• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University?

    2017-08-30 08:26:04WenBinWu武文斌HaiTaoRen任海濤ShiXiangPeng彭士香YuanXu徐源JiaMeiWen溫佳美JiangSun孫江AiLinZhang張艾霖TaoZhang張?zhí)?/span>JingFengZhang張景豐andJiaErChen陳佳洱
    Chinese Physics B 2017年9期
    關(guān)鍵詞:佳美海濤

    Wen-Bin Wu(武文斌),Hai-Tao Ren(任海濤),?,Shi-Xiang Peng(彭士香), Yuan Xu(徐源),Jia-Mei Wen(溫佳美),Jiang Sun(孫江),Ai-Lin Zhang(張艾霖),2 Tao Zhang(張?zhí)?,Jing-Feng Zhang(張景豐),and Jia-Er Chen(陳佳洱),2

    1 SKLNPTTamp;IHIP,School of Physics,Peking University,Beijing 100871,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University?

    Wen-Bin Wu(武文斌)1,Hai-Tao Ren(任海濤)1,?,Shi-Xiang Peng(彭士香)1, Yuan Xu(徐源)1,Jia-Mei Wen(溫佳美)1,Jiang Sun(孫江)1,Ai-Lin Zhang(張艾霖)1,2Tao Zhang(張?zhí)?1,Jing-Feng Zhang(張景豐)1,and Jia-Er Chen(陳佳洱)1,2

    1 SKLNPTTamp;IHIP,School of Physics,Peking University,Beijing 100871,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    Optical emission spectroscopy(OES),as a simple in situ method without disturbing the plasma,has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR)ion source at Peking University(PKU).A spectrum measurement platform has been set up with the quartz-chamber electron cyclotron resonance (ECR)ion source[Patent Number:ZL 201110026605.4]and experiments were carried out recently.The electron temperature and electron density inside the ECR plasma chamber have been measured with the method of line intensity ratio of noble gas.Hydrogen plasma processes inside the discharge chamber are discussed based on the diagnostic results.What is more,the superiority of the method of line intensity ratio of noble gas is indicated with a comparison to line intensity ratio of hydrogen.Details will be presented in this paper.

    electron cyclotron resonance(ECR)ion source,hydrogen plasma,plasma diagnosis,optical emission spectroscopy

    1.Introduction

    The 2.45 GHz electron cyclotron resonance(ECR)ion source has been widely used in many plasma processing applications and particle accelerators since its invention 30 years ago because of its advantages of high current density,compact structure,long lifetime,and high reliability.In the 1980s, Peking University(PKU)began to carry out relevant research on 2.45 GHz high current ECR ion source.[1]Since then,several 2.45 GHz ECR ion sources have been developed for different applications.[2–5]Although they have been widely used and exhibited excellent performance,the physical processes and plasma characteristics inside the ECR plasma chamber are still not very clear because of the difficulties on the comprehensive studies of the ion source plasma.Fortunately,the study of the behavior of the electrons is helpful to understand the internal plasma mechanisms.For example,the reaction rate coefficient taking into account the energy dependent cross sections is affected by the electron temperature.The plasma density,which usually means the electron density for plasma containing multiply charged ions,is an important parameter. Therefore,it is significant for us to obtain the information of electrons inside the discharge chamber.

    There are several methods to make measurements on plasma,such as Langmuir probe,Thomson scattering and optical emission spectroscopy(OES).The Langmuir probe is a common method to diagnose ECR plasma by immersion into the plasma.This probe will then affect the plasma,so we cannot obtain the actual information inside the discharge chamber.In addition,the strong RF power and magnetic field are sometimes limitations for the Langmuir probe.[6]Thomson scattering is usually used as a diagnostic method for the high-temperature and high-density plasma and is developed to use for the ECR plasma.But the Brewster window and baffles as necessary parts for Thomson scattering measurements should be taken into account in the design of the ECR ion source.[7,8]Compared with the above methods,OES has its unique advantages.First,it is a non-invasive technique which measures the line radiation in the visible spectral range.Second,the experimental set-up is very simple.Third,it is a passive and very convenient method which can provide a variety of plasma parameters.However,to achieve the OES measurements,an ECR ion source with special construction and a simplified model for the spectroscopic data analysis are very necessary.At PKU,a specially designed 2.45 GHz PMECR ion source with a quartz chamber has been developed with a patent(Patent Number:ZL 201110026605.4).There are also several ECR ion sources operating with quartz plasma chambers in other laboratories.[9–11]The plasma diagnostic measurements inside our quartz chamber ion source may provide some references to these ion sources.In our previous work,the spectrum measurement platform was set up and relevant experiments were performed using this quartz-chamber ECR ion source.The collisional radiative(CR)model was selected tosolve the complex problem on spectroscopic data analysis.As presented in Ref.[12],the electron temperature under different gas pressure and magnitude of electron density was measured.However,the dependencies of the electron temperature and electron density on the pressure and the input RF power have not been studied systematically.More relevant experiments are required to comprehend the plasma characteristics inside the plasma chamber,which are presented in this paper.

    This paper is organized as follows.The diagnostic methods including the CR model,the methods of line intensity ratio of noble gas and line intensity ratio of hydrogen are described in Section 2.The experimental arrangements are displayed in Section 3.The results and discussion on the electron temperature,electron density,and hydrogen plasma processes are presented in Section 4.At the end of this paper,a conclusion and prospect are presented.

    2.Diagnostic method

    2.1.Line intensity ratio of noble gas

    For low-pressure and low-temperature plasma inside the 2.45 GHz ECR ion source,the CR model which balances the collisional and radiative processes is used.More details of the model have been given in Ref.[13]and we only give a brief introduction here.The population density of state p called n(p) is given by

    where Rn(p)and Ri(p)are the collisional-radiative coupling coefficients describing the ground state and the ionic population process,respectively.

