• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University?

    2017-08-30 08:26:04WenBinWu武文斌HaiTaoRen任海濤ShiXiangPeng彭士香YuanXu徐源JiaMeiWen溫佳美JiangSun孫江AiLinZhang張艾霖TaoZhang張?zhí)?/span>JingFengZhang張景豐andJiaErChen陳佳洱
    Chinese Physics B 2017年9期
    關(guān)鍵詞:佳美海濤

    Wen-Bin Wu(武文斌),Hai-Tao Ren(任海濤),?,Shi-Xiang Peng(彭士香), Yuan Xu(徐源),Jia-Mei Wen(溫佳美),Jiang Sun(孫江),Ai-Lin Zhang(張艾霖),2 Tao Zhang(張?zhí)?,Jing-Feng Zhang(張景豐),and Jia-Er Chen(陳佳洱),2

    1 SKLNPTTamp;IHIP,School of Physics,Peking University,Beijing 100871,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University?

    Wen-Bin Wu(武文斌)1,Hai-Tao Ren(任海濤)1,?,Shi-Xiang Peng(彭士香)1, Yuan Xu(徐源)1,Jia-Mei Wen(溫佳美)1,Jiang Sun(孫江)1,Ai-Lin Zhang(張艾霖)1,2Tao Zhang(張?zhí)?1,Jing-Feng Zhang(張景豐)1,and Jia-Er Chen(陳佳洱)1,2

    1 SKLNPTTamp;IHIP,School of Physics,Peking University,Beijing 100871,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    Optical emission spectroscopy(OES),as a simple in situ method without disturbing the plasma,has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR)ion source at Peking University(PKU).A spectrum measurement platform has been set up with the quartz-chamber electron cyclotron resonance (ECR)ion source[Patent Number:ZL 201110026605.4]and experiments were carried out recently.The electron temperature and electron density inside the ECR plasma chamber have been measured with the method of line intensity ratio of noble gas.Hydrogen plasma processes inside the discharge chamber are discussed based on the diagnostic results.What is more,the superiority of the method of line intensity ratio of noble gas is indicated with a comparison to line intensity ratio of hydrogen.Details will be presented in this paper.

    electron cyclotron resonance(ECR)ion source,hydrogen plasma,plasma diagnosis,optical emission spectroscopy

    1.Introduction

    The 2.45 GHz electron cyclotron resonance(ECR)ion source has been widely used in many plasma processing applications and particle accelerators since its invention 30 years ago because of its advantages of high current density,compact structure,long lifetime,and high reliability.In the 1980s, Peking University(PKU)began to carry out relevant research on 2.45 GHz high current ECR ion source.[1]Since then,several 2.45 GHz ECR ion sources have been developed for different applications.[2–5]Although they have been widely used and exhibited excellent performance,the physical processes and plasma characteristics inside the ECR plasma chamber are still not very clear because of the difficulties on the comprehensive studies of the ion source plasma.Fortunately,the study of the behavior of the electrons is helpful to understand the internal plasma mechanisms.For example,the reaction rate coefficient taking into account the energy dependent cross sections is affected by the electron temperature.The plasma density,which usually means the electron density for plasma containing multiply charged ions,is an important parameter. Therefore,it is significant for us to obtain the information of electrons inside the discharge chamber.

    There are several methods to make measurements on plasma,such as Langmuir probe,Thomson scattering and optical emission spectroscopy(OES).The Langmuir probe is a common method to diagnose ECR plasma by immersion into the plasma.This probe will then affect the plasma,so we cannot obtain the actual information inside the discharge chamber.In addition,the strong RF power and magnetic field are sometimes limitations for the Langmuir probe.[6]Thomson scattering is usually used as a diagnostic method for the high-temperature and high-density plasma and is developed to use for the ECR plasma.But the Brewster window and baffles as necessary parts for Thomson scattering measurements should be taken into account in the design of the ECR ion source.[7,8]Compared with the above methods,OES has its unique advantages.First,it is a non-invasive technique which measures the line radiation in the visible spectral range.Second,the experimental set-up is very simple.Third,it is a passive and very convenient method which can provide a variety of plasma parameters.However,to achieve the OES measurements,an ECR ion source with special construction and a simplified model for the spectroscopic data analysis are very necessary.At PKU,a specially designed 2.45 GHz PMECR ion source with a quartz chamber has been developed with a patent(Patent Number:ZL 201110026605.4).There are also several ECR ion sources operating with quartz plasma chambers in other laboratories.[9–11]The plasma diagnostic measurements inside our quartz chamber ion source may provide some references to these ion sources.In our previous work,the spectrum measurement platform was set up and relevant experiments were performed using this quartz-chamber ECR ion source.The collisional radiative(CR)model was selected tosolve the complex problem on spectroscopic data analysis.As presented in Ref.[12],the electron temperature under different gas pressure and magnitude of electron density was measured.However,the dependencies of the electron temperature and electron density on the pressure and the input RF power have not been studied systematically.More relevant experiments are required to comprehend the plasma characteristics inside the plasma chamber,which are presented in this paper.

    This paper is organized as follows.The diagnostic methods including the CR model,the methods of line intensity ratio of noble gas and line intensity ratio of hydrogen are described in Section 2.The experimental arrangements are displayed in Section 3.The results and discussion on the electron temperature,electron density,and hydrogen plasma processes are presented in Section 4.At the end of this paper,a conclusion and prospect are presented.

