同一区二区软件| 一级av片app| 尾随美女入室| 午夜精品一区二区三区免费看| 久久久久精品国产欧美久久久| 午夜免费激情av| 国产淫片久久久久久久久| 搡老妇女老女人老熟妇| 成人午夜高清在线视频| 日韩强制内射视频| 国产成人福利小说| 免费av毛片视频| 久久这里只有精品中国| 色综合亚洲欧美另类图片| 99热网站在线观看| 国内揄拍国产精品人妻在线| 国产av在哪里看| 又粗又爽又猛毛片免费看| 国产伦在线观看视频一区| 国产aⅴ精品一区二区三区波| 性欧美人与动物交配| 一级毛片我不卡| 欧美成人免费av一区二区三区| 欧美日韩国产亚洲二区| 91av网一区二区| 欧美性猛交黑人性爽| 99在线视频只有这里精品首页| 亚洲在线观看片| 中文亚洲av片在线观看爽| 国产av在哪里看| 亚洲熟妇熟女久久| 国产精品一区www在线观看| 亚洲不卡免费看| 搞女人的毛片| www.色视频.com| 天美传媒精品一区二区| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 精华霜和精华液先用哪个| 欧美日韩乱码在线| 亚洲久久久久久中文字幕| 少妇熟女aⅴ在线视频| 亚洲欧美日韩无卡精品| 色播亚洲综合网| 中出人妻视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利18| 中国国产av一级| 久99久视频精品免费| 99热精品在线国产| 永久网站在线| 狂野欧美激情性xxxx在线观看| 国产成人aa在线观看| av专区在线播放| 色哟哟哟哟哟哟| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 国产精品不卡视频一区二区| 日韩中字成人| 禁无遮挡网站| 精品久久久久久久人妻蜜臀av| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久av| 国产人妻一区二区三区在| av专区在线播放| 亚洲av中文av极速乱| or卡值多少钱| 中出人妻视频一区二区| 国产老妇女一区| 久久精品国产清高在天天线| 给我免费播放毛片高清在线观看| 国产精品电影一区二区三区| 免费看a级黄色片| 久久综合国产亚洲精品| 蜜桃久久精品国产亚洲av| 老熟妇乱子伦视频在线观看| 亚洲国产欧洲综合997久久,| 色视频www国产| 精品少妇黑人巨大在线播放 | av在线蜜桃| 少妇的逼好多水| 乱系列少妇在线播放| a级一级毛片免费在线观看| 国产亚洲91精品色在线| 女的被弄到高潮叫床怎么办| 国产人妻一区二区三区在| 最新在线观看一区二区三区| 啦啦啦啦在线视频资源| 亚洲天堂国产精品一区在线| 午夜精品一区二区三区免费看| 亚洲人成网站在线观看播放| 日韩精品中文字幕看吧| 三级国产精品欧美在线观看| 嫩草影视91久久| 久久精品国产自在天天线| 国产成人福利小说| 99riav亚洲国产免费| 一进一出抽搐动态| 国产伦精品一区二区三区四那| av中文乱码字幕在线| 免费大片18禁| 极品教师在线视频| 伦理电影大哥的女人| 亚洲精品日韩av片在线观看| 99国产极品粉嫩在线观看| 一本精品99久久精品77| 久久久国产成人免费| 69av精品久久久久久| 搡老妇女老女人老熟妇| 少妇裸体淫交视频免费看高清| 丰满乱子伦码专区| 精品久久久久久久人妻蜜臀av| 中文字幕免费在线视频6| 特大巨黑吊av在线直播| 99在线视频只有这里精品首页| 麻豆国产av国片精品| 毛片一级片免费看久久久久| 高清毛片免费观看视频网站| 国产麻豆成人av免费视频| 国产v大片淫在线免费观看| 在线播放国产精品三级| 日本在线视频免费播放| 高清午夜精品一区二区三区 | 最后的刺客免费高清国语| 久久精品夜色国产| 国产精品一二三区在线看| a级毛色黄片| 亚洲第一电影网av| 亚洲精品粉嫩美女一区| 国产成人aa在线观看| av卡一久久| 亚洲第一电影网av| 亚洲电影在线观看av| 亚洲自偷自拍三级| 欧美成人一区二区免费高清观看| 蜜桃久久精品国产亚洲av| 亚洲专区国产一区二区| 欧美一区二区精品小视频在线| 亚洲乱码一区二区免费版| 久久久久久久久大av| 欧美zozozo另类| 免费看av在线观看网站| 99热精品在线国产| 