• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微/納復(fù)合型可見(jiàn)光光電材料Ag-石墨烯-TiO2的制備及應(yīng)用

    2017-09-12 08:59:35王翠娥王寧劉新華
    關(guān)鍵詞:王寧光生空穴

    王翠娥王寧劉新華

    微/納復(fù)合型可見(jiàn)光光電材料Ag-石墨烯-TiO2的制備及應(yīng)用

    王翠娥*王寧劉新華

    (安徽工程大學(xué)紡織服裝學(xué)院,蕪湖241000)

    基于靜電紡絲技術(shù)構(gòu)筑了穩(wěn)定均一的Ag-石墨烯-TiO2納米復(fù)合纖維;并利用SEM、TEM、XRD、EDS和Raman等表征了材料的微觀結(jié)構(gòu)與組分;隨后,我們研究了該復(fù)合纖維在可見(jiàn)光下的光電轉(zhuǎn)換性能。結(jié)果表明:摻雜既可降低TiO2材料的禁帶寬度,也能減緩光生電子與空穴的復(fù)合淬滅;Ag納米晶的局域等離激元可增強(qiáng)纖維對(duì)可見(jiàn)光的吸收,石墨烯能促進(jìn)光生電子與空穴的有效分離;可見(jiàn)光條件下,相比較于單一的TiO2納米纖維,復(fù)合纖維的光電流密度提高4倍,達(dá)到0.81 μA·cm-2。

    靜電紡絲;TiO2;Ag;石墨烯;光電轉(zhuǎn)換

    0 Introduction

    TiO2has been attracted much attention for their potential application in the field of dye-sensitized solar cells[1],photocatalysts[2],electrocatalysts[3],selfcleaning materials[4],antibacterial coatings[5],and gas sensors[6].Compared with conventional TiO2particles, TiO2fibers have greater surface-to-volume ratio[7],and their porous structure allow for higher surface active sitesforeffectivecatalysis.However,thephoto activity efficiency of TiO2fiber using natural sunlight is currently very limited due to wide band gap energy (3.2 eV for anatase)[8],as well as the low quantum yield caused by fast recombination of photo-generated electron-hole pairs.Therefore,to inhibit the recombination of photo-generated electron-hole pairs and tomake TiO2responsive to visible light region are two critical ways to improve the photocurrent density of TiO2under solar irradiation.

    Recently,much effort was made by doping with metal or nonmetal elements,such as Au[9],Ag[10],Fe[11], N[12],S[13],I[14],as well as sensitization with organic dyes[15],conducting polymer[16]and semiconductor[17]. Among these attempts,noble metallic nanoparticles havebeenintensivelystudiedbecausetheycan efficiently promote the photo response primarily by extending the optical absorption to the visible light region and increasing the number of photoexcited electrons due to the enhanced near-field amplitude.In these noble metallic nanoparticles,silver nanoparticle is a popular choice,which can result in strong and broad absorption band in the visible light region[18]. Meanwhile,another approach to optimize the photocurrent of TiO2is to retard surface and bulk recombination of photogenerated electron-hole pairs in TiO2during a photocatalytic process.A narrow band gap semiconductor,electron donors/acceptors and hole scavengers have been proven to be available way for inhibiting electron-hole pair recombination[19].Graphene is a good candidate for scavenging of photogenerated electrons mainly because of its superior charge transport properties,largespecificsurfaceareaandtwodimensional planar conjugation structure[20].

    Motivated by the above concerns,in this work, we describe an efficient way to synthesis of Aggraphene-TiO2fiber with high photocurrent density by electrospinning method.The adopted electrospinning approach ensures not only the successful incorporation of AgNPs and graphenes into TiO2fibers substrate but also the high dispersion of AgNPs and graphenes into TiO2fibers without aggregation.By simply tuning the precursor concentration or reaction temperature,we can optimize the AgNP or graphene density in fibers. Moreover,the fibrous Ag-graphene-TiO2allows light to pass through to illuminate.

    As illustrated in Scheme 1,under simulated solar light irradiation,the electrons in the valence band (VB)ofTiO2areexcitedtothecorresponding conduction band(CB).Then the electrons in the CB of TiO2migrate into the metal Ag(electron transfer: TiO2to Ag)through the Schottky barrier because the CB of the TiO2is higher than that of the loaded metal Ag.This process of electron transfer is faster than the electron-hole recombination between the VB and CB of the TiO2.Thus,the electrons in the CB of TiO2can be stored in the Ag component.Furthermore,tightly bound graphene to TiO2accelerates electron transfer from the excited MB to TiO2via graphene nanosheets, retard the combination of photogenerated electron-hole pairsandthusacceleratingvisible-light-driven photocurrent.