    2.Diagnostic method

    2.1.Line intensity ratio of noble gas

    For low-pressure and low-temperature plasma inside the 2.45 GHz ECR ion source,the CR model which balances the collisional and radiative processes is used.More details of the model have been given in Ref.[13]and we only give a brief introduction here.The population density of state p called n(p) is given by

    where Rn(p)and Ri(p)are the collisional-radiative coupling coefficients describing the ground state and the ionic population process,respectively.

    In a spectral measurement,the line intensity Ipkis given by

    where Apkis the transition probability from level p to level k. The line intensity we measured only depends on the population density of state p.

    Combining formulas(1)and(2),we can obtain the correlation between the results of the CR model and the measured line intensity as follows:

    with

    The effective emission rate coefficientis the convolution of the cross section for the electron impact excitation process with the Maxwellian electron energy distribution function(EEDF),and is a function of electron temperature Teand electron density ne.The atomic data and analysis structure (ADAS)database provides reliable effective emission rate coefficients of all kinds of elements.

    The electron temperature and electron density can be measured by emission spectroscopy using the diagnostic gas on the basis of formula(3).However,an absolutely calibrated system can be easily affected by the density of the particles, the absolute intensity of the line,the detection efficiency of the spectrometer,etc.We can use the line ratio method as below to eliminate these influences:

    In our experiment,He with Eth≈23 eV and Ar with Eth≈13 eV are used as auxiliary diagnostic gases for the determination of electron temperature Teand electron density ne.To simplify the calculation,the ratio of particle density is 1:1. The ratio of line intensity can be measured with the spectrometer.Therefore,the ratio of effective emission rate coefficient which depends on Teand necan be identified.It is noteworthy that the lines we used are the radiation of atomic He and Ar.

    Fig.1.(color online)The ratio of emission rate coefficients corresponding to He line at 728.13 nm to Ar line at 750.39 nm as a function of the electron temperature.

    Fig.2.(color online)The electron density as a function of the electron temperature and ratio of emission rate coefficients for He line at 587.56 nm to 706.52 nm.

    Figure 1 shows the ratio of emission rate coefficients corresponding to He line at 728.13 nm to Ar line at 750.39 nm as a function of Te.Relevant research indicates that the ratio is sensitive to Teand less sensitive to ne,[14]therefore Tecan be determined from formula(4)by measuring the ratio of these two line intensities.The line ratio of He line at 587.56 nm to 706.52 nm is sensitive to neand it is recommended.[15]Figure 2 shows neas a function of Teand the ratio of emission rate coefficients for the two He lines.

    2.2.Line intensity ratio of hydrogen

    For plasma on the state of local thermal equilibrium,electron temperature Tecan be determined by the ratio of two line intensities of the same atom.[16]The line intensity ratio can be given as

    Formula(5)can be written as follows for the evaluation of the electron temperature:

    where A,g,I,λ,and E are the transition coefficient,the statistical weight,the emission intensity,the wavelength,and the energy of the upper level of the emission line(in units of eV), respectively.For Balmer series of hydrogen,these constants are precisely available and are recommended for electron temperature diagnosis.Table 1 presents the spectral line data of hydrogen Balmer series.

    In our measurements,Hαand Hβare used for the determination of the electron temperature.Figure 3 shows the line intensity ratio of Hαto Hβas a function of Te.

    Fig.3.(color online)The line intensity ratio of Hαto Hβas a function of the electron temperature.

    3.Experimental arrangements

    Figure 4 is a cut view of the quartz-chamber ECR ion source at PKU.The main parts of the ion source consist of an RF matching section(microwave window),a 90 mm×90 mm quadrate source body,and a three-electrode extraction system. It can produce 84 mA hydrogen ion beam working at pulsed model(10%duty factor)and its rms normalized emittance is smaller than 0.2 π·mm·mrad.The magnetic field of the ion source is provided by three NdFeB rings which are separated by non-magnetic metal gaskets.What deserves to be mentioned is that the discharge chamber is made of high trans-missivity quartz,and the plasma spectrum can pass though the quartz and gaps between the magnetic rings.Therefore, plasma diagnosis can be performed for this specially designed ion source.Figure 5 is a schematic illustration of the experimental set-up for plasma diagnosing at PKU.The test platform is composed of the ECR ion source,a gas control system,and a diagnostic system.In order to simplify the calculation of spectrum,mixed He and Ar are used as diagnostic gases from one gas cylinder with He and Ar mixed at the ratio of 1:1.Therefore,a two-channel gas control system with calibrated flow meters is needed to mix the noble gases and hydrogen at specified fractions(He Ar:H2=1:5 or 1:10) instead of the three-channel gas control system we used before.With this improvement,the accuracy of the experimental results can be significantly improved for the precise ratio of particle density.The diagnostic system consists of an opticfiber,a high-resolution spectrometer(AvaSpec-USL3648)in the spectral range of 410 nm to 920 nm,and a computer for data analysis.

    Fig.4.A cut view of the quartz-chamber ECR ion source at PKU.

    4.Results and discussion

    Fig.5.(color online)Schematic illustration of the experimental set-up.