    In a spectral measurement,the line intensity Ipkis given by

    where Apkis the transition probability from level p to level k. The line intensity we measured only depends on the population density of state p.

    Combining formulas(1)and(2),we can obtain the correlation between the results of the CR model and the measured line intensity as follows:

    with

    The effective emission rate coefficientis the convolution of the cross section for the electron impact excitation process with the Maxwellian electron energy distribution function(EEDF),and is a function of electron temperature Teand electron density ne.The atomic data and analysis structure (ADAS)database provides reliable effective emission rate coefficients of all kinds of elements.

    The electron temperature and electron density can be measured by emission spectroscopy using the diagnostic gas on the basis of formula(3).However,an absolutely calibrated system can be easily affected by the density of the particles, the absolute intensity of the line,the detection efficiency of the spectrometer,etc.We can use the line ratio method as below to eliminate these influences:

    In our experiment,He with Eth≈23 eV and Ar with Eth≈13 eV are used as auxiliary diagnostic gases for the determination of electron temperature Teand electron density ne.To simplify the calculation,the ratio of particle density is 1:1. The ratio of line intensity can be measured with the spectrometer.Therefore,the ratio of effective emission rate coefficient which depends on Teand necan be identified.It is noteworthy that the lines we used are the radiation of atomic He and Ar.

    Fig.1.(color online)The ratio of emission rate coefficients corresponding to He line at 728.13 nm to Ar line at 750.39 nm as a function of the electron temperature.

    Fig.2.(color online)The electron density as a function of the electron temperature and ratio of emission rate coefficients for He line at 587.56 nm to 706.52 nm.

    Figure 1 shows the ratio of emission rate coefficients corresponding to He line at 728.13 nm to Ar line at 750.39 nm as a function of Te.Relevant research indicates that the ratio is sensitive to Teand less sensitive to ne,[14]therefore Tecan be determined from formula(4)by measuring the ratio of these two line intensities.The line ratio of He line at 587.56 nm to 706.52 nm is sensitive to neand it is recommended.[15]Figure 2 shows neas a function of Teand the ratio of emission rate coefficients for the two He lines.

    2.2.Line intensity ratio of hydrogen

    For plasma on the state of local thermal equilibrium,electron temperature Tecan be determined by the ratio of two line intensities of the same atom.[16]The line intensity ratio can be given as

    Formula(5)can be written as follows for the evaluation of the electron temperature:

    where A,g,I,λ,and E are the transition coefficient,the statistical weight,the emission intensity,the wavelength,and the energy of the upper level of the emission line(in units of eV), respectively.For Balmer series of hydrogen,these constants are precisely available and are recommended for electron temperature diagnosis.Table 1 presents the spectral line data of hydrogen Balmer series.

    In our measurements,Hαand Hβare used for the determination of the electron temperature.Figure 3 shows the line intensity ratio of Hαto Hβas a function of Te.

    Fig.3.(color online)The line intensity ratio of Hαto Hβas a function of the electron temperature.

    3.Experimental arrangements

    Figure 4 is a cut view of the quartz-chamber ECR ion source at PKU.The main parts of the ion source consist of an RF matching section(microwave window),a 90 mm×90 mm quadrate source body,and a three-electrode extraction system. It can produce 84 mA hydrogen ion beam working at pulsed model(10%duty factor)and its rms normalized emittance is smaller than 0.2 π·mm·mrad.The magnetic field of the ion source is provided by three NdFeB rings which are separated by non-magnetic metal gaskets.What deserves to be mentioned is that the discharge chamber is made of high trans-missivity quartz,and the plasma spectrum can pass though the quartz and gaps between the magnetic rings.Therefore, plasma diagnosis can be performed for this specially designed ion source.Figure 5 is a schematic illustration of the experimental set-up for plasma diagnosing at PKU.The test platform is composed of the ECR ion source,a gas control system,and a diagnostic system.In order to simplify the calculation of spectrum,mixed He and Ar are used as diagnostic gases from one gas cylinder with He and Ar mixed at the ratio of 1:1.Therefore,a two-channel gas control system with calibrated flow meters is needed to mix the noble gases and hydrogen at specified fractions(He Ar:H2=1:5 or 1:10) instead of the three-channel gas control system we used before.With this improvement,the accuracy of the experimental results can be significantly improved for the precise ratio of particle density.The diagnostic system consists of an opticfiber,a high-resolution spectrometer(AvaSpec-USL3648)in the spectral range of 410 nm to 920 nm,and a computer for data analysis.

    Fig.4.A cut view of the quartz-chamber ECR ion source at PKU.

    4.Results and discussion

    Fig.5.(color online)Schematic illustration of the experimental set-up.

    This section presents the results of electron temperature Teand electron density neas functions of the gas pressure and the input RF power.What is more,the measurements with different ratios of the mixed noble gases to hydrogen(1:5 or1:10) are also performed in our research.Finally,a comparison is made between the methods of line intensity ratio of hydrogen and line intensity ratio of noble gas.There are two things that should be kept in mind.Firstly,the gas pressure is the pressure of the vacuum chamber,which does not reflect the actual pressure of the discharge chamber.It should be lower than the pressure of the discharge chamber for the high gas resistance of the extraction system.Secondly,the RF power we mentioned is the peak RF power generated by the microwave generator(10%duty factor).In addition,each plotted point of the results is the average of three separate measurements.