    Scheme 1Typical photoresponses of Ag-graphene-TiO2fiber under visible light irradiation

    1 Experimental

    1.1 Synthesis of Ag-graphene-TiO2fibers

    In a typical procedure,0.6 mL tetrabutyltitanate (TBT)and 4 g polyvinylpyrrolidone(PVP)were dissolved into a mixture solution of 6 mL ethanol and 0.6 mL acetic acid.After the mixture was stirring for 1 h,30 mg silver nitrate and different amount of graphene powder were mixed together.The solutions were then homogeneously ultrasonicated for 60 min, and the reducing agent(containing 0.2 mol·L-1NaBH4)was added dropwise to the above solution still withcontinuousstirring.The electrospinningwas carried out at 16 kV through a DW-P503-1AC high-voltage supplier,and the feed rate was set at 0.4 mL·h-1by using a JZB-1800D microinfusion pump.The nanofibers were collected on electrically grounded aluminum foil, and the distance between the aluminum foil and the tip of needle was 15 cm.Finally,theas-spun nanofibers were then calcined at 500℃for 2 h in air beforecoolingtoroomtemperature.PureTiO2nanofibers were similarly prepared but without the addition of graphene and AgNO3solution and the reducing agent,and the Ag-TiO2fibers were prepared without graphene.

    1.2 Preparation of photoelectrodes

    Intheexperiment,glasscarbonelectrodes (GCEs)with 3 mm diameter were carefully polished to obtain a mirror-like surface.Then,the Ag-graphene-TiO2fibers dispersion was dripped onto the GCE.

    1.3 Photoelectrochemical measurements

    The photoelectrochemical performances of the Ag-TiO2,pristine TiO2,and Ag-graphene-TiO2fibers under visible light irradiation were recorded on an electrochemical workstation(Model CHI660A,CH Instruments Co.).The photoelectron chemical cell was a three-electrode system:an Ag-TiO2,pristine TiO2,or Ag-graphene-TiO2photoelectrodelocatedinthe middle of the cell as a working electrode,Ag/AgCl electrode as reference,and a platinum wire electrode as a counter electrode.The photoelectrode was exposed to visible light to measure closed-circuit photocurrent. The light source was a 160-W high-pressure mercury lamp with a UV cutoff filter(>420 nm).All measurements were carried out at room temperature.The electrolyte was 0.5 mol·L-1Na2SO4aqueous solution. The working electrode was activated in the electrolyte for 2 h before measurement.The samples were irradiated with lamp located 10 cm away and typically irradiated at intervals of 25 s.Experiments were obtained at differentfixedappliedpotentials,from-0.3Vto+0.5V.

    2 Result and discussion

    2.1 Structure and morphology of Ag-graphene-TiO2nanocomposite

    The formation of Ag-graphene-TiO2nanocomposite was confirmed by scanning electron microscopy (SEM)analysis,and its representative images are presented in Fig.1.Fig.1(a)and 1(c)show a representative SEM image of low and high magnifications of AgNO3-graphene-Tiisopropoxide/PVPcomposite fibers.The as-made AgNO3-graphene-Tiisopropoxide /PVP composite fibers have a smooth surface;the diameters of these fibers are 300~500 nm.Fig.1(b) and 1(d)show SEM image of low and high magnifications of Ag-gaphene-TiO2composite fibers,the calcined process would cause some changes of the smooth cylindrical shape of the bers both in general shape and superficial roughness,the diameters of the TiO2nanofibers are 100~250 nm,and the length of the fibers reached a few millimeters length.

    Fig.1 (a)and(c)SEM images of AgNO3-graphene-Tiisopropoxide/PVP composite nanofiber surface; (b)and(d)SEM images Ag-gaphene-TiO2nanofiber suface calcined at 500℃

    Fig.2 shows typical TEM images of the products. After calcined,nanofiber with diameters of 200 nm is observed.It indicates that the formation of Aggaphene-TiO2nanofiber.

    Fig.2 TEM image of Ag-gaphene-TiO2nanofiber

    TG-DSC data for precursors AgNO3-graphene-Tiisopropoxide/PVP composite fibers,in air atmosphere,reveals that the substances show different thermal behaviors.This fact can be explained by the presence of graphene in the nanofiber.Another aspect observed was that the stoichiometry for decomposition,at 175℃,where the mass losses 36.4%in the first decline stages,corresponding to a transformation of the tetrabutyltitanate molecules to Ti(OH)4,at 330℃, mass losses 28.3%in the second decline stages,due to decomposition and carbonization of polyvinylpyrrolidone,finally,an aspect which was observed by the tangent TG analysis,between 450 and 500℃,was that the carbon oxygenolysis,with 20.1%of mass loss, thismasslosswouldcorrespondtocarbon oxygenolysis,the carbon is mainly derived from the carbonization of polyvinylpyrrolidone,and graphene on surface of the fiber.

    Fig.3 TG-DSC curve of precursors AgNO3-graphene-Tiisopropoxide/PVP composite fibers

    The obtained samples were further characterized by EDS mapping characterization.The EDS mapping images(Fig.4)indicate that the sample contains Ti,O, Ag and C elements,suggesting the co-existence of titanium dioxide,Ag nanoparticles and gaphene.It is clearly shown that Ag(Fig.4c)and C elements(Fig. 4d)are well dispersed in the samples,suggesting that the Ag nanoparticles and gaphene were uniformly distributed throughout the fiber.Hence one can see that at 500℃,the graphene embedded in the TiO2fiber was not oxidized and decomposed,and was successfully retained in the fiber carrier.

