• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons?

    2017-08-30 08:26:52KaiWeiYang楊開巍MingJunLi李明君XiaoJiaoZhang張小姣XinMeiLi李新梅YongLiGao高永立andMengQiuLong龍孟秋
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張小

    Kai-Wei Yang(楊開巍),Ming-Jun Li(李明君),?,Xiao-Jiao Zhang(張小姣), Xin-Mei Li(李新梅),Yong-Li Gao(高永立),3,and Meng-Qiu Long(龍孟秋),?

    1 Hunan Key laboratory of Super Micro-structure and Ultrafast Process,School of Physics and Electronics,Central South University,Changsha 410083,China

    2 Physical Science and Technology College of Yichun University,Yichun 336000,China

    3 Department of Physics and Astronomy,University of Rochester,Rochester,NY 14627,USA

    Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons?

    Kai-Wei Yang(楊開巍)1,Ming-Jun Li(李明君)1,?,Xiao-Jiao Zhang(張小姣)2, Xin-Mei Li(李新梅)1,Yong-Li Gao(高永立)1,3,and Meng-Qiu Long(龍孟秋)1,?

    1 Hunan Key laboratory of Super Micro-structure and Ultrafast Process,School of Physics and Electronics,Central South University,Changsha 410083,China

    2 Physical Science and Technology College of Yichun University,Yichun 336000,China

    3 Department of Physics and Astronomy,University of Rochester,Rochester,NY 14627,USA

    By employing non-equilibrium Green’s function combined with the spin-polarized density-functional theory,we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(aAsNRs).Our results show that the spin-metal and spin-semiconductor properties can be observed in aAsNRs with different widths.We also find that there is nearly 100%bipolar spin-filtering behavior in the aAsNR-based device with antiparallel spin configuration.Moreover,rectifying behavior and giant magnetoresistance are found in the device.The corresponding physical analyses have been given.

    armchair arsenene nanoribbons,spin-dependent electronic transport property,spin-polarized density-functional theory,bipolar spin-filtering behavior

    1.Introduction

    Arsenene is single-atom-thick layer of arsenic,which has recently been proposed as a new member of group-V nanostructures.[1–5]The two-dimensional(2D)arsenene is of a hexagonal lattice structure and one of the elemental 2D materials with the lowest thermal conductivities.[6]Single layer grey arsenene displays a wide band gap(about2.49 eV)for hybrid exchange and a correlation functional of Heyd–Scuseria–Ernzerhof level of theory with high stability which is suitable for optoelectronic devices with photoresponse in the blue and ultraviolet range.[1]Now,more and more attention has been paid to the arsenene due to its promising properties such as a direct band gap,[1]high carrier mobility,[7,8]negative Poisson’s ratio,[9]and excellent optical and thermoelectric response.[6]

    Arsenic is located in the same group as phosphorus in the periodic table.As a result of bulk grey arsenic,phosphorus has certain characteristics,and it has a stable layered structure under ambient condition.[10]The arsenene nanosheet prefers the structure of blue phosphorus to the black phosphorus one.[2,3]Its buckling structure is different from that of phosporene, which results in an indirect band gap in arsenene.[1,3]Zhang et al.have found that multilayered arsenic exhibits the property of metal,and transit to semiconductor when thinned to one-layer.[1]They further calculated the band structure of arsenene under biaxial tensile strain.The 2.49 eV indirect bandgap decreases gradually with the biaxial tensile strain increasing.Moreover,when the strain reaches 4%,the indirect bandgap becomes direct bandgap.Furthermore,Zhu et al.found that the strain-induced metal–semiconductor transition is triggered by changing the band ordering near the top of the valence band,which causes an abrupt change from σ to π character of the frontier states.[11]Cao et al.[12]investigated their mechanical and electronic properties under in-plain biaxial strains,and they found that monolayer arsenene has a linear decrease in the buckling height with strain increasing. When the tensile strains are large enough,there exists a structural transition.Tunable quantum spin Hall effect via strain in 2D arsenene monolayer was predicted by first-principles calculations,[13–16]and Dirac-like cone was observed when applying an in-plane strain to it.[16]Zhang et al.demonstrated that the multilayer arsenene possesses much high hole mobility(as high as~4×103cm2·V?1·s?1)in 5-layer-thick arsenene,while the typical carrier mobility in MoS2is in a range of 200–500 cm2·V?1·s?1.[7]Moreover,it has been proved that doping is an effective method of modifying electronic and magnetic properties of arsenene.[17–19]

    Recently,with the development of experimental technique,multilayer arsenene nanoribbons(AsNRs)have been successfully synthesized.[20]The band gap of multilayer AsNR is estimated at~2.3 eV by the photoluminescence measurement,indicating that AsNR possesses great potential applications in switching and light-emitting devices.[20]In addition,studies also show that AsNRs still preserve semiconducting properties.[21,22]It is also found that the quantumconfinement is stronger in the armchair arsenene nanoribbon (aAsNR)than in the zigzag arsenene nanoribbon(zAsNR), causing bigger and more stable band gaps in the armchair case.[22]However,neither the transport property nor magnetic property of the aAsNR is found.In this paper,we will investigate the band structure and spin property of the aAsNR.In order to in depth understand the magnetic mechanism,we will study the effect of magnetic configuration on spin-dependent transport property.

    2.Calculation models and method

    The schematic geometry of aAsNR is illustrated in Fig.1. The width of the aAsNR,N,is defined as the number of dimmer arsenic chains along the width direction.Since the chairbuckled structure in arsenene is analogous to blue-phosphorus and silicene ones,following previous convention of nanoribbons,the aAsNRs are constructed by cutting the sheets along the〈1ˉ100〉direction,as shown in Fig.1.Our calculations are based on first-principle method with Atomistix ToolKit (ATK)[23,24]package which is based on the spin densityfunctional theory and the nonequilibrium Green’s function method.The device consists of electrodes and the central scattering region.For both spin states,the spin-dependent electron transmission probability Tσ(E,Vb)isevaluated asa function of energy by using the relation

    where σ represents the spin-up(↑)or spin-down(↓),Gr(a)is the retarded(advanced)Green’s function of the scattering region,and)is the retarded self-energy matrix which takes into account the left(right)electrodes.