    4.1.Electron temperature

    Figure 6 shows the dependence of the electron temperature on the gas pressure.We can notice that the electron temperature first decreases significantly and then decreases slowly as the gas pressure increases.This trend is similar to the results reported by others using Thomson scattering measurements and Langmuir probes.[8,17]This phenomenon can be attributed to the change of mean free path of the electrons.The increasing gas pressure means higher collision frequency and more energy loss,thus the electron temperature goes down.This has been confirmed by the achievement of 2.45 GHz PMECR ion source at PKU.It can produce more than 100 mA hydrogen ion beam working at pulsed mode,and more than 20 mA(43.2%)and 40 mA H+2(47.7%)have been obtained with suitable parameters.[18]The cross sections of plasma processes are affected by the electron energy and will have an effect on the composition of the extracted currents.Therefore,the dependence of species fraction on the gas pressure of this ion source is presented for the comprehension of how the electron energy influences the behavior of different ions.As shown in Fig.7,the fractions of the extractedandbeams are sensitive to the gas pressure and have opposite trends,the extractedbeam decreases andbeam increases as the gas pressure rises.This is understandable by analyzing the hydrogen plasma processes inside the discharge chamber shown in Fig.8.Firstly,ions inside plasma are created by direct ionization of H2,the cross section of H2direct ionization firstly increases as the energy increases then decreases with an optimal energy of 70 eV.For 2.45 GHz ECR ion source,the electron energy is usually below 20 eV.Therefore,theproduction cross section will decrease as the pressure rises.Secondly,ions are produced by the dissociative attachment ofwith a threshold energy of 0 eV.This reaction rate increases as the pressure rises.Therefore,the generation ofdecreases and the production ofincreases as the pressure rises for the diminution of the electron energy.

    Fig.6.(color online)Dependence of the electron temperature on the gas pressure.

    Fig.7.(color online)Dependence of the extracted species fraction on the gas pressure for hydrogen molecular ion source at PKU.

    Fig.8.(color online)Cross sections of some physical process inside the hydrogen ion source.[19]

    Fig.9.(color online)Dependence of the electron temperature on the RF power.

    In some papers,[8,20]the electron temperature is considered to be nearly constant over the whole RF power range since the electron temperature is primarily influenced by the gas pressure as shown in Fig.6.This behavior is basically in accordance with our results in Fig.9 except for a slight growth of electron temperature with increasing RF power.This is also understandable since the electric field amplitude of the propagating wave is proportional to the square root of the RF power. Therefore,the electrons can gain more energy from the electric field and the electron temperature will increase.Our results are reasonable from this point of view.

    4.2.Electron density

    Figure 10 presents the dependence of the electron density on the gas pressure.The electron density goes up at first,and then decreases as the gas pressure increases.Two probable interpretations are provided for comprehension of this behavior.Firstly,the RF power is sufficient at the beginning,and the electron density increases as the pressure rises because of more ionization of hydrogen molecular.However,the electron density will reach a limitation according to the law of energy conservation for a certain RF power level.In contrast, the higher gas pressure means lower electron energy,which means that the cross section of dissociative recombination ofand other process such as recombination of H+will increase and more electrons will be consumed during these processes.This could be a reasonable explanation for the trend observed in Fig.10.Secondly,we can also interpret this trend from Paschen’s law.The breakdown voltage is high at both low and high pressures,which means that the formation of the plasma is difficult in these cases.As a consequence,there must be a vertex of electron density as the gas pressure changes. More relevant research is needed for confirming these speculations.Moreover,the maximum in the electron density curves shifts to higher pressure when the input RF power increases. Therefore,it is crucial to match the gas pressure with the input RF power for higher electron density.This phenomenon of the electron density is also confirmed by the experimental results of the high current hydrogen molecular ion source at PKU.As we know,the extracted current is a space-chargelimited current for the ECR ion source,and the current density is proportional to the plasma density inside the discharge chamber.Therefore the intensity of the extracted current can be reflected by the plasma density inside the ECR chamber. Figure 11 shows the extracted current(positive correlation of electron density)as a function of the gas pressure.The behavior is in accordance with the measurements in Fig.10.What is more,the electron temperature and electron density measured at upstream and downstream are very close as shown in Figs.6 and 10 because of the similar magnetic field of these two positions.

    Not only the gas pressure but also the RF power have an impact on the electron density.It can be noticed in Fig.12 that the electron density increases rapidly as the RF power increases.This trend is easy to understand,as the RF power rises,a large number of particles are ionized with more electrons generated.It should be pointed out that the increase trend is much more significant than that in Ref.[6]because of more sufficient microwave coupling in our measurement.As shown in Fig.4,a specially designed alumina dielectric microwave window is used for the microwave coupling between the rectangle waveguide and the plasma chamber.Therefore,the electron density varying with the RF power is in fact a reflection of microwave coupling efficiency.What is more,the electron density also has an influence on the species fraction of the final extraction beam.For example,has a large dissociative recombination cross section with electrons as shown in Fig.8, thus low RF power is beneficial to fraction ofaccording to Fig.12.What is more,a moderate RF power is recommended to the improvement offraction.Firstly,a low electron density is insufficient since theions are created by direct ionization of hydrogen molecules with electrons.Secondly,a high electron density will consume theions since the dissociative recombination ofwith electron also has a large cross section as shown in Fig.8.These laws have been proved by the results of cluster ECR ion source at PKU.[18]

    Fig.10.(color online)Dependence of the electron density on the gas pressure.

    Fig.11.(color online)The current as a function of the gas pressure for hydrogen molecular ion source at PKU with Φ30 mm discharge chamber.

    Fig.12.(color online)Dependence of the electron density on the RF power.