    This section presents the results of electron temperature Teand electron density neas functions of the gas pressure and the input RF power.What is more,the measurements with different ratios of the mixed noble gases to hydrogen(1:5 or1:10) are also performed in our research.Finally,a comparison is made between the methods of line intensity ratio of hydrogen and line intensity ratio of noble gas.There are two things that should be kept in mind.Firstly,the gas pressure is the pressure of the vacuum chamber,which does not reflect the actual pressure of the discharge chamber.It should be lower than the pressure of the discharge chamber for the high gas resistance of the extraction system.Secondly,the RF power we mentioned is the peak RF power generated by the microwave generator(10%duty factor).In addition,each plotted point of the results is the average of three separate measurements.

    4.1.Electron temperature

    Figure 6 shows the dependence of the electron temperature on the gas pressure.We can notice that the electron temperature first decreases significantly and then decreases slowly as the gas pressure increases.This trend is similar to the results reported by others using Thomson scattering measurements and Langmuir probes.[8,17]This phenomenon can be attributed to the change of mean free path of the electrons.The increasing gas pressure means higher collision frequency and more energy loss,thus the electron temperature goes down.This has been confirmed by the achievement of 2.45 GHz PMECR ion source at PKU.It can produce more than 100 mA hydrogen ion beam working at pulsed mode,and more than 20 mA(43.2%)and 40 mA H+2(47.7%)have been obtained with suitable parameters.[18]The cross sections of plasma processes are affected by the electron energy and will have an effect on the composition of the extracted currents.Therefore,the dependence of species fraction on the gas pressure of this ion source is presented for the comprehension of how the electron energy influences the behavior of different ions.As shown in Fig.7,the fractions of the extractedandbeams are sensitive to the gas pressure and have opposite trends,the extractedbeam decreases andbeam increases as the gas pressure rises.This is understandable by analyzing the hydrogen plasma processes inside the discharge chamber shown in Fig.8.Firstly,ions inside plasma are created by direct ionization of H2,the cross section of H2direct ionization firstly increases as the energy increases then decreases with an optimal energy of 70 eV.For 2.45 GHz ECR ion source,the electron energy is usually below 20 eV.Therefore,theproduction cross section will decrease as the pressure rises.Secondly,ions are produced by the dissociative attachment ofwith a threshold energy of 0 eV.This reaction rate increases as the pressure rises.Therefore,the generation ofdecreases and the production ofincreases as the pressure rises for the diminution of the electron energy.

    Fig.6.(color online)Dependence of the electron temperature on the gas pressure.

    Fig.7.(color online)Dependence of the extracted species fraction on the gas pressure for hydrogen molecular ion source at PKU.

    Fig.8.(color online)Cross sections of some physical process inside the hydrogen ion source.[19]

    Fig.9.(color online)Dependence of the electron temperature on the RF power.

    In some papers,[8,20]the electron temperature is considered to be nearly constant over the whole RF power range since the electron temperature is primarily influenced by the gas pressure as shown in Fig.6.This behavior is basically in accordance with our results in Fig.9 except for a slight growth of electron temperature with increasing RF power.This is also understandable since the electric field amplitude of the propagating wave is proportional to the square root of the RF power. Therefore,the electrons can gain more energy from the electric field and the electron temperature will increase.Our results are reasonable from this point of view.

    4.2.Electron density

    Figure 10 presents the dependence of the electron density on the gas pressure.The electron density goes up at first,and then decreases as the gas pressure increases.Two probable interpretations are provided for comprehension of this behavior.Firstly,the RF power is sufficient at the beginning,and the electron density increases as the pressure rises because of more ionization of hydrogen molecular.However,the electron density will reach a limitation according to the law of energy conservation for a certain RF power level.In contrast, the higher gas pressure means lower electron energy,which means that the cross section of dissociative recombination ofand other process such as recombination of H+will increase and more electrons will be consumed during these processes.This could be a reasonable explanation for the trend observed in Fig.10.Secondly,we can also interpret this trend from Paschen’s law.The breakdown voltage is high at both low and high pressures,which means that the formation of the plasma is difficult in these cases.As a consequence,there must be a vertex of electron density as the gas pressure changes. More relevant research is needed for confirming these speculations.Moreover,the maximum in the electron density curves shifts to higher pressure when the input RF power increases. Therefore,it is crucial to match the gas pressure with the input RF power for higher electron density.This phenomenon of the electron density is also confirmed by the experimental results of the high current hydrogen molecular ion source at PKU.As we know,the extracted current is a space-chargelimited current for the ECR ion source,and the current density is proportional to the plasma density inside the discharge chamber.Therefore the intensity of the extracted current can be reflected by the plasma density inside the ECR chamber. Figure 11 shows the extracted current(positive correlation of electron density)as a function of the gas pressure.The behavior is in accordance with the measurements in Fig.10.What is more,the electron temperature and electron density measured at upstream and downstream are very close as shown in Figs.6 and 10 because of the similar magnetic field of these two positions.

    Not only the gas pressure but also the RF power have an impact on the electron density.It can be noticed in Fig.12 that the electron density increases rapidly as the RF power increases.This trend is easy to understand,as the RF power rises,a large number of particles are ionized with more electrons generated.It should be pointed out that the increase trend is much more significant than that in Ref.[6]because of more sufficient microwave coupling in our measurement.As shown in Fig.4,a specially designed alumina dielectric microwave window is used for the microwave coupling between the rectangle waveguide and the plasma chamber.Therefore,the electron density varying with the RF power is in fact a reflection of microwave coupling efficiency.What is more,the electron density also has an influence on the species fraction of the final extraction beam.For example,has a large dissociative recombination cross section with electrons as shown in Fig.8, thus low RF power is beneficial to fraction ofaccording to Fig.12.What is more,a moderate RF power is recommended to the improvement offraction.Firstly,a low electron density is insufficient since theions are created by direct ionization of hydrogen molecules with electrons.Secondly,a high electron density will consume theions since the dissociative recombination ofwith electron also has a large cross section as shown in Fig.8.These laws have been proved by the results of cluster ECR ion source at PKU.[18]

    Fig.10.(color online)Dependence of the electron density on the gas pressure.