    Fig.4 TEM(EDS)mapping image of Ti element(a),O element(b),Ag element(c)and C element(d)

    Fig.5 (a)shows the XRD patterns of the TiO2and Ag/TiO2/graphene fibers sample.The structure of TiO2was compared with the Joint Committee for Powder Diffraction Standards(JCPDS)data(File Card No.21-1272)and was found to be in anatase and rutile form, and metallic silver phases(JCPDS File Card No.89-3722)were detected in their patterns.However,the reflection peak of graphene is absent because of its low content.EDX measurement results further confirmed the existence of graphene in the composite.As shown in Fig.5(b),peaks of carbon,appearing clearly at about 0.2 keV is attributable to graphene.Besides,three peaks are clearly located around 0.4,4.5 and 5 keV,these are related to the characteristics of titanium, while the strong spectrum at about 3 and 0.5 keV originates from the silver and oxygen.Energy dispersive X-ray spectroscopy(EDX)mapping analysis shows that the composite fiber is composed of Ti,O,C,and Ag with uniform distribution(Fig.4).The mass percent of component Ag and C estimated from EDX spectrum were about 7%and 10%,respectively(Fig.5b).

    Fig.5 XRD pattern of the TiO2fibers and Ag-graphene-TiO2fibers(a)and EDX spectrum (b)of the as-prepared Ag-graphene-TiO2fibers

    Fig.6 Raman spectrum(a)and Nitrogen adsorption-desorption isotherm(b)of the as-prepared Ag-gaphene-TiO2nanofibers,respectively

    Fig.6 (a)shows the Raman spectra of Ag-grapene-TiO2nanofibers.Two prominent peaks corresponding to the G and D bands of graphene appeared at 1 347 and 1 598 cm-1,respectively.In particular,the bands at 398,456,and 673 cm-1are presented implying the existence of the anatase TiO2,Ag NPs are not detected in Raman spectra,due to low content.The nitrogen adsorption-desorption isotherms of the asobtained Ag-gaphene-TiO2shown in Fig.6(b).The Brunauer-Emmett-Teller(BET)specific surface area of the nanofibers was 48 m2·g-1,very similar to TiO2nanofibers and P-25 TiO2nanoparticles[21].

    2.2 Photocurrent conversion properties of the electrodes decorated with Ag-gaphene-TiO2nanofibers

    Fig.7 (a)Photocurrent transient responses at a constant potential of 0.5 V for different samples, (b)Recycle stability of Ag-graphene-TiO2under visible-light irradiation,(c)Photocurrent transient responses for different loaded graphene content in Ag-graphene-TiO2nanofiber

    Fig.7 a depicts the typical photocurrent versus time(I-t)response curves for TiO2,Ag-TiO2and Aggraphene-TiO2samples under visible-light irradiation. All the samples presented a rise and fall mode,changes in the photocurrent closely matched illumination over time.As shown in Fig.5a,the photocurrent density of the pristine TiO2nanofiber was 0.18 μA·cm-2,whileAg-TiO2was 0.42 μA·cm-2,which is 2.3 times higher than those of the TiO2.This result may be because of localized surface plasmon resonance of Ag nanoparticles on the TiO2nanofiber surface,which enhance its opticalresponsetovisiblelightregion,thereby improving the photocurrent property.As expected, after introducing graphene,the photocurrent density increased remarkably,4.5 and 1.93 times as much as that of TiO2and Ag-TiO2,respectively.Ag-graphene-TiO2exhibited much higher photocurrent property, ascribe to the localized surface plasmon resonance (LSPR)of Ag NPs,high electron transfer and broad absorption in the visible light of graphene induce an activity promotion under visible light.The proportion of graphene is critical for the photocurrent activity,as shown in Fig.7(b),with increased graphene content from 4%to 8%(w/w),the photocurrent density of Aggraphene-TiO2increased from 0.45 μA·cm-2to 0.81 μA·cm-2,which is higher than those reported for the ZnO nanoparticle-decorated reduced graphene oxide composites[22],CuS/reduced graphene oxide nanocomposites[23],graphene oxide[24].However,further increased graphene content from 8%to 10%(w/w),the photocurrent density of Ag-graphene-TiO2decreased to 0.7 μA·cm-2,This may be due to that high graphene load prevented TiO2from absorbing visible light, which in a rapid decrease of irradiation.Therefore, the optimum doping content for graphene was 8%(w/ w),which may be due to the balance between the increase in highest electron transfer and the decrease in light adsorption.Another important feature of Aggraphene-TiO2is the reusability;photocurrent density was measured and repeated ten on-off cycles to examine the reusability.As shown in Fig.7(c),It was found the photocurrent density still maintained 95% after 10 on-off cycles,indicating high stability of Aggraphene-TiO2.

    3 Conclusions

    The present study demonstrates a novel method to prepare Ag-graphene-TiO2nanofibers with good dispersity.As a result,novel nanocomposites shows enhancedvisible-lightphotocurrentactivityas compared with those has been previously reported. The high photocurrent activity of the Ag-graphene-TiO2canbeattributedtothesynergisticeffect originating from the enhanced optical response to visible light with Ag and fast electron transfer with graphene,resulting in increased photocurrent activity. The recycling test revealed that the Ag-graphene-TiO2prepared in this study was stable and effective for increasing the attainable photocurrent.Therefore,the approach described in this paper help improve the characteristics of photoelectric conversion systems. We estimate that this work provided a simple and effective strategy to fabricate composite photocurrent materials for applications.