    4.3.Proportion of mixed noble gases

    Generally speaking,a small percentage of mixed noble gases are added to the discharge chamber just for diagnostic purpose,the results should not be affected a lot by the ratio of the mixed noble gases to hydrogen.However,it can be noticed in Figs.13 and 14 that the electron temperature decreases and the electron density increases as the proportion of mixed noble gases increases.In other words,the electron temperature we measured is lower and the electron density is higher than the results for pure hydrogen.It seems that the method of line intensity ratio of noble gas will bring some problems.However,this phenomenon is also reasonable for the distinction of ionization energy of different gas.The ionization energy of hydrogen atom is lower than Ar and He in which situation electrons can gain more energy from the RF power.Therefore, the electron temperature of pure hydrogen is higher than the gas mixture.As mentioned in Section 2,the diagnosis of the electron density is based on the electron temperature,the decrease of the electron temperature will lead to the increase of the electron density for a certain line ratio as shown in Fig.2. What is more,the proportion of the mixed noble gases makes no difference to the trend we observed as shown in Figs.13 and 14.From this point of view,the method of line intensity ratio of noble gas is still a very powerful tool that we can use for plasma diagnosis.

    Fig.14.(color online)Dependence of the electron density on the RF power for different ratios of mixed noble gases to hydrogen.

    4.4.Comparison with other methods

    Some research indicated that the electron temperature can be determined using the line intensity ratio of hydrogen.[21,22]This method is also used in our work by measuring the line intensities of Hαand Hβfor the determination of the electron temperature.Figure 15 presents the results for pure hydrogen and hydrogen with noble gas(gas mixture).It is obvious that the electron temperature is higher for pure hydrogen which is in accordance with the conclusion in Subsection 4.3.As mentioned in Subsection 4.1,the electron temperature first decreases significantly and then decreases slowly as the gas pressure increases.This trend is similar to the results reported by others using Thomson scattering measurements and Langmuir probes.Thus this law should be a typical result and should not be different for different methods.However,the hydrogen method cannot reflect this law as shown in Fig.16 because this method is based on the assumption of local thermal equilibrium(LTE).For plasma inside ECR ion source,the LTE assumption is not valid.The line intensity ratio of noble gas is without the limitation of LTE assumption and is reliable for electron temperature diagnosis.Based on these facts,more improvements are needed for the use of line intensity ratio of hydrogen inside ECR chamber,and the line intensity ratio of noble gas is recommended.But this does not mean the line intensity ratio of hydrogen is useless.On the contrary,this method can play an important role in the diagnosis for degree of dissociation,etc.More relevant work about hydrogen spectrum will be performed in the future.

    Fig.15.(color online)Dependence of the electron temperature on the gas pressure obtained by the method of line intensity ratio of hydrogen.

    Fig.16.(color online)Comparison of line intensity ratio of hydrogen and line intensity ratio of noble gas.

    5.Conclusion and prospects

    The electron temperature and electron density are measured for plasma inside 2.45 GHz ECRIS at PKU with OES method.The results show that the electron temperature decreases significantly as the gas pressure increases and nearly unaffects input RF power.The electron density increases rapidly with increasing RF power.And it is crucial to match the gas pressure with the input RF power for higher electron density.What is more,the species fraction and extraction beam current are mainly determined by the electron energy and electron density,respectively.All of the details and explanations are presented in this paper.In addition,we illustrate the influence of the noble gas on the diagnostic results and show the feasibility of the line intensity ratio method for plasma diagnosis.At last,the superiority of line intensity ratio of noble gas is indicated with a comparison to the line intensity ratio of hydrogen.

    A new 2.45 GHz microwave driven H?ion source with a quart window is designed for plasma diagnosis,more relevant work such as atomic and molecular spectroscopy for hydrogen plasma will be performed in the future.

    [1]Peng S X,Song Z Z,Yu J X,Ren H T,Zhang M,Yuan Z X,Lu P N, Zhao J,Chen J E,Guo Z Y and Lu Y R 2010 Proceedings of ECRIS10 August 23–26,2010,Grenoble,France,p.102

    [2]Song Z Z,Jiang D and Yu J X 1996 Rev.Sci.Instrum.67 1003

    [3]Peng S X,Zhang M,Song Z Z,Xu R,Zhao J,Yuan Z X,Yu J X,Chen J and Guo Z Y 2008 Rev.Sci.Instrum.79 02B706

    [4]Ren H T,Peng S X,Zhang M,Zhou Q F,Song Z Z,Xu Y,Lu P N, Xu R,Zhao J,Yu J X,Lu Y R,Guo Z Y and Chen J E 2010 Rev.Sci. Instrum.81 02B714

    [5]Peng S X,Zhang T,Ren H T,Zhang A L,Xu Y,Zhang J F,Guo Z Y and Chen J E 2016 Rev.Sci.Instrum.87 02B125

    [6]Gobin R,Benmeziane K,Delferrière O,Ferdinand R,Girard A and Harrault 2005 AIP Conference Proceedings 763 289

    [7]Sakoda T,Momii S,Uchino K,Muraoka K,Bowden M,Maeda M, Manabe Y,Kitagawa M and Kimura T 1991 Jpn.J.Appl.Phys.30 L1425

    [8]Bowden M D,Okamoto T,Kimura F,Muta H,Uchino K,Muraoka K, Sakoda T,Maeda M,Manabe Y,Kitagawa and Kimura T 1993 J.Appl. Phys.73 2732

    [9]Schmitt C,Bowers M,Collon P,Robertson D,Henderson D,Jiang C L,Pardo R C,Rehm E,Scott R,Vondrasek R,Calaprice F,Haas E D and Galbiati C 2008 Proceedings of ECRIS08,September 15–18,2008, Chicago,Illinois,USA,p.46

    [10]Button D and Hotchkis M A C 2008 Proceedings of ECRIS08,September 15–18,2008,Chicago,Illinois,USA,p.53

    [11]Thuillier T 2013 Proceedings of Cyclotrons2013,September 16–20, 2013 Vancouver,BC,Canada,p.130