    Under the applied bias(Vb),the electrochemical potentials of the left and right electrode will be shifted down and up,respectively(namely,μL(Vb)=μL(0)?eVb/2 and μR(Vb)=μR(0)?eVb/2).Therefore,the spin-dependent current through the scattering region at a given voltage can be calculated from Laudauer–Büttiker formula[25]

    wherefL(R)(E,Vb)is the Fermi–Dirac distribution function of the left(right)electrode.

    In our calculations,the local spin density approximation is employed for the exchange-correlation potential.The local spin density approximation proposed by Perdew and Zunger[24]is adopted to describe the exchange and correlation energy.Single-zeta polarized basis set is used for all arsenic atoms.The molecular junctions are extended along the z-axis and the molecular width is extended along the x-axis.In our work,a 10?A vacuum layer is used to eliminate the interaction between aAsNRs in neighboring cells.Geometry optimization is carried out with an atomic force threshold of 0.05 eV/?A as a nuclear convergence criterion,while the convergence criterion for the total energy is 10?5eV.Furthermore,the mesh cutoff is set to be 150 Ry,and the Monkhorst–Pack method is used.The k-point samplings are 1,1,and 100 in the x,y,and z directions.

    Fig.1.(color online)Top(upper)and lateral(lower)view of armchair arsenene nanoribbons.The purple spheres denote arsenic atoms.The N corresponds to the number of the dimer lines across the nanoribbon width.The bond lengths of nanoribbon are indicated,and the dash rectangle represents one of the unit cell.

    3.Results and discussion

    Firstly,we calculate the electronic structures of aAsNRs with N=6,7,8,9,10 as shown in Fig.2.It is found that the spin-up and spin-down bands are split,which means that there appear the magnetic characteristics in all aAsNRs.For N=6 and 7,it is noted that the valence band maximum of spin-up state and the conduction band minimum of spin-down state overlap with Fermi level,thus the spin-metal property can be observed.For N≥8,it is interesting that the valence band maximum of spin-up state gradually approaches the Fermi level at the Γ point with the increase in the width of the nanoribbon.While the conduction band minimum of spindown state turns up,a spin-semiconductor property appears. To explain the mechanism of the spin-dependent band structure of aAsNR,we take N=10 for example.Figures 2(f)and 2(g)show the density of state(DOS)and projected density of state(PDOS)of 10-aAsNR.It is clear that the spin-down DOS peak is above the Fermi energy and several spin-up DOS peaks are below the Fermi level,which corresponds to the two subbands at the Fermi level.According to the PDOS,one can see that the two opposite spin DOS peaks around the Fermi level are determined by the edge atom As1 and its neighboring atom As3.Furthermore,the spin-density distributions at Fermi level for 10-AsNR are shown in Fig.2(h),which are in accordance with the scenario of the PDOS.

    Fig.2.(color online)(a)–(e)Energy band structures of aAsNRs with N=6–10.The zero of energy is set at Fermi level in each system. The red(black)curves represent the spin-up(spin-down)states.(f),(g)DOS and PDOS of 10-aAsNR.(h)Spatial spin distributions (up-down)for the unit cell of 10-aAsNR.The yellow part corresponds to the spin-up electron density greater than the spin-down electron density.

    Fig.3.(color online)(a)Device model constructed from aAsNR.(b) Spin density distribution of aAsNR.M1,M2,M3,and M4 refer to the 10-aAsNR under P-FM,P-AMF,AP-FM,and AP-AFM spin configurations,respectively.The red and blue colors refer to the magnetizations M=1 and M=?1,respectively.

    We calculate the total energy of the unit cell in spin confi gurations.Our results show that the total energy of the antiferromagnetic(AFM)state is 32.28 meV lower than that of the ferromagnetic(FM)state.The AFM state is the most stable spin configuration.To further explore the magnetic property, we construct a device model based on the aAsNR with N=10 as shown in Fig.3(a).One can control the spin orientations of the electrodes by changing external magnetic field in the two probe system.[26–30]In this work,we consider two types of magnetic configuration.One is a p magnetic configuration, where the right and left electrodes are set to be in the same state by applying a perpendicular external magnetic field,and the other is AP magnetic configuration,where two perpendicular magnetic fields applied externally are antiparallel to two electrodes.Since different spin states have great effects on the graphene nanoribbons[31]and silicon nanoribbons.[32]we also consider the effects of FM and AFM states on the aAsNRs. Therefore,there are four types of magnetic configurations in our calculations exhibited in Fig.3(b),namely,P-FM,P-AFM, AP-FM,and AP-AFM,which are denoted as M1,M2,M3, and M4 for short.For Fig.3(b),we can clearly see that the spin density distribution of the aAsNR is mainly delocalized on the edges of nanoribbons,and well controlled by the magnetic configurations of the electrodes.