    [1]Kim H S,Lee J W,Yantara N,et al.Nano Lett.,2013,13(6): 2412-2417

    [2](a)Wang D,Zhao L,Guo L H,et al.Anal.Chem.,2014,86(21): 10535-10539 (b)Izadyar S,Fatemi S.Ind.Eng.Chem.Res.,2013,52(32): 10961-10968

    [3](a)Yang Y,Wang H,Li J,et al.Environ.Sci.Technol.,2012, 46(12):6815-6821 (b)Chang X,Thind S S,Chen A.ACS Catal.,2014,4(8):2616-2622

    [4]Khajavi R,Berendjchi A.ACS Appl.Mater.Interfaces,2014, 6(21):18795-18799

    [5]Virkutyte J,Varma R S.RSC Adv.,2012,2(4):1533-1539

    [6]Barreca D,Comini E,Ferrucci A P,et al.Chem.Mater.,2007, 19(23):5642-5649

    [7]Kim I D,Rothschild A,Lee B H,et al.Nano Lett.,2006,6 (9):2009-2013

    [8]Park J H,Kim S,Bard A J.Nano Lett.,2006,6(1):24-28

    [9]Li J,Cushing S K,Zheng P,et al.J.Am.Chem.Soc.,2014, 136(23):8438-8449

    [10]Lu Q,Lu Z,Lu Y,et al.Nano Lett.,2013,13(11):5698-5702

    [11]Su R,Bechstein R,Kibsgaard J,et al.J.Mater.Chem.,2012, 22(45):23755-23758

    [12]Lo H H,Gopal N O,Sheu S C,et al.J.Phys.Chem.C,2014, 118(5):2877-2884

    [13]Mamba G,Mamo M A,Mbianda X Y,et al.Ind.Eng.Chem. Res.,2014,53(37):14329-14338

    [14]Etgar L,Gao P,Xue Z,et al.J.Am.Chem.Soc.,2012,134 (42):17396-17399

    [15]Roiati V,Giannuzzi R,Lerario G,et al.J.Phys.Chem.C, 2015,119(13):6956-6965

    [16]Ngaboyamahina E,Cachet H,Pailleret A,et al.J.Electroanal. Chem.,2015,737:37-45

    [17]McEntee M,Stevanovic A,Tang W,et al.J.Am.Chem. Soc.,2015,137(5):1972-1982

    [18](a)Lian Z,Wang W,Xiao S,et al.Sci.Rep.,2015,5:10461 (b)Choi Y,Kim H,et al.ACS Catal.,2016,6(2):821-828

    [19]Linsebigler A L,Lu G,Yates J T.Chem.Rev.,1995,95(3): 735-758

    [20]Wang X,Fan L,Gong D,et al.Adv.Funct.Mater.,2016,26 (7):1143-1143

    [21]Mukherjee K,Teng T H,Jose R,et al.Appl.Phys.Lett., 2009,95(1):012101

    [22]Tian J,Liu S,Li H,et al.RSC Adv.,2012,2:1318-1321

    [23]Zhang Y,Tian J,Li H,et al.Langmuir,2012,28:12893-12900

    [24]ZHANG Xiao-Yan(張曉艷),SUN Min-Xuan(孫明軒),SUN Yu-Jun(孫鈺珺),et al.Acta Phys.-Chim.Sin.(物理化學(xué)學(xué)報(bào)),2011,27(12):2831-2835

    Electrospun Fibrous Ag-Graphene-TiO2with Enhanced Photocurrent Response under Visible-Light Illumination

    WANG Cui-E*WANG NingLIU Xin-Hua
    (College of Textiloues and Clothing,Anhui Polytechnic University,Wuhu,Anhui 241000,China)

    A highly-uniform nanofiber of Ag-graphene-TiO2was successfully fabricated by the electrospinning technique,whichexhibitedsignificantlyincreasedvisiblelight absorption(λ>420 nm)and improved photocurrent response.The Ag nanoparticles(AgNPs)and graphenes located in TiO2fibers induced an increase in the visible-light photocurrent response.The photocurrent density of Ag-graphene-TiO2fibers is 4-fold higher than the pristine TiO2fibers under visible light.The increased photocurrent response in visible light region is resulted from the strong interaction between TiO2fibers and graphene sheets,as well as the localized surface plasmon resonance of AgNPs.

    electrospinning;TiO2;Ag;graphene;photocurrent

    O611.3

    A

    1001-4861(2017)09-1618-07

    10.11862/CJIC.2017.186

    2017-03-01。收修改稿日期:2017-07-03。

    國(guó)家自然科學(xué)基金(No.21302001)、安徽省高校優(yōu)秀青年人才支持計(jì)劃重點(diǎn)項(xiàng)目(No.gxyqZD2016119)和安徽工程大學(xué)中青年拔尖人才項(xiàng)目(No.2016BJRC013)資助。