    [12]Xu Y,Peng S X,Ren H T,Zhao J,Chen J,Zhang T,Zhang J F,Guo Z Y and Chen J E 2014 Proceedings of ECRIS2014 August 24–28,2014, Nizhny Novgorod,Russia,p.20

    [13]Fantz U 2006 Plasma Sources Sci.Technol.15 S137

    [14]Fantz U,Falter H,Franzen P,Wünderlich D,Berger M,Lorenz A, Kraus W,McNeely P,Riedl R and Speth E 2006 Nuclear.Fusion 46 S297

    [15]Fantz U 2004 Contrib.Plasma Phys.44 508

    [16]Qayyum A,Zeb S,Naveed M A,Ghauri S A,Zakaullah M and Waheed A 2005 J.Appl.Phys.98 103303

    [17]Oomori T,Tuda M,Ootera H and Ono K 1991 J.Vac.Sci.Technol.A 9 722

    [18]Xu Y,Peng S X,Ren H T,Zhao J,Chen J,Zhang A L,Zhang T,Guo Z Y and Chen J E 2014 Rev.Sci.Instrum.85 02A943

    [19]Jones E M 1977 Atomic Collision Processes in Plasma Physics Experiments II,Report CLM-R 175 UKAEA

    [20]Suzuki T,Sawado Y,Lida T and Fujii Y 2004 Rev.Sci.Instrum.75 1520

    [21]Lawrie S R,Faircloth D C and Philippe K 2012 Rev.Sci.Instrum.83 02A704

    [22]Jin D Z,Yang Z H,Tang P Y,Xiao K X and Dai J Y 2009 Vacuum.83 451

    24 February 2017;revised manuscript

    19 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/095204

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11175009 and 11575013).