    Figures 4(a)–4(d)show the variations of current with applied bias voltage(I–V curve)for the four devices M1–M4, respectively.For M1 as shown in Fig.4(a),we can clearly see that the current values of spin-up electrons are always zero in the whole bias range considered.It is different from that of spin-down electrons,when the bias voltage is larger than 1.0 V in the positive bias range,the current of spin-down electrons goes up.In the negative bias voltage range,the spindown current increases when Vb<?1.0 V.Therefore,the device with the P-FM spin configuration favors the identicalspin-directional filtering effect.For the I–V curve of M2 as shown in Fig.4(b),when|Vb|>1.0 V,we can see that both the spin-up and spin-down currents first increase and then drop with increasing bias voltage.In the AP-FM configuration,as the scenario for M3 shows in Fig.4(c),we can also observe that the current is spin-polarized in a very large range of bias [?1.2 V,1.2 V],but it is completely different from the M1 case with P configuration.When|Vb|is lower than 0.8 V, the current is nearly forbidden,and when|Vb|is larger than 0.8 V,the spin-up electrons can pass through the system in negative bias region,while they are still forbidden under positive bias.Furthermore,the spin-down electrons show just the opposite case,they can flow through the system under positive bias and are almost forbidden in the negative bias voltage region.As a result,M3 has a perfect dual spin-filtering effect and dual spin-rectifying behavior,which suggests that the aAsNR-based device with AP-FM spin configuration can act as a dual spin filter or a dual spin diode.For the I–V curve of M4 system as shown in Fig.4(d),in the bias voltage range of [?0.8 V,0.8 V],both spin state currents are nearly forbidden. When the bias voltage is larger than 0.8 V,both currents go up and the current of spin-down rises more quickly than that of spin-up state.While in the negative bias range,the spin-down current goes up more promptly than that of spin-up state.The M4 system also presents the spin splitting phenomenon due to both spin state currents having different trends.

    Fig.4.(color online)The I–V curves of 10-aAsNR devices for(a)M1,(b)M2,(c)M3,(d)M4,respectively.The red and black symbols represent the spin-down and spin-up states,respectively.

    For the interesting spin splitting phenomena on the I–V curves as shown in Fig.4,we plot spin-filtering efficiency (SFE)in Fig.5.The SFE is often used to comprehend quantitatively the spin-polarization phenomena of the spin devices,which is one of the most important parameter as the spin-filtering function in spin device.The SFE is defined aswhere I↑(I↓)represent the current of spin-up (down)electrons.Figure 5(a)presents the SFE in the negative bias range[?1.2 V,?0.1 V],and figure 5(b)shows the SFE in the positive bias range[0.1 V,1.2 V]for M3.We can find that sizable SFEs can be attained in all bias ranges considered.Especially,the SFEs for M3 in the voltage interval[0.8 V,1.2 V] are large,with a maximum magnitude of 100%.This finding shows that the M3 system we proposed has perfect dual spinfi ltering behavior when the applied bias voltage is larger than 0.8 V.

    Furthermore,the dual spin-filtering suggests that M3 has a rectifying effect.One can quantify the rectifying behavior in Fig.4 with the rectifying ratio(R).We can calculate R by using the formula,R=|I(±Vb)|max/|I(±Vb)|min.From Fig.5(c), the rectifying ratio of the spin-up current is very small for the M3 device under lower bias(|Vb|<0.6 V).However,the onset of rectifying effect appears at a bias voltage of 0.6 V,and the spin-up current of M3 exhibits pronounced rectification behavior at a larger bias voltage,and the maximum rectifying ratio can reach 1494 at 0.9 V.Figure 5(d)shows the plot of the rectifying ratio of the spin-down current of M3,and the maximum rectifying ratio is 1297 at 1.0 V.

    Comparing the I–V curves of 10-aAsNR based devices for M1–M4 shown in Fig.4,we can clearly see that the I–V curves are significantly affected by the spin configurations of the electrodes.The currents of M3 device in the AP-FM spin configuration are larger than that of the M1 device in the PFM spin configuration.This result suggests that the aAsNRs can act as a giant magnetoresistance device.In order to better understand the giant magnetoresistance.Figures 5(e)and 5(f) present the magnetoresistances(MR)of 10-aAsNR under the FM state in bias ranges of[?1.0 V,?0.1 V]and[0.1 V,1.0 V],respectively.The MR is calculated by using the expression MR=(IAP?IP)/IP,where IAPis the current in the AP(M3) spin configuration and IPis the current in the P(M1)spin configuration.We can clearly find that when the bias is in a bias range of[0.5 V,1.0 V],there are very large MR values for both spin states,and the maximum can even reach 38900000%for spin-down current at a bias of 0.9 V,which is comparable to that of armchair-edged grapheme nanoribbons.[34]

    Fig.5.(color online)(a),(b)Spin-filtering efficiencies for M3 device at the negative and positive bias,respectively.(c),(d)Rectifying ratios for the spin-up and spin-down currents of M3 device in a long scale.Arrows↑and↓denote the spin-up and spin-down states. (e),(f)Plots of magnetoresistance versus the applied bias for 10-aAsNR device in a long scale under FM state in the negative and positive bias ranges,respectively.

    With a more in-depth understanding of the underlying physics in the interesting spin-filtering effects shown in Figs.5(a)and 5(b),we take M3 configuration for example. The relationships between the electrode band structures and transmission spectra at 1.0 V and?1.0 V and their transmission paths of spin-up and spin-down electrons are shown in Fig.6.The transmission path is an analysis option which splits the transmission coefficient into local bond contributions,Tij. For example,if a system is divided into two parts A and B,the pathways across the boundary between A and B sum up into the total transmission coefficient[35]