欧美区成人在线视频| 久久99热这里只有精品18| 一区二区三区四区激情视频 | 日本一二三区视频观看| 午夜精品国产一区二区电影 | 久久久精品94久久精品| 免费观看的影片在线观看| 精品久久久久久久久久久久久| 人人妻人人澡人人爽人人夜夜 | 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲91精品色在线| 亚洲精品影视一区二区三区av| 美女高潮的动态| 免费看光身美女| 天天躁夜夜躁狠狠久久av| 美女黄网站色视频| 国产精品爽爽va在线观看网站| 欧美在线一区亚洲| 久久精品国产亚洲网站| 日韩大尺度精品在线看网址| 免费av不卡在线播放| 欧美bdsm另类| а√天堂www在线а√下载| 亚洲最大成人手机在线| 老司机午夜福利在线观看视频| 亚洲中文日韩欧美视频| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产av玫瑰| 日韩欧美免费精品| 亚洲最大成人手机在线| 九九爱精品视频在线观看| 国产免费男女视频| 男人舔奶头视频| av中文乱码字幕在线| 97超视频在线观看视频| 国产精品一及| 日本免费一区二区三区高清不卡| 99热精品在线国产| 高清午夜精品一区二区三区 | 深夜a级毛片| 天堂√8在线中文| 久99久视频精品免费| 亚洲精华国产精华液的使用体验 | 寂寞人妻少妇视频99o| 高清日韩中文字幕在线| 国国产精品蜜臀av免费| 国产欧美日韩一区二区精品| 特大巨黑吊av在线直播| 成人鲁丝片一二三区免费| 自拍偷自拍亚洲精品老妇| 国产午夜精品论理片| 国产伦一二天堂av在线观看| 插逼视频在线观看| 国产高清激情床上av| 成年女人永久免费观看视频| 99久国产av精品国产电影| 成人综合一区亚洲| 麻豆一二三区av精品| 露出奶头的视频| 日本一二三区视频观看| 国产欧美日韩精品亚洲av| 人妻制服诱惑在线中文字幕| 免费观看在线日韩| 国产蜜桃级精品一区二区三区| 长腿黑丝高跟| 国模一区二区三区四区视频| 久久九九热精品免费| 成人性生交大片免费视频hd| 久久99热6这里只有精品| 国内久久婷婷六月综合欲色啪| 免费人成在线观看视频色| 欧美最黄视频在线播放免费| 欧美日韩综合久久久久久| 国产伦精品一区二区三区视频9| 麻豆国产97在线/欧美| 亚洲精品久久国产高清桃花| 最近2019中文字幕mv第一页| 直男gayav资源| 啦啦啦韩国在线观看视频| av天堂中文字幕网| 欧美三级亚洲精品| 男人舔女人下体高潮全视频| 色吧在线观看| 美女xxoo啪啪120秒动态图| 亚洲av免费在线观看| 深夜精品福利| 国产蜜桃级精品一区二区三区| 深爱激情五月婷婷| 麻豆成人午夜福利视频| 精品久久久久久成人av| 成人永久免费在线观看视频| 亚洲中文字幕日韩| 国产一区二区三区av在线 | 欧美一区二区精品小视频在线| 精品99又大又爽又粗少妇毛片| 国产麻豆成人av免费视频| 久久草成人影院| 国产亚洲精品av在线| 免费观看在线日韩| 美女黄网站色视频| 国产av不卡久久| 日韩在线高清观看一区二区三区| 国产精品99久久久久久久久| 两个人的视频大全免费| 午夜影院日韩av| 亚洲一级一片aⅴ在线观看| 在线观看美女被高潮喷水网站| 欧美xxxx黑人xx丫x性爽| 热99re8久久精品国产| videossex国产| 欧美一区二区精品小视频在线| 欧美日本亚洲视频在线播放| 99久久中文字幕三级久久日本| 六月丁香七月| 一级黄片播放器| 丝袜喷水一区| 直男gayav资源| 免费无遮挡裸体视频| 亚洲真实伦在线观看| 少妇猛男粗大的猛烈进出视频 | 在线观看午夜福利视频| 内射极品少妇av片p| 搡女人真爽免费视频火全软件 | 一级av片app| 麻豆成人午夜福利视频| 亚洲成人中文字幕在线播放| 日韩欧美三级三区| 亚洲欧美中文字幕日韩二区| 精品久久久久久久久久免费视频| 国产午夜福利久久久久久| 久久久久久久久久黄片| 国产精品嫩草影院av在线观看| 日韩大尺度精品在线看网址| 99久久久亚洲精品蜜臀av| 美女免费视频网站| 欧美性猛交黑人性爽| 日韩亚洲欧美综合| 亚洲在线观看片| 婷婷亚洲欧美| 国产不卡一卡二| 校园人妻丝袜中文字幕| 国产精品久久电影中文字幕| 老熟妇仑乱视频hdxx| 国产一区二区三区在线臀色熟女| 成熟少妇高潮喷水视频| 国产成人a区在线观看| 女人十人毛片免费观看3o分钟| 日本爱情动作片www.