    ?Corresponding author.E-mail:htren@pku.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    佳美海濤
    Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
    羅海濤作品
    國畫家(2022年3期)2022-06-16 05:30:06
    基于“脾胃內(nèi)傷”辨治隱源性機(jī)化性肺炎
    圓圓的世界
    感受肌理
    通過反思尋求最優(yōu)解
    風(fēng)雨嘀嗒正跑馬
    景年知意暖
    花火B(yǎng)(2015年23期)2015-10-26 03:41:59
    噻苯隆、金滿田、鈣佳美
    八筆描繪夏墊佳美的夢想
    中文欧美无线码| 成年女人永久免费观看视频| 成人午夜高清在线视频| 国产精品久久久久久久久免| 国产伦一二天堂av在线观看| 亚洲精品,欧美精品| 久久精品综合一区二区三区| 熟女人妻精品中文字幕| 久久久久久久亚洲中文字幕| 国产毛片a区久久久久| 日韩av不卡免费在线播放| av又黄又爽大尺度在线免费看 | 国产精品伦人一区二区| 欧美日本视频| 美女大奶头视频| 噜噜噜噜噜久久久久久91| 老司机影院成人| 观看免费一级毛片| 天堂中文最新版在线下载 | 欧美区成人在线视频| 男人舔女人下体高潮全视频| 六月丁香七月| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 最新中文字幕久久久久| 天天躁日日操中文字幕| 日本三级黄在线观看| 欧美激情久久久久久爽电影| 亚洲av成人精品一二三区| 一级毛片久久久久久久久女| 18禁动态无遮挡网站| 91狼人影院| 婷婷色麻豆天堂久久 | 亚洲最大成人中文| 少妇被粗大猛烈的视频| 亚洲精品影视一区二区三区av| 如何舔出高潮| 亚洲av二区三区四区| 日本午夜av视频| 一级毛片久久久久久久久女| 婷婷色av中文字幕| 国产精品乱码一区二三区的特点| 婷婷六月久久综合丁香| 国产在视频线精品| 一级毛片aaaaaa免费看小| 亚洲中文字幕一区二区三区有码在线看| 97热精品久久久久久| 亚洲欧美日韩高清专用| av专区在线播放| 国产精品综合久久久久久久免费| 最近视频中文字幕2019在线8| 热99re8久久精品国产| a级一级毛片免费在线观看| 麻豆久久精品国产亚洲av| 国产精品一区二区三区四区久久| 亚洲欧美一区二区三区国产| 亚洲无线观看免费| 黄片wwwwww| 国产高清有码在线观看视频| 亚洲国产精品国产精品| 全区人妻精品视频| 变态另类丝袜制服| 人妻少妇偷人精品九色| 桃色一区二区三区在线观看| 少妇的逼水好多| 国产成人freesex在线| 午夜福利在线在线| 亚洲欧美日韩卡通动漫| 乱码一卡2卡4卡精品| 亚洲电影在线观看av| 丰满人妻一区二区三区视频av| 一级毛片我不卡| 老女人水多毛片| 国产极品精品免费视频能看的| 亚洲精品乱久久久久久| 非洲黑人性xxxx精品又粗又长| 看片在线看免费视频| 亚洲激情五月婷婷啪啪| 日韩强制内射视频| 午夜精品国产一区二区电影 | 亚洲不卡免费看| 免费av不卡在线播放| 国产私拍福利视频在线观看| 人妻少妇偷人精品九色| 亚洲,欧美,日韩| 亚洲精品成人久久久久久| 91在线精品国自产拍蜜月| 久久精品久久久久久久性| 久久久久久久久久成人| 久久精品久久久久久噜噜老黄 | 亚洲精品aⅴ在线观看| 亚洲内射少妇av| 国产成人aa在线观看| 久久久欧美国产精品| 亚洲精品久久久久久婷婷小说 | 午夜视频国产福利| 婷婷色综合大香蕉| 国产精华一区二区三区| 国产成人午夜福利电影在线观看| 亚洲精品日韩在线中文字幕| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| 特级一级黄色大片| 成人国产麻豆网| 性色avwww在线观看| 精品久久久噜噜| 欧美一区二区精品小视频在线| 欧美一区二区国产精品久久精品| 欧美丝袜亚洲另类| 国产精品1区2区在线观看.| 国产精品,欧美在线| 国产片特级美女逼逼视频| 一级毛片aaaaaa免费看小| 麻豆久久精品国产亚洲av| 丰满乱子伦码专区| 亚洲av电影不卡..在线观看| 两个人的视频大全免费| 一个人免费在线观看电影| 一卡2卡三卡四卡精品乱码亚洲| 国产黄片美女视频| 国产成人福利小说| 一卡2卡三卡四卡精品乱码亚洲| 一级黄色大片毛片| 丰满乱子伦码专区| 毛片女人毛片| 99久久精品一区二区三区| 国产av在哪里看| 国产黄色小视频在线观看| 老司机福利观看| h日本视频在线播放| 国产精品,欧美在线| 亚洲国产精品成人久久小说| 国产毛片a区久久久久| 日日撸夜夜添| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 久久精品人妻少妇| 亚洲aⅴ乱码一区二区在线播放| 亚洲av电影不卡..在线观看| 午夜福利高清视频| 国产免费视频播放在线视频 | 99热这里只有是精品在线观看| 又粗又硬又长又爽又黄的视频| 大话2 男鬼变身卡| 麻豆久久精品国产亚洲av| 亚洲美女视频黄频| 国产一区亚洲一区在线观看| 日本爱情动作片www.在线观看| 嫩草影院入口| 国产亚洲av嫩草精品影院| 成年av动漫网址| 国产伦在线观看视频一区| 1000部很黄的大片| 亚洲自拍偷在线| 日韩av在线大香蕉| 欧美一级a爱片免费观看看| 亚洲av中文av极速乱| 校园人妻丝袜中文字幕| 欧美一级a爱片免费观看看| 国产精品国产三级专区第一集| 日日干狠狠操夜夜爽| 久久人妻av系列| 男女啪啪激烈高潮av片| 性插视频无遮挡在线免费观看| 亚洲在线观看片| 久久欧美精品欧美久久欧美| 能在线免费看毛片的网站| av专区在线播放| 亚洲成人中文字幕在线播放| 99久久精品国产国产毛片| 国产在线男女| 七月丁香在线播放| 国产真实乱freesex| 色5月婷婷丁香| 久久99热这里只有精品18| 久99久视频精品免费| 一个人看视频在线观看www免费| 国产私拍福利视频在线观看| 国产单亲对白刺激| 中文天堂在线官网| 午夜福利在线观看吧| 亚洲丝袜综合中文字幕| 国产成人91sexporn| av女优亚洲男人天堂| 熟妇人妻久久中文字幕3abv| 国产黄a三级三级三级人| 干丝袜人妻中文字幕| 波野结衣二区三区在线| 听说在线观看完整版免费高清| 