    The local contribution Tijcan be positive or negative.A positive value means that the electrons flow from siteito site j, while a negative value corresponds to the fact that the electron is back scattered along the bond.According to the transmission spectrum at a bias voltage of 1.0 V shown in Fig.6(a), there are several transmission peaks near the Fermi level for the spin-down electrons;on the contrary,there is no transmission peak but a large zero transmission gap about 1.48 eV near the Fermi level for the spin-up electrons.As the spindependent current at a given voltage is obtained to be the value of T(E,Vb)from Eq.(1),thus the spin-down current outweighs the spin-up current and one observes the perfect spinfiltering effect.From Fig.6(d),we can find that there occur a few transmission peaks near the Fermi level for the spinup electrons,meanwhile a large zero transmission gap appears near the Fermi level for the spin-down electrons at a negative bias of?1.0 V.This means that the spin-up electron is the only one that can pass through the device in the negative bias voltage.This is why we observe a perfect dual spin-filtering effect in the[?1.2 V,1.2 V]bias range.In essence,the spin filtering effect can also be obtained from the band structure of the left and right electrodes and the band structures of both electrodes are in good agreement with the transmission spectra shown in Figs.6(a)and 6(d)for M3.When the bias voltage is positive, the energy band of left electrode shifts downward and upward with respect to that of the right electrode.At a bias of 1.0 V, we notice that the spin-down electrons are preferentially transmitted as both the left and right electrodes have subbands of spin-down electrons in the same bias window.Nevertheless, there is a large band gap for the spin-up electrons of the both electrodes in the same energy range.On the contrary,in the negative bias voltage window,the spin-up subbands of the left and right electrode overlap,and there are only spin-up transmission peaks,while the spin-down transmission value is zero, which means that only the spin-up electrons can path through the left electrode to the right electrode,while the spin-down electrons are forbidden.The transmission path gives a more intuitive explanation.Comparing the transmission paths of spin-up and spin-down electrons under 1.0 eV,we can see that the transmission of spin-down electrons is much stronger than that of spin-up electrons as shown in Figs.6(b)and 6(c),which is in accordance with the I–V curve shown in Fig.4.The transmission pathways can show us the local bond contributions to the transmission coefficient.The transmission paths at?1.0 V are also shown in Figs.6(e)and 6(f).We can see that the spinup electrons can transport through the path,and the spin-down transmission pathway is localized,which is consistent with the I–V curve in Fig.4.As a result,the dual spin-filtering effect and rectifying effect appear on the I–V curves of M3.

    Fig.6.(color online)(a),(d)Left and right panels show the band structures of the left and right electrodes,and the middle panel displays the transmission spectrum of the scattering region for M3 device,correspond to bias of 1.0 V and?1.0 V,respectively.The zero of energy is set at Fermi level.(b),(c)Transmission paths(TPs)of spin-up and spin-down electrons under 1.0 V bias voltage. (e),(f)Transmission paths of spin-up and spin-down electrons under?1.0 V bias voltage,respectively.

    4.Conclusions

    The spin-dependent transmission properties of aAsNRs are studied by non-equilibrium Green’s function method in conjunction with spin-polarized density-functional theory. Our results show that under the FM magnetic state,for either the P or the AP configuration,the 10-aAsNR system has magnetic property and a certain spin polarization rate.Under the AP-FM configuration,the device shows perfect dual spin-filtering effect with nearly 100%spin polarization and rectifying behavior with maximum rectifying ratios of 1494 for spin-up electrons and 1297 for spin-down electrons,respectively.In particular,significant giant magnetoresistance is found,and the maximum even can reach up to 38900000%. Our research demonstrates that the matching between the band structure of left electrode and that of right electrode plays a key role in determining the spin-dependent transport properties of the aAsNRs-based device.These findings will help to design the high-performance spin functional devices.

    [1]Zhang S L,Yan Z,Li Y F,Chen Z F and Zeng H B 2015 Angew.Chem. Int.Ed.54 3112

    [2]Zhang S L,Hu Y H,Hu Z Y,Cai B and Zeng H B 2015 Appl.Phys. Lett.107 022102

    [3]Kou L Z,Ma Y D,Tan X,Frauenheim T,Du A and Smith S 2015 J. Phys.Chem.C 119 6918

    [4]Kamal C and Ezawa M 2015 Phys.Rev.B 91 05423

    [5]Wang Y and Ding Y 2015 J.Phys.:Condens.Matter 27 225304

    [6]Majid Z,Mehdi S,Sarsari I,Pourfath M and Donadio D 2016 Phys. Rev.B 93 085424

    [7]Zhang S L,Xie X Q,Li F Y,Li Z Y,Kan E,Liu W,Chen Z F and Zeng H B 2015 Angew.Chem.Int.Ed.55 1666

    [8]Zhang Z Y,Xie J F,Yang D Z,Si M S and Xue D S 2014 Appl.Phys. Express 8 055201

    [9]Han J W,Xie J F,Zhang Z Y,Yang D Z,Si M S and Xue D S 2015 Appl.Phys.Express 8 4

    [10]Norman N C 1998 Chemistry of Arsenic,Antimony,and Bismuth (Springer Scienceamp;Business Media)

    [11]Zhu Z,Guan J and Tomanek D 2015 Phys.Rev.B 91 161404

    [12]Cao H,Yu Z and Lu P 2015 Superlattice Microst.86 501

    [13]Wang Y P,Zhang C W,Ji W X,Zhang R W,Li P,Wang P J,Ren M J, Chen X L and Yuan M 2016 J.Phys.D:Appl.Phys.49 055305

    [14]Wang Y P,Ji W X,Zhang C W,Li P,Ren M J,Chen X L,Yuan M and Wang P J 2015 Sci.Rep.6 20342

    [15]Zhang H,Ma Y and Chen Z 2015 Nanoscale 7 19152

    [16]Wang C,Xia Q,Nie Y Z and Guo G H 2016 AIP Advances 6 035204

    [17]Du J,Xia C X,An Y P,Wang T X and Jia Y 2016 J.Mater.Sci.51 9504

    [18]Wang Y P,Zhang C W,Ji W X and Wang P J 2015 Appl.Phys.Express 8 065202

    [19]Li Z J,Xu W,Yu Y Q,Du H Y,Zhen K,Wang J,Luo L B,Qiu H L and Yang X B 2016 J.Mater.Chem.C 4 362