在线观看 | 亚洲精品乱码久久久v下载方式| 人妻制服诱惑在线中文字幕| avwww免费| 99riav亚洲国产免费| 又爽又黄a免费视频| 一个人看的www免费观看视频| 在线观看一区二区三区| 国国产精品蜜臀av免费| 日日干狠狠操夜夜爽| 美女高潮的动态| 高清毛片免费看| 青春草视频在线免费观看| 网址你懂的国产日韩在线| 日本五十路高清| 日韩强制内射视频| 乱系列少妇在线播放| 久久久久久久久久久丰满| 国产黄色小视频在线观看| 亚洲av成人av| 亚洲高清免费不卡视频| 国产黄色视频一区二区在线观看 | 亚洲欧美清纯卡通| 特大巨黑吊av在线直播| 亚洲最大成人中文| 亚洲乱码一区二区免费版| 免费看美女性在线毛片视频| 日本黄色片子视频| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 免费观看精品视频网站| 五月玫瑰六月丁香| 日本在线视频免费播放| 日产精品乱码卡一卡2卡三| 狂野欧美白嫩少妇大欣赏| h日本视频在线播放| 综合色av麻豆| 国产 一区 欧美 日韩| 国产精品av视频在线免费观看| 精品无人区乱码1区二区| 国产老妇女一区| 成人漫画全彩无遮挡| 久久久久免费精品人妻一区二区| 天堂动漫精品| 精品99又大又爽又粗少妇毛片| 婷婷色综合大香蕉| 简卡轻食公司| 伊人久久精品亚洲午夜| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区四那| 99久久精品热视频| av黄色大香蕉| 国产不卡一卡二| 欧美色欧美亚洲另类二区| av天堂在线播放| 男女视频在线观看网站免费| 久久久久久久久中文| 国产精品人妻久久久影院| 精品人妻一区二区三区麻豆 | 噜噜噜噜噜久久久久久91| 欧美国产日韩亚洲一区| 亚洲欧美日韩无卡精品| 91精品国产九色| 91久久精品电影网| 最后的刺客免费高清国语| 熟女电影av网| 日日摸夜夜添夜夜爱| 久久久久免费精品人妻一区二区| 综合色丁香网| 欧美潮喷喷水| 高清日韩中文字幕在线| 午夜福利成人在线免费观看| 日韩精品有码人妻一区| 色视频www国产| 欧美一区二区精品小视频在线| 乱系列少妇在线播放| 日本黄色视频三级网站网址| 国产成人a∨麻豆精品| 联通29元200g的流量卡| 国产一区二区激情短视频| 国产高清三级在线| 久久婷婷人人爽人人干人人爱| 桃色一区二区三区在线观看| 久久精品国产亚洲av涩爱 | 91在线观看av| 亚洲人成网站在线播放欧美日韩| 精品人妻视频免费看| 成年女人永久免费观看视频| 最近2019中文字幕mv第一页| 久久久久久久久久成人| 在线观看一区二区三区| 久久久久九九精品影院| a级一级毛片免费在线观看| 亚洲精品日韩av片在线观看| 嫩草影院新地址| 如何舔出高潮| 日韩欧美 国产精品| 国产成人影院久久av| 小蜜桃在线观看免费完整版高清| АⅤ资源中文在线天堂| 小蜜桃在线观看免费完整版高清| 搡老岳熟女国产| 禁无遮挡网站| 亚洲成av人片在线播放无| 久久热精品热| 国产欧美日韩精品亚洲av| 国产片特级美女逼逼视频| 久久久久久久久中文| 亚洲精品一区av在线观看| 亚洲欧美日韩卡通动漫| a级一级毛片免费在线观看| 国产av在哪里看| 搡老妇女老女人老熟妇| 久久久久精品国产欧美久久久| 欧美+亚洲+日韩+国产| 欧美日韩乱码在线| 蜜桃久久精品国产亚洲av| 亚洲av二区三区四区| 综合色av麻豆| 尤物成人国产欧美一区二区三区| 国产精品1区2区在线观看.