    Fig.11.(color online)The current as a function of the gas pressure for hydrogen molecular ion source at PKU with Φ30 mm discharge chamber.

    Fig.12.(color online)Dependence of the electron density on the RF power.

    4.3.Proportion of mixed noble gases

    Generally speaking,a small percentage of mixed noble gases are added to the discharge chamber just for diagnostic purpose,the results should not be affected a lot by the ratio of the mixed noble gases to hydrogen.However,it can be noticed in Figs.13 and 14 that the electron temperature decreases and the electron density increases as the proportion of mixed noble gases increases.In other words,the electron temperature we measured is lower and the electron density is higher than the results for pure hydrogen.It seems that the method of line intensity ratio of noble gas will bring some problems.However,this phenomenon is also reasonable for the distinction of ionization energy of different gas.The ionization energy of hydrogen atom is lower than Ar and He in which situation electrons can gain more energy from the RF power.Therefore, the electron temperature of pure hydrogen is higher than the gas mixture.As mentioned in Section 2,the diagnosis of the electron density is based on the electron temperature,the decrease of the electron temperature will lead to the increase of the electron density for a certain line ratio as shown in Fig.2. What is more,the proportion of the mixed noble gases makes no difference to the trend we observed as shown in Figs.13 and 14.From this point of view,the method of line intensity ratio of noble gas is still a very powerful tool that we can use for plasma diagnosis.

    Fig.14.(color online)Dependence of the electron density on the RF power for different ratios of mixed noble gases to hydrogen.

    4.4.Comparison with other methods

    Some research indicated that the electron temperature can be determined using the line intensity ratio of hydrogen.[21,22]This method is also used in our work by measuring the line intensities of Hαand Hβfor the determination of the electron temperature.Figure 15 presents the results for pure hydrogen and hydrogen with noble gas(gas mixture).It is obvious that the electron temperature is higher for pure hydrogen which is in accordance with the conclusion in Subsection 4.3.As mentioned in Subsection 4.1,the electron temperature first decreases significantly and then decreases slowly as the gas pressure increases.This trend is similar to the results reported by others using Thomson scattering measurements and Langmuir probes.Thus this law should be a typical result and should not be different for different methods.However,the hydrogen method cannot reflect this law as shown in Fig.16 because this method is based on the assumption of local thermal equilibrium(LTE).For plasma inside ECR ion source,the LTE assumption is not valid.The line intensity ratio of noble gas is without the limitation of LTE assumption and is reliable for electron temperature diagnosis.Based on these facts,more improvements are needed for the use of line intensity ratio of hydrogen inside ECR chamber,and the line intensity ratio of noble gas is recommended.But this does not mean the line intensity ratio of hydrogen is useless.On the contrary,this method can play an important role in the diagnosis for degree of dissociation,etc.More relevant work about hydrogen spectrum will be performed in the future.

    Fig.15.(color online)Dependence of the electron temperature on the gas pressure obtained by the method of line intensity ratio of hydrogen.

    Fig.16.(color online)Comparison of line intensity ratio of hydrogen and line intensity ratio of noble gas.

    5.Conclusion and prospects

    The electron temperature and electron density are measured for plasma inside 2.45 GHz ECRIS at PKU with OES method.The results show that the electron temperature decreases significantly as the gas pressure increases and nearly unaffects input RF power.The electron density increases rapidly with increasing RF power.And it is crucial to match the gas pressure with the input RF power for higher electron density.What is more,the species fraction and extraction beam current are mainly determined by the electron energy and electron density,respectively.All of the details and explanations are presented in this paper.In addition,we illustrate the influence of the noble gas on the diagnostic results and show the feasibility of the line intensity ratio method for plasma diagnosis.At last,the superiority of line intensity ratio of noble gas is indicated with a comparison to the line intensity ratio of hydrogen.

    A new 2.45 GHz microwave driven H?ion source with a quart window is designed for plasma diagnosis,more relevant work such as atomic and molecular spectroscopy for hydrogen plasma will be performed in the future.

    [1]Peng S X,Song Z Z,Yu J X,Ren H T,Zhang M,Yuan Z X,Lu P N, Zhao J,Chen J E,Guo Z Y and Lu Y R 2010 Proceedings of ECRIS10 August 23–26,2010,Grenoble,France,p.102

    [2]Song Z Z,Jiang D and Yu J X 1996 Rev.Sci.Instrum.67 1003

    [3]Peng S X,Zhang M,Song Z Z,Xu R,Zhao J,Yuan Z X,Yu J X,Chen J and Guo Z Y 2008 Rev.Sci.Instrum.79 02B706

    [4]Ren H T,Peng S X,Zhang M,Zhou Q F,Song Z Z,Xu Y,Lu P N, Xu R,Zhao J,Yu J X,Lu Y R,Guo Z Y and Chen J E 2010 Rev.Sci. Instrum.81 02B714