    [20]Tsai H S,Wang S W,Hsiao C H,Chen C W,Yang H O,Chueh Y L, Kuo H C and Liang J H 2016 Chem.Mater.28 425

    [21]Zhang Z Y,Xie J F,Yang D Z,Wang Y H,Xue D S and Si M S 2014 Eprint Arxiv.8

    [22]Wang Y and Ding Y 2015 Nanoscale Res.Lett.10 955

    [23]Taylor J,Guo H and Wang J 2001 Phys.Rev.B 63 245407

    [24]Perdew J P and Zunger A 1981 Phys.Rev.B 23 5048

    [25]Buttiker M,Imry Y,Landouer R and Pinhas S 1985 Phys.Rev.B 31 6207

    [26]Kim W Y and Kim K S 2008 Nat.Nanotech.3 408

    [27]Li M J,Zhang D,Gao Y L,Cao C and Long M Q 2017 Org.Electron. 44 168

    [28]Zhang D,Long M Q,Zhang X J,Ouyang F P and Li M J 2015 J.Appl. Phys.117 014311

    [29]Li X M,Long M Q,Cui L L,Xiao J,Zhang X J,Zhang D and Xu H 2014 Phys.Lett.A 378 2701

    [30]Li X M,Long M Q,Cui L L,Xiao J and Xu H 2014 Chin.Phys.B 23 047307

    [31]Cui L L,Long M Q,Zhang X J,Li X M,Zhang D and Yang B C 2016 Phys.Lett.A 380 730

    [32]Zhang D,Long M Q,Zhang X J,Cao C,Xu H,Li M J and Chen K S 2014 Chem.Phys.Lett.616 178

    [33]An L P and Liu N H 2012 New Carbon Mater 27 181

    [34]Zhu Z,Li C X,Zhang Z H 2016 Acta Phys.Sin.65 118501(in Chinese)

    [35]Solomon G C,Herrmann C,Hansen T,Mujica V and Ratner A 2010 Nat.Chem.2 223

    20 March 2017;revised manuscript

    6 June 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/098509

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.21673296 and 11334014),the Science and Technology Plan of Hunan Province,China(Grant No.2015RS4002),and the Postdoctoral Science Foundation of Central South University,China.