| 深夜精品福利| 亚洲人与动物交配视频| 黄色配什么色好看| 国产精品,欧美在线| 国内精品一区二区在线观看| 国产蜜桃级精品一区二区三区| 国产一级毛片七仙女欲春2| 国产精品福利在线免费观看| 亚洲av熟女| 黄色欧美视频在线观看| 日韩av不卡免费在线播放| av在线天堂中文字幕| 99热全是精品| 亚洲色图av天堂| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一区二区免费欧美| 不卡视频在线观看欧美| 寂寞人妻少妇视频99o| av国产免费在线观看| 国内精品宾馆在线| 又黄又爽又免费观看的视频| 精品一区二区免费观看| 51国产日韩欧美| 中文字幕人妻熟人妻熟丝袜美| 久久精品人妻少妇| 久久韩国三级中文字幕| 国产大屁股一区二区在线视频| 欧美又色又爽又黄视频| 成人无遮挡网站| 国产高清三级在线| av在线观看视频网站免费| 嫩草影院精品99| 国产aⅴ精品一区二区三区波| 国产午夜福利久久久久久| a级毛片a级免费在线| 久久久a久久爽久久v久久| 国产精品一及| 观看免费一级毛片| 日韩中字成人| 精品一区二区三区av网在线观看| 国产av不卡久久| 大又大粗又爽又黄少妇毛片口| 乱人视频在线观看| 亚洲欧美日韩高清在线视频| 午夜福利18| 亚洲国产色片| 大香蕉久久网| 天堂√8在线中文| 成人二区视频| 婷婷亚洲欧美| 成人特级av手机在线观看| 日本在线视频免费播放| 99国产极品粉嫩在线观看| 高清毛片免费观看视频网站| 伦精品一区二区三区| av在线天堂中文字幕| 国产精品久久电影中文字幕| 亚洲国产欧洲综合997久久,| 欧美最黄视频在线播放免费| 亚洲精品国产成人久久av| 亚洲国产精品合色在线| 欧美zozozo另类| 一个人看的www免费观看视频| 成人av在线播放网站| 国产三级中文精品| 热99re8久久精品国产| 久久亚洲精品不卡| 精品久久久久久久久久久久久| 国产精品国产三级国产av玫瑰| 十八禁国产超污无遮挡网站| 黄片wwwwww| 九九爱精品视频在线观看| 色哟哟·www| 国产在线男女| 激情 狠狠 欧美| 在线a可以看的网站| 中国美女看黄片| 成人特级黄色片久久久久久久| 99热这里只有是精品在线观看| 亚洲精品日韩av片在线观看| 中文字幕免费在线视频6| 国产成人福利小说| 日日摸夜夜添夜夜添av毛片| 69人妻影院| 一级毛片aaaaaa免费看小| 亚洲无线在线观看| 国产探花极品一区二区| 免费搜索国产男女视频| 日韩一本色道免费dvd| 桃色一区二区三区在线观看| 日韩制服骚丝袜av| 亚洲欧美日韩高清在线视频| 麻豆国产97在线/欧美| 三级经典国产精品| 非洲黑人性xxxx精品又粗又长| 最好的美女福利视频网| 国产精品一区二区免费欧美| 男女之事视频高清在线观看| 国产白丝娇喘喷水9色精品| 51国产日韩欧美| 日韩欧美精品v在线| 真实男女啪啪啪动态图| 亚洲精品粉嫩美女一区| 亚洲经典国产精华液单| 性色avwww在线观看| 久久人人精品亚洲av| 秋霞在线观看毛片| 一区福利在线观看| 久久久欧美国产精品| 我要搜黄色片| 两个人的视频大全免费| 国产精品一二三区在线看| 亚洲av美国av| 蜜桃久久精品国产亚洲av| a级毛片a级免费在线| 亚洲中文日韩欧美视频| 两个人视频免费观看高清| 日本免费一区二区三区高清不卡| 干丝袜人妻中文字幕| 久久人人爽人人爽人人片va| 搡老熟女国产l中国老女人| 99久国产av精品国产电影| 日本-黄色视频高清免费观看| 成年女人毛片免费观看观看9| 亚洲成人中文字幕在线播放| 看片在线看免费视频| 亚洲熟妇熟女久久| 欧美最新免费一区二区三区| 在现免费观看毛片| 少妇丰满av| 国产大屁股一区二区在线视频| 天美传媒精品一区二区| 日韩欧美在线乱码| 99久国产av精品国产电影| 国产精品一区二区性色av| 内地一区二区视频在线| 亚洲国产精品sss在线观看| 国产欧美日韩一区二区精品| 成人亚洲欧美一区二区av| 免费搜索国产男女视频| 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女| 久久人妻av系列| 国产精品一及| 久久久a久久爽久久v久久| www.色视频.com| 久久精品国产亚洲av天美| 亚洲美女视频黄频| 亚洲欧美精品综合久久99| 国产免费一级a男人的天堂| 国产欧美日韩一区二区精品| 国产亚洲精品久久久久久毛片| 六月丁香七月| 最好的美女福利视频网| 色尼玛亚洲综合影院| 欧美精品国产亚洲| 黄色日韩在线| 精品人妻熟女av久视频| 国产精品国产三级国产av玫瑰| 日韩欧美在线乱码| 99国产精品一区二区蜜桃av| 国产av在哪里看| 亚洲第一电影网av| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址|