    *通信聯(lián)系人。E-mail:wangcuie@ahpu.edu.cn

    猜你喜歡
    王寧光生空穴
    空穴效應(yīng)下泡沫金屬?gòu)?fù)合相變材料熱性能數(shù)值模擬
    噴油嘴內(nèi)部空穴流動(dòng)試驗(yàn)研究
    Detection of spin current through a quantum dot with Majorana bound states?
    基于MoOx選擇性接觸的SHJ太陽(yáng)電池研究進(jìn)展
    悠悠八十載,成就一位大地構(gòu)造學(xué)家的人生輝煌
    ——潘桂棠光生的地質(zhì)情懷
    本期通訊之星:王寧
    A Comparative Study of Buddha in China and God in Western Countries
    東方教育(2017年2期)2017-04-21 04:46:18
    二維平面異質(zhì)結(jié)構(gòu)實(shí)現(xiàn)光生載流子快速分離和傳輸
    王寧 藝術(shù)作品欣賞
    高能重離子碰撞中噴注的光生過(guò)程
    国产精品久久久久久亚洲av鲁大| 97超级碰碰碰精品色视频在线观看| 精品99又大又爽又粗少妇毛片 | 巨乳人妻的诱惑在线观看| 亚洲av成人av| 男女之事视频高清在线观看| 国产单亲对白刺激| 亚洲 欧美一区二区三区| 一个人看的www免费观看视频| 午夜福利18| 亚洲精品粉嫩美女一区| 99精品久久久久人妻精品| 国产精品 欧美亚洲| 欧美乱色亚洲激情| 婷婷精品国产亚洲av在线| 国产精品,欧美在线| 99久久无色码亚洲精品果冻| 桃色一区二区三区在线观看| 看免费av毛片| 全区人妻精品视频| 97超视频在线观看视频| 国产亚洲av嫩草精品影院| 亚洲国产中文字幕在线视频| 国产黄片美女视频| 国产免费av片在线观看野外av| 亚洲av第一区精品v没综合| 美女 人体艺术 gogo| 亚洲欧美日韩高清在线视频| 日韩欧美 国产精品| 1024香蕉在线观看| 麻豆av在线久日| 老司机福利观看| 欧美绝顶高潮抽搐喷水| 欧美在线黄色| cao死你这个sao货| 久久精品国产99精品国产亚洲性色| 国产1区2区3区精品| 亚洲人成网站在线播放欧美日韩| 精品国产三级普通话版| 母亲3免费完整高清在线观看| 日本黄色片子视频| 国产伦精品一区二区三区四那| 女同久久另类99精品国产91| 精品国产三级普通话版| 18禁美女被吸乳视频| 无人区码免费观看不卡| 欧美最黄视频在线播放免费| 老熟妇仑乱视频hdxx| 99热只有精品国产| 久久午夜亚洲精品久久| 亚洲欧洲精品一区二区精品久久久| 国产免费男女视频| 国产av在哪里看| 久久久久久久午夜电影| 黄色片一级片一级黄色片| 91老司机精品| 我的老师免费观看完整版| 久久久久久久久久黄片| bbb黄色大片| 窝窝影院91人妻| 两个人的视频大全免费| 露出奶头的视频| 一进一出抽搐动态| 好看av亚洲va欧美ⅴa在| 99国产极品粉嫩在线观看| 亚洲国产欧美人成| 18禁黄网站禁片午夜丰满| 啦啦啦韩国在线观看视频| 亚洲一区二区三区色噜噜| 在线免费观看的www视频| 中国美女看黄片| 成人18禁在线播放| 成年女人看的毛片在线观看| 亚洲中文av在线| 操出白浆在线播放| 国产精品亚洲美女久久久| av中文乱码字幕在线| 国产一区二区三区在线臀色熟女| 午夜成年电影在线免费观看| 国产精品亚洲一级av第二区| 国产午夜精品久久久久久| 国产真实乱freesex| 精品国内亚洲2022精品成人| 又粗又爽又猛毛片免费看| 九九热线精品视视频播放| bbb黄色大片| 久久久久久久久中文| 久久久久久人人人人人| 成年女人永久免费观看视频| 黄色片一级片一级黄色片| 国产av麻豆久久久久久久| 黄色 视频免费看| 88av欧美| 国产美女午夜福利| 一本综合久久免费| 一级a爱片免费观看的视频| 观看美女的网站| 日本黄色片子视频| 国产黄片美女视频| 1024香蕉在线观看| 女警被强在线播放| 91在线观看av| 亚洲真实伦在线观看| 成人特级av手机在线观看| bbb黄色大片| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 嫩草影院精品99| 99热6这里只有精品| 男女那种视频在线观看| 一二三四在线观看免费中文在| 最新中文字幕久久久久 | 天堂网av新在线| 国产一区二区三区视频了| 国产精品一区二区三区四区久久| 一本一本综合久久| 成人精品一区二区免费| 亚洲国产精品sss在线观看| 我要搜黄色片| 国产精品永久免费网站| 亚洲中文字幕日韩| 久久久久久久午夜电影| 老司机午夜福利在线观看视频| 熟妇人妻久久中文字幕3abv| 97人妻精品一区二区三区麻豆| 免费观看人在逋| 99久久综合精品五月天人人| 