    ?Corresponding author.E-mail:limingjun@csu.edu.cn

    ?Corresponding author.E-mail:mqlong@csu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張小
    數(shù)字卡片
    小紙條
    浮世繪
    方圓(2017年1期)2017-02-13 18:09:50
    多一點換位思考
    師道(2016年5期)2016-05-14 12:04:48
    尋寶
    兒歌8首
    小鎮(zhèn)湯鋪
    小小說月刊(2009年8期)2009-11-22 04:54:24
    那樹 那窗 那人
    別踩了我的餡餅
    小小說月刊(2008年3期)2008-03-03 03:24:18
    什么也沒留下來
    国产精品一区二区免费欧美 | 黄片小视频在线播放| 男女国产视频网站| 免费不卡黄色视频| 久久久精品国产亚洲av高清涩受| 后天国语完整版免费观看| 国产精品偷伦视频观看了| 国产一卡二卡三卡精品| 精品一品国产午夜福利视频| 久久久久久免费高清国产稀缺| 高清欧美精品videossex| 亚洲一区中文字幕在线| 欧美另类亚洲清纯唯美| 欧美日韩亚洲国产一区二区在线观看 | 夜夜骑夜夜射夜夜干| 99久久国产精品久久久| 亚洲五月婷婷丁香| 欧美日韩福利视频一区二区| 少妇的丰满在线观看| 亚洲av国产av综合av卡| 老司机影院毛片| 国产精品一区二区在线观看99| 搡老岳熟女国产| 女性被躁到高潮视频| 色婷婷久久久亚洲欧美| 国产免费视频播放在线视频| 国产免费一区二区三区四区乱码| 在线观看舔阴道视频| 国产成人av激情在线播放| 国产精品偷伦视频观看了| 69av精品久久久久久 | 欧美黑人精品巨大| 99国产精品99久久久久| 日日夜夜操网爽| 高清欧美精品videossex| 午夜两性在线视频| 国产一级毛片在线| 狂野欧美激情性bbbbbb| 亚洲午夜精品一区,二区,三区| 亚洲欧美精品综合一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 精品少妇久久久久久888优播| 亚洲色图综合在线观看| 91麻豆av在线| 在线观看免费日韩欧美大片| cao死你这个sao货| 51午夜福利影视在线观看| 老鸭窝网址在线观看| 大型av网站在线播放| 成人av一区二区三区在线看 | 亚洲avbb在线观看| 欧美老熟妇乱子伦牲交| 999精品在线视频| 91老司机精品| 久久久久网色| 亚洲少妇的诱惑av| 欧美在线黄色| 国产欧美亚洲国产| 99国产精品一区二区蜜桃av | 一本久久精品| 一进一出抽搐动态| 一本色道久久久久久精品综合| 亚洲国产欧美在线一区| 一级毛片女人18水好多| 黄色怎么调成土黄色| 精品少妇一区二区三区视频日本电影| 亚洲 国产 在线| 久久久水蜜桃国产精品网| 一区二区三区精品91| 国产精品久久久久久人妻精品电影 | 国产野战对白在线观看| 久久亚洲精品不卡| 女性生殖器流出的白浆| 久久99一区二区三区| 少妇裸体淫交视频免费看高清 | 日本五十路高清| 久久亚洲精品不卡| 一级片免费观看大全| 12—13女人毛片做爰片一| 午夜免费观看性视频| 精品免费久久久久久久清纯 | 另类亚洲欧美激情| 天天操日日干夜夜撸| av又黄又爽大尺度在线免费看| 女人爽到高潮嗷嗷叫在线视频| 91字幕亚洲| 色94色欧美一区二区| 久久九九热精品免费| 亚洲av电影在线观看一区二区三区| 久久久久国产精品人妻一区二区| 日韩欧美一区二区三区在线观看 | 91精品国产国语对白视频| 亚洲精品中文字幕在线视频| 两个人免费观看高清视频| 国产欧美亚洲国产| 久久久国产成人免费| 91大片在线观看| 麻豆乱淫一区二区| 亚洲第一青青草原| 超色免费av| 正在播放国产对白刺激| 老司机影院成人| av天堂在线播放| 日韩制服丝袜自拍偷拍| 十八禁网站免费在线| 国产一区二区三区av在线| 免费av中文字幕在线| 在线观看舔阴道视频| 狠狠精品人妻久久久久久综合| 欧美日韩中文字幕国产精品一区二区三区 | 男人舔女人的私密视频| 女人久久www免费人成看片| 大陆偷拍与自拍| 国产熟女午夜一区二区三区| 波多野结衣一区麻豆| 日本猛色少妇xxxxx猛交久久| 国产成+人综合+亚洲专区| 精品国产超薄肉色丝袜足j| 国产精品久久久av美女十八| 91成年电影在线观看| 亚洲精品日韩在线中文字幕| 在线av久久热| 黄色毛片三级朝国网站| 精品国产超薄肉色丝袜足j| 91麻豆精品激情在线观看国产 | 久久热在线av| 国产老妇伦熟女老妇高清| 三上悠亚av全集在线观看| 一本一本久久a久久精品综合妖精| 少妇裸体淫交视频免费看高清 | 成年人黄色毛片网站| 国产高清videossex| 中文字幕精品免费在线观看视频| 日本欧美视频一区| 人成视频在线观看免费观看| 大码成人一级视频| 亚洲国产欧美网| 手机成人av网站| 日韩电影二区| 欧美在线一区亚洲| 亚洲欧洲日产国产| 欧美日韩精品网址| 久久精品熟女亚洲av麻豆精品| 天天添夜夜摸| 男人操女人黄网站| av天堂久久9| 在线 av 中文字幕| av在线老鸭窝| 国产欧美日韩精品亚洲av| 免费人妻精品一区二区三区视频| 亚洲综合色网址| 午夜福利视频精品| 丝袜在线中文字幕| 另类亚洲欧美激情| 亚洲国产欧美一区二区综合| 精品久久久久久电影网| 美女福利国产在线| 欧美 日韩 精品 国产| 欧美日本中文国产一区发布| av福利片在线| 国产1区2区3区精品| 十八禁高潮呻吟视频| 俄罗斯特黄特色一大片| 两人在一起打扑克的视频| 亚洲av成人一区二区三| 女人高潮潮喷娇喘18禁视频| 免费在线观看完整版高清| 欧美精品一区二区大全| 女警被强在线播放| 青青草视频在线视频观看| 亚洲中文字幕日韩| 久久精品国产亚洲av香蕉五月 | 久久久久久人人人人人| 日韩熟女老妇一区二区性免费视频| 视频区图区小说| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 精品少妇黑人巨大在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美激情在线| 另类亚洲欧美激情| 亚洲av国产av综合av卡| 搡老乐熟女国产| 婷婷色av中文字幕| 欧美黄色片欧美黄色片| 免费高清在线观看视频在线观看| 两人在一起打扑克的视频| 欧美精品高潮呻吟av久久| 91精品三级在线观看| 久久九九热精品免费| 高清在线国产一区| 久久国产精品影院| 久久久精品免费免费高清| 免费观看人在逋| 国产精品秋霞免费鲁丝片| 一区二区三区四区激情视频| 