99热这里只有精品一区| 男人舔奶头视频| 91精品伊人久久大香线蕉| 大又大粗又爽又黄少妇毛片口| 91aial.com中文字幕在线观看| av国产久精品久网站免费入址| 日韩一区二区视频免费看| 婷婷色综合大香蕉| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 欧美3d第一页| 纵有疾风起免费观看全集完整版 | 偷拍熟女少妇极品色| 国产av一区在线观看免费| 又粗又爽又猛毛片免费看| 久久6这里有精品| 亚洲在线观看片| 日本色播在线视频| 国产精品一区www在线观看| 精品酒店卫生间| 日本猛色少妇xxxxx猛交久久| 国产一级毛片在线| 91午夜精品亚洲一区二区三区| 亚洲av熟女| 99热精品在线国产| 热99在线观看视频| 欧美3d第一页| 午夜福利网站1000一区二区三区| 午夜福利在线观看吧| 日韩在线高清观看一区二区三区| 97超视频在线观看视频| 超碰97精品在线观看| 亚洲第一区二区三区不卡| 嫩草影院新地址| 精品久久久噜噜| 国产一区二区在线观看日韩| 非洲黑人性xxxx精品又粗又长| 在线观看66精品国产| 噜噜噜噜噜久久久久久91| 国产大屁股一区二区在线视频| av播播在线观看一区| 免费观看的影片在线观看| 日韩国内少妇激情av| 国产精品一区二区三区四区久久| 亚洲精品一区蜜桃| 日本午夜av视频| 国产人妻一区二区三区在| 黄色配什么色好看| 国产一区二区亚洲精品在线观看| 国产一区有黄有色的免费视频 | 丰满人妻一区二区三区视频av| 啦啦啦啦在线视频资源| 人妻夜夜爽99麻豆av| 少妇猛男粗大的猛烈进出视频 | 成人美女网站在线观看视频| 亚洲国产精品专区欧美| 欧美成人免费av一区二区三区| 日韩欧美 国产精品| 91久久精品国产一区二区成人| 午夜免费男女啪啪视频观看| 亚洲内射少妇av| 国产精品永久免费网站| www日本黄色视频网| 亚洲成人久久爱视频| 亚洲成色77777| 久久久精品欧美日韩精品| 国产一区有黄有色的免费视频 | 亚洲一级一片aⅴ在线观看| 久久草成人影院| 国产乱人视频| 日本一二三区视频观看| 国产精品一区二区在线观看99 | 亚洲欧美成人综合另类久久久 | av视频在线观看入口| 男人的好看免费观看在线视频| 免费黄网站久久成人精品| 小说图片视频综合网站| 日本wwww免费看| 国产免费视频播放在线视频 | 晚上一个人看的免费电影| 亚洲最大成人中文| 久久精品夜夜夜夜夜久久蜜豆| 嫩草影院精品99| 久久精品国产99精品国产亚洲性色| 久久久久久久久久成人| 黄片无遮挡物在线观看| 少妇裸体淫交视频免费看高清| 国产亚洲一区二区精品| 国产成人午夜福利电影在线观看| 蜜臀久久99精品久久宅男| 偷拍熟女少妇极品色| 极品教师在线视频| 国产精品福利在线免费观看| 国产成人aa在线观看| 日本免费在线观看一区| 插阴视频在线观看视频| 老司机影院毛片| 久久综合国产亚洲精品| 中国美白少妇内射xxxbb| 99在线人妻在线中文字幕| 国产在线一区二区三区精 | 最近的中文字幕免费完整| 国产av码专区亚洲av| 免费观看性生交大片5| 午夜免费男女啪啪视频观看| 久久精品综合一区二区三区| 亚洲丝袜综合中文字幕| 九色成人免费人妻av| 午夜久久久久精精品| 精品久久久久久久久亚洲| 人妻系列 视频| 亚洲av日韩在线播放| 亚洲五月天丁香| 特级一级黄色大片| 99九九线精品视频在线观看视频| 国产成人午夜福利电影在线观看| a级毛片免费高清观看在线播放| 午夜久久久久精精品| 26uuu在线亚洲综合色| 亚洲一区高清亚洲精品| 永久免费av网站大全| 一区二区三区乱码不卡18| 国产精品.久久久| 久久综合国产亚洲精品| 国产伦一二天堂av在线观看| a级毛片免费高清观看在线播放| 国产色婷婷99| 国产国拍精品亚洲av在线观看| 老女人水多毛片| 久久久成人免费电影| 99久国产av精品| av在线观看视频网站免费| 亚洲成人久久爱视频| 身体一侧抽搐| 老司机影院成人| 欧美日韩一区二区视频在线观看视频在线 | 午夜免费男女啪啪视频观看| a级毛片免费高清观看在线播放| 大又大粗又爽又黄少妇毛片口| 在线免费观看的www视频| 99久久成人亚洲精品观看| eeuss影院久久| 久久99热6这里只有精品| 亚洲激情五月婷婷啪啪| 国产精品久久久久久精品电影小说 | 久久综合国产亚洲精品| 特级一级黄色大片| av在线播放精品| av在线亚洲专区| 激情 狠狠 欧美| 精品久久久久久久人妻蜜臀av| 中文精品一卡2卡3卡4更新| 中文在线观看免费www的网站| 日本wwww免费看| 欧美高清性xxxxhd video| 久久精品国产自在天天线| 蜜桃亚洲精品一区二区三区| 国产一区二区在线观看日韩| 亚洲久久久久久中文字幕| 亚洲精品日韩av片在线观看| 18禁动态无遮挡网站| 亚洲成人中文字幕在线播放| 国产91av在线免费观看| 精品久久久久久电影网 | 亚洲18禁久久av| 国产精品麻豆人妻色哟哟久久 | 日本一二三区视频观看| 大话2 男鬼变身卡| 能在线免费观看的黄片| 神马国产精品三级电影在线观看| 色视频www国产| 国产亚洲5aaaaa淫片| 午夜激情欧美在线| av在线观看视频网站免费| 精品无人区乱码1区二区| 久久热精品热| 青春草国产在线视频| 亚洲精品亚洲一区二区| 国产亚洲一区二区精品| 亚洲成人中文字幕在线播放| 亚洲美女搞黄在线观看| 色综合亚洲欧美另类图片| 亚洲国产精品久久男人天堂| 亚洲av成人精品一二三区| 国产精品久久电影中文字幕| 美女国产视频在线观看| 真实男女啪啪啪动态图| 床上黄色一级片| 亚洲在线自拍视频| 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品 | 综合色丁香网| 国产精品国产高清国产av| 国产高清有码在线观看视频| 人人妻人人澡人人爽人人夜夜 | 国模一区二区三区四区视频| 国产av码专区亚洲av| 亚洲综合精品二区| 寂寞人妻少妇视频99o| 最近手机中文字幕大全| 身体一侧抽搐| 中文字幕精品亚洲无线码一区| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲网站| 黄片无遮挡物在线观看| 精品久久久久久成人av| 免费电影在线观看免费观看| 中文字幕久久专区| 亚洲最大成人av| 日韩成人伦理影院| 嫩草影院新地址| 少妇高潮的动态图| 毛片一级片免费看久久久久| 国产熟女欧美一区二区| 日韩亚洲欧美综合| 91午夜精品亚洲一区二区三区| 最近的中文字幕免费完整| 亚洲精品亚洲一区二区| 欧美3d第一页| 日本wwww免费看| 老师上课跳d突然被开到最大视频| 久久久久久久久大av| 乱码一卡2卡4卡精品| 国产精品国产三级国产av玫瑰| 亚洲图色成人| 国产精品,欧美在线| 黄色欧美视频在线观看| 激情 狠狠 欧美| 内射极品少妇av片p| 丝袜美腿在线中文| 夜夜看夜夜爽夜夜摸| 日本欧美国产在线视频| 久久精品人妻少妇| 久久草成人影院| 搡女人真爽免费视频火全软件| 午夜免费男女啪啪视频观看| 观看美女的网站| 日韩,欧美,国产一区二区三区 | av.