麻豆成人av在线观看| 国产免费av片在线观看野外av| 国模一区二区三区四区视频 | 亚洲av成人av| 在线免费观看不下载黄p国产 | 国产精品自产拍在线观看55亚洲| 中出人妻视频一区二区| 日本成人三级电影网站| 亚洲av成人av| 美女高潮的动态| 99国产精品一区二区三区| 美女午夜性视频免费| 99久久无色码亚洲精品果冻| 国产激情欧美一区二区| 国产精品久久久av美女十八| 嫩草影院入口| 久久人妻av系列| 成年女人看的毛片在线观看| 亚洲九九香蕉| av黄色大香蕉| 亚洲av成人不卡在线观看播放网| 久久中文字幕人妻熟女| 美女扒开内裤让男人捅视频| 日韩中文字幕欧美一区二区| 精品久久久久久久毛片微露脸| 精品无人区乱码1区二区| 久久精品国产综合久久久| 欧美av亚洲av综合av国产av| 18美女黄网站色大片免费观看| www.熟女人妻精品国产| 国产高潮美女av| 成年女人永久免费观看视频| 成熟少妇高潮喷水视频| 麻豆成人av在线观看| 亚洲av免费在线观看| av女优亚洲男人天堂 | 黄频高清免费视频| 国内久久婷婷六月综合欲色啪| 欧美日韩综合久久久久久 | 久久久久性生活片| 一本综合久久免费| 国产伦精品一区二区三区视频9 | 最新在线观看一区二区三区| 又紧又爽又黄一区二区| 综合色av麻豆| 午夜久久久久精精品| 不卡一级毛片| 香蕉丝袜av| 女人被狂操c到高潮| 欧美激情久久久久久爽电影| 99精品欧美一区二区三区四区| 亚洲人成电影免费在线| 欧美高清成人免费视频www| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 日本一本二区三区精品| 国产高潮美女av| 在线观看美女被高潮喷水网站 | 亚洲av第一区精品v没综合| 欧美国产日韩亚洲一区| 男人舔女人的私密视频| 黄频高清免费视频| 国内精品久久久久精免费| 国内少妇人妻偷人精品xxx网站 | 国内精品美女久久久久久| 欧美性猛交黑人性爽| 老司机午夜福利在线观看视频| 国产精品98久久久久久宅男小说| 国产一区二区激情短视频| 色视频www国产| 免费无遮挡裸体视频| 在线永久观看黄色视频| 午夜激情欧美在线| 黑人巨大精品欧美一区二区mp4| 丰满人妻一区二区三区视频av | 两人在一起打扑克的视频| 久久久久国产精品人妻aⅴ院| 久久99热这里只有精品18| tocl精华| 欧美精品啪啪一区二区三区| 久久久久久久久久黄片| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲一级av第二区| 国产一区二区激情短视频| 狂野欧美激情性xxxx| 精品久久久久久久人妻蜜臀av| 色在线成人网| 毛片女人毛片| 免费在线观看视频国产中文字幕亚洲| 亚洲av成人av| 国产av一区在线观看免费| 悠悠久久av| 免费大片18禁| 国产探花在线观看一区二区| 一a级毛片在线观看| 亚洲色图 男人天堂 中文字幕| 人人妻人人看人人澡| 日韩成人在线观看一区二区三区| 最近在线观看免费完整版| 国产精品亚洲美女久久久| 欧美午夜高清在线| 亚洲成a人片在线一区二区| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 欧美成人免费av一区二区三区| 午夜两性在线视频| 精品免费久久久久久久清纯| 免费在线观看日本一区| 少妇丰满av| 麻豆成人午夜福利视频| 一二三四在线观看免费中文在| 19禁男女啪啪无遮挡网站| 性欧美人与动物交配| 久久国产精品影院| 久久中文字幕一级| 99热精品在线国产| 国产精品av视频在线免费观看| 国模一区二区三区四区视频 | 成人午夜高清在线视频| 亚洲av中文字字幕乱码综合| 午夜免费观看网址| 欧美极品一区二区三区四区| av天堂在线播放| 国产精华一区二区三区| 少妇熟女aⅴ在线视频| АⅤ资源中文在线天堂| 国产 一区 欧美 日韩| 亚洲自拍偷在线| 最近在线观看免费完整版| 欧美日韩精品网址| 黄频高清免费视频| 韩国av一区二区三区四区| 99热只有精品国产| 中文字幕最新亚洲高清| 日本 av在线| 亚洲欧美激情综合另类| 大型黄色视频在线免费观看| 亚洲精品久久国产高清桃花| 婷婷亚洲欧美| 男女之事视频高清在线观看| 国产熟女xx| 国产成年人精品一区二区| 99久久综合精品五月天人人| 亚洲自拍偷在线| 久99久视频精品免费| 国产亚洲精品久久久久久毛片| 精品国产乱码久久久久久男人| 99精品在免费线老司机午夜| 五月玫瑰六月丁香| svipshipincom国产片| 国产av在哪里看| 久9热在线精品视频| 国产乱人伦免费视频| 欧美性猛交╳xxx乱大交人| 精品国产乱子伦一区二区三区| 久久婷婷人人爽人人干人人爱| e午夜精品久久久久久久| 老汉色∧v一级毛片| 欧美黑人巨大hd| 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| 成人一区二区视频在线观看| 亚洲,欧美精品.