    [5]Peng S X,Zhang T,Ren H T,Zhang A L,Xu Y,Zhang J F,Guo Z Y and Chen J E 2016 Rev.Sci.Instrum.87 02B125

    [6]Gobin R,Benmeziane K,Delferrière O,Ferdinand R,Girard A and Harrault 2005 AIP Conference Proceedings 763 289

    [7]Sakoda T,Momii S,Uchino K,Muraoka K,Bowden M,Maeda M, Manabe Y,Kitagawa M and Kimura T 1991 Jpn.J.Appl.Phys.30 L1425

    [8]Bowden M D,Okamoto T,Kimura F,Muta H,Uchino K,Muraoka K, Sakoda T,Maeda M,Manabe Y,Kitagawa and Kimura T 1993 J.Appl. Phys.73 2732

    [9]Schmitt C,Bowers M,Collon P,Robertson D,Henderson D,Jiang C L,Pardo R C,Rehm E,Scott R,Vondrasek R,Calaprice F,Haas E D and Galbiati C 2008 Proceedings of ECRIS08,September 15–18,2008, Chicago,Illinois,USA,p.46

    [10]Button D and Hotchkis M A C 2008 Proceedings of ECRIS08,September 15–18,2008,Chicago,Illinois,USA,p.53

    [11]Thuillier T 2013 Proceedings of Cyclotrons2013,September 16–20, 2013 Vancouver,BC,Canada,p.130

    [12]Xu Y,Peng S X,Ren H T,Zhao J,Chen J,Zhang T,Zhang J F,Guo Z Y and Chen J E 2014 Proceedings of ECRIS2014 August 24–28,2014, Nizhny Novgorod,Russia,p.20

    [13]Fantz U 2006 Plasma Sources Sci.Technol.15 S137

    [14]Fantz U,Falter H,Franzen P,Wünderlich D,Berger M,Lorenz A, Kraus W,McNeely P,Riedl R and Speth E 2006 Nuclear.Fusion 46 S297

    [15]Fantz U 2004 Contrib.Plasma Phys.44 508

    [16]Qayyum A,Zeb S,Naveed M A,Ghauri S A,Zakaullah M and Waheed A 2005 J.Appl.Phys.98 103303

    [17]Oomori T,Tuda M,Ootera H and Ono K 1991 J.Vac.Sci.Technol.A 9 722

    [18]Xu Y,Peng S X,Ren H T,Zhao J,Chen J,Zhang A L,Zhang T,Guo Z Y and Chen J E 2014 Rev.Sci.Instrum.85 02A943

    [19]Jones E M 1977 Atomic Collision Processes in Plasma Physics Experiments II,Report CLM-R 175 UKAEA

    [20]Suzuki T,Sawado Y,Lida T and Fujii Y 2004 Rev.Sci.Instrum.75 1520

    [21]Lawrie S R,Faircloth D C and Philippe K 2012 Rev.Sci.Instrum.83 02A704

    [22]Jin D Z,Yang Z H,Tang P Y,Xiao K X and Dai J Y 2009 Vacuum.83 451

    24 February 2017;revised manuscript

    19 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/095204

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11175009 and 11575013).