在线天堂| 国产精品嫩草影院av在线观看| 两个人的视频大全免费| 少妇人妻精品综合一区二区| 亚洲欧美精品专区久久| 特大巨黑吊av在线直播| 国产精品,欧美在线| 联通29元200g的流量卡| 深爱激情五月婷婷| 色综合色国产| 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 成人性生交大片免费视频hd| 欧美又色又爽又黄视频| 干丝袜人妻中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 国产大屁股一区二区在线视频| 又粗又硬又长又爽又黄的视频| 国产又色又爽无遮挡免| 亚洲aⅴ乱码一区二区在线播放| 小说图片视频综合网站| 亚洲成人久久爱视频| 国产午夜精品久久久久久一区二区三区| 九九久久精品国产亚洲av麻豆| 久久草成人影院| 久久久久精品久久久久真实原创| videos熟女内射| 精品久久久久久久久av| 精品少妇黑人巨大在线播放 | 22中文网久久字幕| 啦啦啦啦在线视频资源| 亚洲国产精品专区欧美| 亚洲av中文字字幕乱码综合| 久久精品久久精品一区二区三区| 亚洲中文字幕日韩| 99热全是精品| 日本wwww免费看| 啦啦啦观看免费观看视频高清| 中文字幕熟女人妻在线| 欧美不卡视频在线免费观看| 精品欧美国产一区二区三| 国产三级中文精品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一级一片aⅴ在线观看| 亚洲av中文字字幕乱码综合| 久久精品久久精品一区二区三区| 夜夜看夜夜爽夜夜摸| 久久精品夜色国产| 男女下面进入的视频免费午夜| 亚洲人成网站高清观看| 激情 狠狠 欧美| 成年版毛片免费区| 国产真实乱freesex| 国产真实伦视频高清在线观看| 久久精品国产鲁丝片午夜精品| 少妇的逼好多水| av在线亚洲专区| 国产精品久久视频播放| 欧美精品一区二区大全| 极品教师在线视频| 国产成年人精品一区二区| 91精品一卡2卡3卡4卡| 丝袜美腿在线中文| 亚洲精品aⅴ在线观看| 超碰97精品在线观看| 亚洲av.av天堂| 国产午夜精品一二区理论片| 我要看日韩黄色一级片| 中文资源天堂在线| 18禁在线播放成人免费| 色5月婷婷丁香| 久久欧美精品欧美久久欧美| 神马国产精品三级电影在线观看| 麻豆精品久久久久久蜜桃| 欧美一区二区精品小视频在线| 国产真实乱freesex| 日本免费一区二区三区高清不卡| 久久久久网色| 国产高清不卡午夜福利| 亚洲精品影视一区二区三区av| 精品不卡国产一区二区三区| 嫩草影院入口| 国产熟女欧美一区二区| 美女内射精品一级片tv| 国产白丝娇喘喷水9色精品| 午夜福利在线观看吧| 国产成人精品久久久久久| 午夜爱爱视频在线播放| 免费看a级黄色片| 国产男人的电影天堂91| 午夜激情欧美在线| 神马国产精品三级电影在线观看| 乱系列少妇在线播放| 黄色配什么色好看| 能在线免费看毛片的网站| 精品国产一区二区三区久久久樱花 | 国产伦在线观看视频一区| 一级毛片久久久久久久久女| 中国美白少妇内射xxxbb| 少妇裸体淫交视频免费看高清| 岛国毛片在线播放| 欧美成人一区二区免费高清观看| 在线天堂最新版资源| 亚洲欧美日韩高清专用| 久久精品人妻少妇| 国产一级毛片在线| 久久久成人免费电影| 亚洲在线观看片| 国产精品爽爽va在线观看网站| 不卡视频在线观看欧美| 成人漫画全彩无遮挡| 日韩成人伦理影院| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 国产精品一区二区三区四区免费观看| 一夜夜www| 久久久久久久久久成人| 日本爱情动作片www.在线观看| 久久久久国产网址| 97热精品久久久久久| 国产午夜福利久久久久久| 99久国产av精品国产电影| 午夜福利网站1000一区二区三区| 日韩欧美精品免费久久| 美女脱内裤让男人舔精品视频| 少妇猛男粗大的猛烈进出视频 | 欧美丝袜亚洲另类| 亚洲乱码一区二区免费版| 国产麻豆成人av免费视频| 亚洲精品亚洲一区二区| 免费看日本二区| 色噜噜av男人的天堂激情| 久久精品国产鲁丝片午夜精品| 草草在线视频免费看| 亚洲av电影不卡..在线观看| 色综合亚洲欧美另类图片| 国产色婷婷99| 成人漫画全彩无遮挡| 少妇高潮的动态图| 春色校园在线视频观看| 我的老师免费观看完整版| 最近的中文字幕免费完整| 日韩精品青青久久久久久| 国产麻豆成人av免费视频| 国内少妇人妻偷人精品xxx网站| 久久久国产成人免费| 我的老师免费观看完整版| 久久久久网色| 人妻夜夜爽99麻豆av| 好男人在线观看高清免费视频| 国产成人精品久久久久久| 国内精品宾馆在线| 精品国产一区二区三区久久久樱花 | 国产毛片a区久久久久| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 日日摸夜夜添夜夜爱| 国产精品1区2区在线观看.| 一本久久精品| 亚洲第一区二区三区不卡| 毛片女人毛片| 三级国产精品欧美在线观看| 亚洲最大成人手机在线| 人妻夜夜爽99麻豆av| 国产人妻一区二区三区在| 久久久亚洲精品成人影院| 亚洲国产精品成人久久小说| 91午夜精品亚洲一区二区三区| 麻豆av噜噜一区二区三区| 欧美日韩精品成人综合77777| 女的被弄到高潮叫床怎么办| 亚洲精品色激情综合| 中文资源天堂在线| 丰满少妇做爰视频| 久久精品人妻少妇| 99热这里只有精品一区| 国产成人精品婷婷| 色5月婷婷丁香| 日韩高清综合在线| 高清午夜精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 七月丁香在线播放| 青春草视频在线免费观看| 日韩成人av中文字幕在线观看| 最近中文字幕2019免费版| 在线免费十八禁|