久久久久久免费高清国产稀缺| 国产91精品成人一区二区三区 | 久久性视频一级片| 亚洲av电影在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 日韩 欧美 亚洲 中文字幕| 久久99一区二区三区| 精品久久蜜臀av无| 又黄又粗又硬又大视频| 伊人久久大香线蕉亚洲五| 亚洲人成77777在线视频| 18禁黄网站禁片午夜丰满| 午夜免费鲁丝| 天天躁夜夜躁狠狠躁躁| 在线观看免费日韩欧美大片| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机午夜福利在线观看视频 | 亚洲欧美色中文字幕在线| 久久精品亚洲av国产电影网| 夜夜骑夜夜射夜夜干| 男女床上黄色一级片免费看| 午夜久久久在线观看| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 中文字幕av电影在线播放| 欧美97在线视频| 精品国产乱码久久久久久小说| 亚洲午夜精品一区,二区,三区| 亚洲中文av在线| 午夜成年电影在线免费观看| 亚洲国产毛片av蜜桃av| 久久这里只有精品19| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版| 一本久久精品| 久久久水蜜桃国产精品网| 午夜久久久在线观看| 亚洲av成人不卡在线观看播放网 | 国产精品一二三区在线看| 欧美激情高清一区二区三区| 免费在线观看日本一区| 国产一卡二卡三卡精品| 国产男女内射视频| 国产精品麻豆人妻色哟哟久久| 日本av免费视频播放| 岛国在线观看网站| 少妇裸体淫交视频免费看高清 | 精品少妇黑人巨大在线播放| 国产高清国产精品国产三级| 亚洲精品久久成人aⅴ小说| bbb黄色大片| 亚洲专区国产一区二区| 永久免费av网站大全| 久久国产亚洲av麻豆专区| 少妇被粗大的猛进出69影院| 成人三级做爰电影| 国产精品麻豆人妻色哟哟久久| 午夜精品久久久久久毛片777| 国产精品久久久久久精品电影小说| av有码第一页| av天堂久久9| 天天影视国产精品| 国产区一区二久久| 国产精品久久久久久精品古装| 在线看a的网站| 中文字幕高清在线视频| 欧美激情极品国产一区二区三区| 淫妇啪啪啪对白视频 | 欧美黄色淫秽网站| 日韩制服丝袜自拍偷拍| 久久香蕉激情| 久久人人爽人人片av| 男女之事视频高清在线观看| 精品国产国语对白av| 久久av网站| 一级片'在线观看视频| 亚洲av成人不卡在线观看播放网 | 亚洲成人免费av在线播放| 麻豆国产av国片精品| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| av国产精品久久久久影院| 久久精品国产亚洲av香蕉五月 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品第二区| 日本a在线网址| 亚洲欧美日韩高清在线视频 | 999久久久精品免费观看国产| 777久久人妻少妇嫩草av网站| 女人高潮潮喷娇喘18禁视频| 亚洲黑人精品在线| 精品国产乱子伦一区二区三区 | 欧美在线一区亚洲| 成人18禁高潮啪啪吃奶动态图| 免费在线观看影片大全网站| 欧美日本中文国产一区发布| e午夜精品久久久久久久| 美女国产高潮福利片在线看| 热99久久久久精品小说推荐| 中文欧美无线码| 国产成人a∨麻豆精品| 亚洲全国av大片| 亚洲欧美一区二区三区黑人| 亚洲成国产人片在线观看| 一级黄色大片毛片| 久久久久精品人妻al黑| 国产成人一区二区三区免费视频网站| 亚洲午夜精品一区,二区,三区| 高清视频免费观看一区二区| 久久久精品国产亚洲av高清涩受| 在线 av 中文字幕| 欧美老熟妇乱子伦牲交| 少妇人妻久久综合中文| 欧美久久黑人一区二区| 夜夜夜夜夜久久久久| 在线十欧美十亚洲十日本专区| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区91| 老司机午夜福利在线观看视频 | 高清在线国产一区| 少妇粗大呻吟视频| 亚洲免费av在线视频| 精品亚洲乱码少妇综合久久| 91九色精品人成在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 天天影视国产精品| 国产日韩一区二区三区精品不卡| 国产视频一区二区在线看| 亚洲欧美精品自产自拍| 99久久99久久久精品蜜桃| 人人妻,人人澡人人爽秒播| 精品人妻在线不人妻| 国产精品 国内视频| 国产av国产精品国产| 亚洲精品国产av蜜桃| 国产福利在线免费观看视频| 一本综合久久免费| 亚洲第一青青草原| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一出视频| 日韩欧美一区二区三区在线观看 | 国产无遮挡羞羞视频在线观看| 亚洲av欧美aⅴ国产| 国产成+人综合+亚洲专区| 热99久久久久精品小说推荐| 日韩大片免费观看网站| 中文字幕制服av| 成人手机av| 久热爱精品视频在线9| 国内毛片毛片毛片毛片毛片| 丁香六月欧美| 国产欧美日韩精品亚洲av| 2018国产大陆天天弄谢| 欧美精品高潮呻吟av久久| 一区在线观看完整版| 欧美精品亚洲一区二区| av网站免费在线观看视频| 老司机深夜福利视频在线观看 | 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 99九九在线精品视频| 老汉色av国产亚洲站长工具| 欧美久久黑人一区二区| 亚洲精品美女久久久久99蜜臀| 欧美少妇被猛烈插入视频| 日韩视频在线欧美| 日韩一卡2卡3卡4卡2021年| 午夜视频精品福利| 中文字幕人妻熟女乱码| 黄色 视频免费看| 嫁个100分男人电影在线观看| 欧美精品啪啪一区二区三区 | 国产高清videossex| 亚洲全国av大片| 欧美午夜高清在线| 久久人妻福利社区极品人妻图片| 99热国产这里只有精品6| 制服人妻中文乱码| 黄色视频在线播放观看不卡| 国产免费av片在线观看野外av| 成人手机av| 免费在线观看日本一区| 国产亚洲一区二区精品| 国产av一区二区精品久久| 久久免费观看电影| 亚洲欧洲日产国产| 我要看黄色一级片免费的| 丝袜在线中文字幕| 嫩草影视91久久| a级片在线免费高清观看视频| 成人亚洲精品一区在线观看| cao死你这个sao货| 亚洲av欧美aⅴ国产| 午夜免费鲁丝| 黄色毛片三级朝国网站| 久热爱精品视频在线9| 亚洲国产欧美日韩在线播放| 午夜免费观看性视频| 欧美激情 高清一区二区三区| 色精品久久人妻99蜜桃| 久久影院123| 亚洲精品在线美女| 性高湖久久久久久久久免费观看| 最黄视频免费看| 啦啦啦视频在线资源免费观看| 