    ?Corresponding author.E-mail:htren@pku.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    佳美海濤
    Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
    羅海濤作品
    國畫家(2022年3期)2022-06-16 05:30:06
    基于“脾胃內(nèi)傷”辨治隱源性機(jī)化性肺炎
    圓圓的世界
    感受肌理
    通過反思尋求最優(yōu)解
    風(fēng)雨嘀嗒正跑馬
    景年知意暖
    花火B(yǎng)(2015年23期)2015-10-26 03:41:59
    噻苯隆、金滿田、鈣佳美
    八筆描繪夏墊佳美的夢想
    亚洲精品aⅴ在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 女人被狂操c到高潮| 国产美女午夜福利| 国产免费视频播放在线视频 | 亚洲中文字幕一区二区三区有码在线看| 欧美区成人在线视频| 伊人久久精品亚洲午夜| 国产精品99久久久久久久久| 日韩欧美在线乱码| 夜夜爽夜夜爽视频| 亚洲av成人精品一区久久| 国产av一区在线观看免费| 日本三级黄在线观看| 久久久久久久久久久丰满| 亚洲精品456在线播放app| 桃色一区二区三区在线观看| 久久久色成人| 一级毛片我不卡| 久久午夜福利片| 性色avwww在线观看| 久久午夜福利片| 18禁在线无遮挡免费观看视频| 久久久久久大精品| 亚洲内射少妇av| 亚洲精品乱久久久久久| 我的女老师完整版在线观看| 久久婷婷人人爽人人干人人爱| 免费播放大片免费观看视频在线观看 | 中文字幕制服av| 欧美成人免费av一区二区三区| 丝袜喷水一区| 国产欧美日韩精品一区二区| 看黄色毛片网站| 日本熟妇午夜| 欧美日韩综合久久久久久| 22中文网久久字幕| 色噜噜av男人的天堂激情| 村上凉子中文字幕在线| 日本色播在线视频| 亚洲欧美成人综合另类久久久 | 亚洲av不卡在线观看| 一级av片app| 久久久国产成人精品二区| 春色校园在线视频观看| 18禁在线播放成人免费| 深爱激情五月婷婷| 综合色av麻豆| 久久久久久国产a免费观看| 淫秽高清视频在线观看| 久久久精品94久久精品| a级毛片免费高清观看在线播放| 男女边吃奶边做爰视频| 激情 狠狠 欧美| 免费观看人在逋| 女人十人毛片免费观看3o分钟| 亚洲高清免费不卡视频| 美女cb高潮喷水在线观看| 免费在线观看成人毛片| 精品欧美国产一区二区三| 中文字幕精品亚洲无线码一区| 水蜜桃什么品种好| a级毛色黄片| 18禁动态无遮挡网站| 国产精品久久电影中文字幕| 亚洲图色成人| av黄色大香蕉| 免费观看精品视频网站| 国产精品人妻久久久久久| 亚洲,欧美,日韩| 色网站视频免费| 神马国产精品三级电影在线观看| 哪个播放器可以免费观看大片| 免费av毛片视频| АⅤ资源中文在线天堂| 亚洲国产欧美人成| 男女视频在线观看网站免费| av女优亚洲男人天堂| 禁无遮挡网站| 久久久久九九精品影院| 麻豆成人午夜福利视频| 免费黄色在线免费观看| 久久久国产成人精品二区| 亚洲久久久久久中文字幕| 国产成人a区在线观看| 国产伦在线观看视频一区| 国产精品99久久久久久久久| 最近中文字幕2019免费版| 国产高清不卡午夜福利| 精品人妻偷拍中文字幕| 精品国产三级普通话版| 久久精品国产自在天天线| 亚洲精品乱久久久久久| 国产黄a三级三级三级人| 嫩草影院新地址| 亚洲精品国产av成人精品| 啦啦啦啦在线视频资源| 亚洲国产精品久久男人天堂| 日韩一区二区视频免费看| 久久精品国产亚洲av涩爱| 国产av码专区亚洲av| 久久精品人妻少妇| 国产精品av视频在线免费观看| 国产成人91sexporn| av又黄又爽大尺度在线免费看 | 18禁在线无遮挡免费观看视频| 熟女人妻精品中文字幕| 婷婷色av中文字幕| 成人美女网站在线观看视频| 亚洲在久久综合| 欧美日韩综合久久久久久| 中文天堂在线官网| 少妇被粗大猛烈的视频| 黑人高潮一二区| 免费看美女性在线毛片视频| 亚洲五月天丁香| 久久久久网色| 欧美极品一区二区三区四区| 赤兔流量卡办理| 中文亚洲av片在线观看爽| 国产亚洲5aaaaa淫片| 久久精品国产自在天天线| 亚洲精品日韩av片在线观看| av又黄又爽大尺度在线免费看 | 非洲黑人性xxxx精品又粗又长| 国产久久久一区二区三区| 99久久精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 欧美激情久久久久久爽电影| 亚洲精品aⅴ在线观看| 五月伊人婷婷丁香| 成年女人永久免费观看视频| 一级毛片久久久久久久久女| 美女cb高潮喷水在线观看| 国产精品蜜桃在线观看| 成人午夜精彩视频在线观看| 少妇高潮的动态图| 国产极品天堂在线| 日韩欧美三级三区| 91久久精品国产一区二区成人| 国产真实乱freesex| 精品99又大又爽又粗少妇毛片| 亚洲在线观看片| 内射极品少妇av片p| 国产一级毛片七仙女欲春2| 国产真实伦视频高清在线观看| 爱豆传媒免费全集在线观看| 国产精品精品国产色婷婷| 国产又黄又爽又无遮挡在线| 人人妻人人看人人澡| 亚洲中文字幕日韩| 日本色播在线视频| 国产一区二区在线av高清观看| 欧美激情在线99| 国产美女午夜福利| 国产色婷婷99| 亚洲经典国产精华液单| 啦啦啦观看免费观看视频高清| 国产亚洲精品久久久com| 桃色一区二区三区在线观看| 久久久久久久亚洲中文字幕| 黄色一级大片看看| 22中文网久久字幕| 亚洲怡红院男人天堂| 我要搜黄色片| 久久久国产成人免费| 中文字幕亚洲精品专区| 国产淫语在线视频| 大香蕉久久网| 亚洲激情五月婷婷啪啪| 亚洲18禁久久av| 一本久久精品| 国产乱来视频区| 国产一区有黄有色的免费视频 | 九九爱精品视频在线观看| 午夜视频国产福利| .