| 婷婷丁香在线五月| 久久欧美精品欧美久久欧美| 国产伦人伦偷精品视频| 丰满人妻熟妇乱又伦精品不卡| 99视频精品全部免费 在线 | 国产欧美日韩一区二区精品| 国产一级毛片七仙女欲春2| 深夜精品福利| 国内久久婷婷六月综合欲色啪| 悠悠久久av| 欧美黑人巨大hd| 日韩大尺度精品在线看网址| 久久中文看片网| 无人区码免费观看不卡| 黄色 视频免费看| 一夜夜www| 人人妻人人看人人澡| 久久这里只有精品中国| 亚洲人与动物交配视频| 身体一侧抽搐| 日本a在线网址| 国产熟女xx| 丰满的人妻完整版| 亚洲色图av天堂| 国产成人精品久久二区二区免费| 人人妻人人澡欧美一区二区| 午夜激情福利司机影院| 国产亚洲av高清不卡| 亚洲七黄色美女视频| 国产日本99.免费观看| 久久国产精品影院| 女生性感内裤真人,穿戴方法视频| 最近最新中文字幕大全电影3| 亚洲精品在线观看二区| 国产成人aa在线观看| 岛国在线观看网站| 午夜免费观看网址| 国产视频内射| 国产毛片a区久久久久| 亚洲av电影在线进入| 国产69精品久久久久777片 | 噜噜噜噜噜久久久久久91| 99久久成人亚洲精品观看| 两个人的视频大全免费| 日本 欧美在线| av女优亚洲男人天堂 | 欧美黄色片欧美黄色片| 中出人妻视频一区二区| 亚洲欧美日韩无卡精品| 亚洲精华国产精华精| 757午夜福利合集在线观看| 午夜福利免费观看在线| 两人在一起打扑克的视频| 亚洲av成人不卡在线观看播放网| 高清毛片免费观看视频网站| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 宅男免费午夜| 午夜福利成人在线免费观看| 午夜a级毛片| 午夜激情福利司机影院| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 婷婷精品国产亚洲av| 久久精品综合一区二区三区| 高潮久久久久久久久久久不卡| 亚洲国产精品999在线| 一个人观看的视频www高清免费观看 | 亚洲精品久久国产高清桃花| 国产精品乱码一区二三区的特点| а√天堂www在线а√下载| 99精品在免费线老司机午夜| 香蕉av资源在线| 天堂影院成人在线观看| 国产男靠女视频免费网站| 在线看三级毛片| 午夜福利在线观看免费完整高清在 | 国产97色在线日韩免费| 午夜视频精品福利| 综合色av麻豆| 高潮久久久久久久久久久不卡| 亚洲乱码一区二区免费版| 国产精品美女特级片免费视频播放器 | 久久婷婷人人爽人人干人人爱| 两人在一起打扑克的视频| 成人特级黄色片久久久久久久| 亚洲精品粉嫩美女一区| 亚洲午夜理论影院| 国产黄a三级三级三级人| 国产激情久久老熟女| 午夜a级毛片| av片东京热男人的天堂| 每晚都被弄得嗷嗷叫到高潮| 女警被强在线播放| 日本黄大片高清| 欧美xxxx黑人xx丫x性爽| 日韩免费av在线播放| 国产精品爽爽va在线观看网站| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 十八禁人妻一区二区| 国产精品亚洲美女久久久| 国产伦人伦偷精品视频| 亚洲国产欧美网| 丰满人妻一区二区三区视频av | 国产精品久久久人人做人人爽| 好男人在线观看高清免费视频| 一区二区三区高清视频在线| 国产精品久久视频播放| 看黄色毛片网站| 国产精品精品国产色婷婷| 91麻豆av在线| 国产不卡一卡二| 欧美成人一区二区免费高清观看 | 亚洲真实伦在线观看| 在线看三级毛片| av天堂中文字幕网| 亚洲美女视频黄频| 一边摸一边抽搐一进一小说| 女同久久另类99精品国产91| 最近在线观看免费完整版| 一个人看的www免费观看视频| 国模一区二区三区四区视频 | av视频在线观看入口| 色av中文字幕| 丰满人妻一区二区三区视频av | 看黄色毛片网站| or卡值多少钱| 亚洲最大成人中文| 深夜精品福利| 看黄色毛片网站| 美女免费视频网站| 高清在线国产一区| 国产精品久久久av美女十八| 久久精品国产99精品国产亚洲性色| 99re在线观看精品视频| 国产成人影院久久av| 淫妇啪啪啪对白视频| 成年女人永久免费观看视频| 国产高清三级在线| 女生性感内裤真人,穿戴方法视频| 久久久久精品国产欧美久久久| 黄片小视频在线播放| 日本黄色片子视频| 男女做爰动态图高潮gif福利片| xxxwww97欧美| 午夜a级毛片| 99久国产av精品| 99re在线观看精品视频| 18禁美女被吸乳视频| xxx96com| 国产三级在线视频| 久99久视频精品免费| 大型黄色视频在线免费观看| 无人区码免费观看不卡| 人人妻人人澡欧美一区二区| 国产成人一区二区三区免费视频网站| 黄色 视频免费看| x7x7x7水蜜桃| 老熟妇仑乱视频hdxx| 亚洲国产精品成人综合色| 伦理电影免费视频| 免费电影在线观看免费观看| 