伊人久久大香线蕉亚洲五| 国产在线观看jvid| 精品福利永久在线观看| 国产精品欧美亚洲77777| 精品国产国语对白av| 欧美午夜高清在线| 黄色怎么调成土黄色| 啦啦啦 在线观看视频| 亚洲 欧美一区二区三区| 国产真人三级小视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产成人免费无遮挡视频| 啦啦啦 在线观看视频| 少妇猛男粗大的猛烈进出视频| 国产亚洲欧美在线一区二区| 国产亚洲精品一区二区www | 国产精品一区二区在线观看99| 伦理电影免费视频| 欧美午夜高清在线| 久久青草综合色| 日韩中文字幕欧美一区二区| 在线观看舔阴道视频| 久久久国产精品麻豆| 色播在线永久视频| 久久人妻福利社区极品人妻图片| 亚洲国产精品成人久久小说| 国产精品 国内视频| 秋霞在线观看毛片| 成年人黄色毛片网站| 黄色 视频免费看| 人人妻人人澡人人看| 成人国产一区最新在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲国产毛片av蜜桃av| 国产亚洲欧美精品永久| 午夜福利一区二区在线看| svipshipincom国产片| 国产伦理片在线播放av一区| 人人澡人人妻人| 91精品三级在线观看| av在线播放精品| 黄色视频不卡| 午夜福利视频精品| 国内毛片毛片毛片毛片毛片| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 国产视频一区二区在线看| 男女下面插进去视频免费观看| 侵犯人妻中文字幕一二三四区| 欧美日韩成人在线一区二区| 12—13女人毛片做爰片一| 成人黄色视频免费在线看| 亚洲精品国产av蜜桃| 最新在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 男女国产视频网站| 岛国毛片在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 成人三级做爰电影| 久久天堂一区二区三区四区| 日本av手机在线免费观看| 亚洲国产日韩一区二区| 免费一级毛片在线播放高清视频 | 十分钟在线观看高清视频www| 18禁观看日本| 一本色道久久久久久精品综合| 日韩视频在线欧美| 人人澡人人妻人| 91成年电影在线观看| 大片免费播放器 马上看| 高清黄色对白视频在线免费看| 丝袜脚勾引网站| 一区二区三区精品91| 蜜桃国产av成人99| 99久久国产精品久久久| 999精品在线视频| 中国美女看黄片| 一区二区三区激情视频| 国产成人一区二区三区免费视频网站| 免费少妇av软件| 亚洲精品国产一区二区精华液| 80岁老熟妇乱子伦牲交| 国产免费视频播放在线视频| 纵有疾风起免费观看全集完整版| 欧美亚洲日本最大视频资源| 两人在一起打扑克的视频| 人妻 亚洲 视频| 久久久久久久精品精品| 精品国产一区二区三区久久久樱花| 欧美精品啪啪一区二区三区 | 97人妻天天添夜夜摸| 久久精品成人免费网站| 亚洲av成人不卡在线观看播放网 | 欧美日本中文国产一区发布| 在线观看免费高清a一片| 国产成人精品久久二区二区91| 妹子高潮喷水视频| 成人黄色视频免费在线看| 久久久国产欧美日韩av| av一本久久久久| 91麻豆精品激情在线观看国产 | 欧美在线一区亚洲| 少妇粗大呻吟视频| 国产日本99.免费观看| 最好的美女福利视频网| 99热6这里只有精品| 日韩 欧美 亚洲 中文字幕| 久久久久精品国产欧美久久久| 中文字幕人成人乱码亚洲影| 正在播放国产对白刺激| 九色成人免费人妻av| 国产成+人综合+亚洲专区| 久久久久九九精品影院| 在线a可以看的网站| 国产成人一区二区三区免费视频网站| 亚洲乱码一区二区免费版| 亚洲第一电影网av| 欧美日韩中文字幕国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 母亲3免费完整高清在线观看| 人妻夜夜爽99麻豆av| 精品欧美一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 欧美绝顶高潮抽搐喷水| 日本一二三区视频观看| 国产三级中文精品| 精品久久久久久久久久久久久| 亚洲18禁久久av| 黑人操中国人逼视频| 国产成人精品久久二区二区91| 国产亚洲精品久久久久久毛片| 99在线视频只有这里精品首页| 五月伊人婷婷丁香| 国产aⅴ精品一区二区三区波| 91成年电影在线观看| 三级男女做爰猛烈吃奶摸视频| 黄片大片在线免费观看| 午夜福利高清视频| 91麻豆av在线| 久久香蕉国产精品| 变态另类成人亚洲欧美熟女| 亚洲人与动物交配视频| 美女大奶头视频| 啦啦啦观看免费观看视频高清| 久久中文字幕人妻熟女| 久久久久久免费高清国产稀缺| 一进一出抽搐动态| 国产蜜桃级精品一区二区三区| 一级毛片高清免费大全| 这个男人来自地球电影免费观看| 最好的美女福利视频网| 精品一区二区三区av网在线观看| 嫩草影院精品99| 在线a可以看的网站| 亚洲成a人片在线一区二区| 中文字幕人成人乱码亚洲影| 麻豆一二三区av精品| 1024视频免费在线观看| 久久久久亚洲av毛片大全| 国产片内射在线| 亚洲精品美女久久av网站| 欧美日韩精品网址| 麻豆成人午夜福利视频| av国产免费在线观看| 黄色毛片三级朝国网站| 看免费av毛片| 老鸭窝网址在线观看| 亚洲 国产 在线| 欧美日韩亚洲国产一区二区在线观看| 欧美一区二区国产精品久久精品 | АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 九九热线精品视视频播放| 熟女电影av网| 首页视频小说图片口味搜索| 国产主播在线观看一区二区| 91在线观看av| 1024手机看黄色片| 亚洲 国产 在线| 最新美女视频免费是黄的| а√天堂www在线а√下载| 欧美精品亚洲一区二区| 成年免费大片在线观看| 丰满人妻一区二区三区视频av | 法律面前人人平等表现在哪些方面| 亚洲熟妇熟女久久| 三级男女做爰猛烈吃奶摸视频| 最新在线观看一区二区三区| 天堂√8在线中文| 老司机深夜福利视频在线观看| 99在线视频只有这里精品首页| 久久这里只有精品中国| 亚洲成av人片在线播放无| 午夜精品在线福利| 99国产综合亚洲精品| 亚洲中文字幕日韩| aaaaa片日本免费| 两个人免费观看高清视频| 看免费av毛片| 中国美女看黄片| 国产精品久久久av美女十八| 一级毛片高清免费大全| 亚洲五月婷婷丁香| 久久精品人妻少妇| √禁漫天堂资源中文www| 视频区欧美日本亚洲| 亚洲熟女毛片儿| 亚洲avbb在线观看| 午夜a级毛片| 一本综合久久免费| 操出白浆在线播放| 日韩欧美三级三区| 国语自产精品视频在线第100页|