国产精品久久| 国产真实伦视频高清在线观看| 色综合站精品国产| 简卡轻食公司| 国产 一区 欧美 日韩| 免费看光身美女| 国产免费福利视频在线观看| 亚洲美女视频黄频| 噜噜噜噜噜久久久久久91| av卡一久久| 国产69精品久久久久777片| 成人美女网站在线观看视频| 岛国毛片在线播放| 国产三级中文精品| 国产成人91sexporn| 日日干狠狠操夜夜爽| 99热全是精品| 国产淫语在线视频| 欧美最新免费一区二区三区| 国产 一区精品| 国产黄a三级三级三级人| 好男人在线观看高清免费视频| 直男gayav资源| 三级经典国产精品| 精品一区二区免费观看| 精品免费久久久久久久清纯| 在线免费观看不下载黄p国产| 亚洲在线自拍视频| 老司机影院毛片| 国产 一区精品| 深爱激情五月婷婷| 午夜激情福利司机影院| 亚洲丝袜综合中文字幕| ponron亚洲| 男女边吃奶边做爰视频| 亚洲成人久久爱视频| 十八禁国产超污无遮挡网站| 日本黄色视频三级网站网址| 26uuu在线亚洲综合色| 视频中文字幕在线观看| 久久精品国产99精品国产亚洲性色| 99热这里只有精品一区| 欧美日韩国产亚洲二区| 男的添女的下面高潮视频| 国产精品三级大全| 人妻少妇偷人精品九色| 久久人妻av系列| 99视频精品全部免费 在线| 国产成人91sexporn| 久久午夜福利片| 国产91av在线免费观看| 99久久精品一区二区三区| 日韩精品青青久久久久久| 免费看美女性在线毛片视频| 国产乱来视频区| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 精品久久国产蜜桃| 少妇熟女欧美另类| 麻豆成人av视频| 中文欧美无线码| 欧美zozozo另类| 国产v大片淫在线免费观看| 国产精品乱码一区二三区的特点| 亚洲成人精品中文字幕电影| 观看美女的网站| 91精品国产九色| av在线亚洲专区| 亚洲成人精品中文字幕电影| 精品免费久久久久久久清纯| 嘟嘟电影网在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久国产乱子免费精品| 一级毛片久久久久久久久女| 蜜桃久久精品国产亚洲av| 在线a可以看的网站| 久久这里只有精品中国| 男女视频在线观看网站免费| 久久久久久久久久久丰满| 精品酒店卫生间| 哪个播放器可以免费观看大片| av在线播放精品| 国产精品国产三级国产专区5o | 婷婷色麻豆天堂久久 | 欧美潮喷喷水| 久久精品人妻少妇| 亚洲最大成人av| 免费在线观看成人毛片| kizo精华| 亚洲精品日韩av片在线观看| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 亚洲最大成人中文| 国产一区二区在线观看日韩| 嫩草影院入口| 久久久久久久亚洲中文字幕| 午夜福利高清视频| 国产精品精品国产色婷婷| 熟女人妻精品中文字幕| 欧美变态另类bdsm刘玥| 亚洲乱码一区二区免费版| 欧美zozozo另类| 国产在线一区二区三区精 | 高清av免费在线| 三级毛片av免费| 亚洲性久久影院| 午夜a级毛片| 国产高清有码在线观看视频| 特大巨黑吊av在线直播| 夫妻性生交免费视频一级片| 在线免费观看的www视频| 亚洲欧美中文字幕日韩二区| 久久这里有精品视频免费| 日韩av在线免费看完整版不卡| 丰满乱子伦码专区| 国产黄色视频一区二区在线观看 | 高清av免费在线| 韩国av在线不卡| 三级经典国产精品| 亚洲av免费在线观看| 在线免费观看不下载黄p国产| 看免费成人av毛片| 国产男人的电影天堂91| 国产中年淑女户外野战色| 日韩国内少妇激情av| 色综合亚洲欧美另类图片| 亚洲人与动物交配视频| 国产伦一二天堂av在线观看| 日韩av不卡免费在线播放| 两个人视频免费观看高清| 亚洲图色成人| 日韩欧美 国产精品| 搡老妇女老女人老熟妇| 极品教师在线视频| 欧美日韩一区二区视频在线观看视频在线 | 国产三级中文精品| 免费大片18禁| 色尼玛亚洲综合影院| av在线蜜桃| 97在线视频观看| 女的被弄到高潮叫床怎么办| 国产精品1区2区在线观看.| 床上黄色一级片| 亚洲精品456在线播放app| 欧美不卡视频在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | АⅤ资源中文在线天堂| 99久久无色码亚洲精品果冻| 中文字幕久久专区| 亚洲成人精品中文字幕电影| 午夜福利视频1000在线观看| 久久这里有精品视频免费| 久久精品久久久久久噜噜老黄 | 成人毛片a级毛片在线播放| 国产精品女同一区二区软件| av线在线观看网站| 日本-黄色视频高清免费观看| 国产精品日韩av在线免费观看| 老司机福利观看| 寂寞人妻少妇视频99o| 亚洲最大成人av| 直男gayav资源| 2022亚洲国产成人精品| 性插视频无遮挡在线免费观看| 99热精品在线国产| 深夜a级毛片| 男人和女人高潮做爰伦理| 日本熟妇午夜| 国产高清视频在线观看网站| 麻豆精品久久久久久蜜桃| 精品不卡国产一区二区三区| 激情 狠狠 欧美| 高清毛片免费看| 亚洲精品日韩在线中文字幕| 亚洲精品影视一区二区三区av| 亚洲人成网站高清观看| 亚洲激情五月婷婷啪啪| 99久久无色码亚洲精品果冻| 久久精品熟女亚洲av麻豆精品 | 国产高清不卡午夜福利| 精品久久国产蜜桃| 亚洲一区高清亚洲精品| .