丁香六月欧美| 亚洲国产欧洲综合997久久,| 亚洲成av人片在线播放无| 亚洲av日韩精品久久久久久密| 特级一级黄色大片| 欧美性猛交黑人性爽| 一区二区三区国产精品乱码| 久久天堂一区二区三区四区| 最近最新中文字幕大全电影3| 麻豆国产97在线/欧美| 久久国产精品人妻蜜桃| 色综合站精品国产| 色综合婷婷激情| 黄频高清免费视频| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影院入口| 欧美日韩国产亚洲二区| 国产精品久久久久久人妻精品电影| 亚洲 欧美 日韩 在线 免费| 亚洲成av人片免费观看| 最好的美女福利视频网| 国产久久久一区二区三区| 黄色女人牲交| 怎么达到女性高潮| 99精品欧美一区二区三区四区| 亚洲av片天天在线观看| 久久精品影院6| 一本综合久久免费| 精品国产乱码久久久久久男人| 国产精品1区2区在线观看.| 国产一区二区三区在线臀色熟女| 欧美激情久久久久久爽电影| 亚洲精品中文字幕一二三四区| 熟女电影av网| 欧美成人一区二区免费高清观看 | tocl精华| 男人舔奶头视频| av女优亚洲男人天堂 | 男女床上黄色一级片免费看| 欧美高清成人免费视频www| 女生性感内裤真人,穿戴方法视频| 欧美绝顶高潮抽搐喷水| 狠狠狠狠99中文字幕| 全区人妻精品视频| 男人和女人高潮做爰伦理| 国产野战对白在线观看| 欧美3d第一页| 国产精品,欧美在线| 观看免费一级毛片| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕高清在线视频| 听说在线观看完整版免费高清| 曰老女人黄片| 国模一区二区三区四区视频 | a级毛片在线看网站| 国产精品电影一区二区三区| 亚洲七黄色美女视频| 亚洲午夜精品一区,二区,三区| 99riav亚洲国产免费| 九九在线视频观看精品| 日本一二三区视频观看| 最好的美女福利视频网| 两人在一起打扑克的视频| 精品国产美女av久久久久小说| 久久久久精品国产欧美久久久| 国产私拍福利视频在线观看| 国产亚洲精品综合一区在线观看| 欧美性猛交╳xxx乱大交人| 成年版毛片免费区| 丝袜人妻中文字幕| 999久久久精品免费观看国产| 国产精品亚洲av一区麻豆| 亚洲美女黄片视频| xxx96com| 哪里可以看免费的av片| 一个人看视频在线观看www免费 | 老汉色∧v一级毛片| 老司机午夜十八禁免费视频| 男女午夜视频在线观看| 国产高清三级在线| 亚洲精品国产精品久久久不卡| 好看av亚洲va欧美ⅴa在| 日本免费a在线| 国内精品一区二区在线观看| 1024手机看黄色片| 麻豆久久精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 久久人人精品亚洲av| 狂野欧美激情性xxxx| 亚洲国产欧洲综合997久久,| 窝窝影院91人妻| 夜夜爽天天搞| 国产亚洲av高清不卡| 国产成人影院久久av| 欧美日本亚洲视频在线播放| 老司机午夜福利在线观看视频| 亚洲18禁久久av| 99热精品在线国产| 久久久久久久午夜电影| 又紧又爽又黄一区二区| 1024手机看黄色片| 18禁黄网站禁片免费观看直播| 色综合欧美亚洲国产小说| 免费高清视频大片| 国产午夜精品论理片| 91av网站免费观看| 亚洲精品在线美女| 黄色片一级片一级黄色片| 日本 av在线| 一本精品99久久精品77| 免费看美女性在线毛片视频| 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 日韩欧美国产一区二区入口| 亚洲第一欧美日韩一区二区三区| 九色成人免费人妻av| 午夜日韩欧美国产| 日本一二三区视频观看| 老熟妇仑乱视频hdxx| 日韩欧美在线二视频| 九九热线精品视视频播放| 国产亚洲av高清不卡| 久久久国产成人精品二区| 99精品欧美一区二区三区四区| 欧美日韩瑟瑟在线播放| 麻豆av在线久日| 久久久久久人人人人人| 美女高潮的动态| 日本 av在线| 在线国产一区二区在线| av在线天堂中文字幕| 国内精品美女久久久久久| 久99久视频精品免费| 欧美午夜高清在线| 看免费av毛片| 日韩三级视频一区二区三区| 国产免费男女视频| 欧美成狂野欧美在线观看| 男人舔奶头视频| 久久精品国产99精品国产亚洲性色| 九色成人免费人妻av| 国产成+人综合+亚洲专区| 午夜精品久久久久久毛片777| 国产野战对白在线观看| 久久久精品大字幕| 欧美一区二区国产精品久久精品| 全区人妻精品视频| 午夜激情福利司机影院| 成人三级黄色视频| 成人欧美大片| 久久久精品欧美日韩精品| 亚洲 欧美 日韩 在线 免费| 久久久国产成人免费| 丰满的人妻完整版| 99国产精品一区二区三区| 俺也久久电影网| 五月伊人婷婷丁香| 成人精品一区二区免费| 91在线精品国自产拍蜜月 | 日韩 欧美 亚洲 中文字幕| 亚洲精品乱码久久久v下载方式 |