国产精品久久| 国产亚洲最大av| 中文字幕制服av| 日韩人妻高清精品专区| 99久久无色码亚洲精品果冻| 成人一区二区视频在线观看| 国产真实伦视频高清在线观看| 老司机影院成人| 欧美人与善性xxx| 日本wwww免费看| 亚洲人与动物交配视频| 三级经典国产精品| 有码 亚洲区| 别揉我奶头 嗯啊视频| 国产精品综合久久久久久久免费| 亚洲av电影在线观看一区二区三区 | 中文亚洲av片在线观看爽| 亚洲av电影在线观看一区二区三区 | 波多野结衣高清无吗| 99国产精品一区二区蜜桃av| 午夜精品一区二区三区免费看| 少妇人妻一区二区三区视频| 欧美成人一区二区免费高清观看| 精品国内亚洲2022精品成人| 亚洲精品成人久久久久久| 久久国内精品自在自线图片| 国产淫语在线视频| 免费观看a级毛片全部| 亚洲欧美中文字幕日韩二区| 99久久九九国产精品国产免费| 亚洲一级一片aⅴ在线观看| 麻豆成人午夜福利视频| 日本熟妇午夜| 亚洲av免费在线观看| 青春草国产在线视频| 欧美区成人在线视频| 中国国产av一级| 真实男女啪啪啪动态图| 国产一区二区三区av在线| 精品欧美国产一区二区三| www.av在线官网国产| 麻豆国产97在线/欧美| 国产在视频线在精品| 国内少妇人妻偷人精品xxx网站| 欧美激情在线99| 日韩视频在线欧美| 日韩精品青青久久久久久| 国产精品久久视频播放| 小蜜桃在线观看免费完整版高清| 热99在线观看视频| 日韩一区二区三区影片| 夜夜看夜夜爽夜夜摸| 身体一侧抽搐| 69人妻影院| 看片在线看免费视频| 亚洲自拍偷在线| 亚洲最大成人手机在线| 日韩,欧美,国产一区二区三区 | 亚洲av成人精品一区久久| 欧美日韩精品成人综合77777| 欧美色视频一区免费| 欧美激情国产日韩精品一区| 免费av毛片视频| 老司机福利观看| 男女啪啪激烈高潮av片| 一本久久精品| 特级一级黄色大片| 国产亚洲91精品色在线| 一卡2卡三卡四卡精品乱码亚洲| 日本免费一区二区三区高清不卡| 色播亚洲综合网| 亚洲成av人片在线播放无| 国产成人免费观看mmmm| 干丝袜人妻中文字幕| 国内少妇人妻偷人精品xxx网站| 毛片一级片免费看久久久久| 小蜜桃在线观看免费完整版高清| 我的女老师完整版在线观看| 一级av片app| 久久欧美精品欧美久久欧美| 亚洲最大成人手机在线| 国产成人freesex在线| 久久久精品欧美日韩精品| 国产又黄又爽又无遮挡在线| 3wmmmm亚洲av在线观看| 国产乱来视频区| 日韩欧美 国产精品| 男人的好看免费观看在线视频| 大香蕉久久网| 亚洲最大成人av| 久久久精品大字幕| 亚洲美女视频黄频| 99热这里只有是精品在线观看| 亚洲av日韩在线播放| 性插视频无遮挡在线免费观看| 国产av在哪里看| 亚洲,欧美,日韩| 麻豆国产97在线/欧美| 十八禁国产超污无遮挡网站| 午夜a级毛片| a级毛色黄片| 中文字幕av成人在线电影| 国产高清有码在线观看视频| 中文资源天堂在线| 变态另类丝袜制服| 午夜久久久久精精品| 美女国产视频在线观看| 九九爱精品视频在线观看| 成人三级黄色视频| 成年免费大片在线观看| 中文字幕av成人在线电影| 亚洲四区av| 免费av不卡在线播放| 一级毛片久久久久久久久女| 久久亚洲国产成人精品v| 成人特级av手机在线观看| 黄色欧美视频在线观看| 亚洲伊人久久精品综合 | kizo精华| 久久久久久久午夜电影| 日韩一区二区视频免费看| 97超视频在线观看视频| 女的被弄到高潮叫床怎么办| 村上凉子中文字幕在线| 国产视频内射| 亚洲av中文av极速乱| 水蜜桃什么品种好| 美女脱内裤让男人舔精品视频| av国产久精品久网站免费入址| 夫妻性生交免费视频一级片| 欧美激情在线99| 国产成人freesex在线| 日韩成人av中文字幕在线观看| 色5月婷婷丁香| 最近视频中文字幕2019在线8| 成人午夜精彩视频在线观看| 久久人人爽人人爽人人片va| 亚洲精品乱码久久久v下载方式| 精华霜和精华液先用哪个| 韩国高清视频一区二区三区| 久久久午夜欧美精品| 精品人妻熟女av久视频| 欧美日韩综合久久久久久| 国产一区二区在线av高清观看| 欧美97在线视频| av又黄又爽大尺度在线免费看 | 亚洲电影在线观看av| 国产在视频线精品| 国产白丝娇喘喷水9色精品| 久久精品久久精品一区二区三区| 搞女人的毛片| 一个人免费在线观看电影| 国产成人一区二区在线| 亚洲精品国产成人久久av| 99久久精品一区二区三区| 床上黄色一级片| 亚洲丝袜综合中文字幕| 久久人人爽人人爽人人片va| 大又大粗又爽又黄少妇毛片口| 久久精品影院6| 黄色欧美视频在线观看| 国产成年人精品一区二区| 观看免费一级毛片| 天堂√8在线中文| 大又大粗又爽又黄少妇毛片口| 又粗又硬又长又爽又黄的视频| 成人美女网站在线观看视频| 欧美精品国产亚洲| 黑人高潮一二区| 非洲黑人性xxxx精品又粗又长| 亚洲精品aⅴ在线观看| 国产老妇伦熟女老妇高清| 亚洲中文字幕一区二区三区有码在线看| 一级毛片久久久久久久久女| 熟妇人妻久久中文字幕3abv| 18禁在线播放成人免费| 高清视频免费观看一区二区 | 亚洲欧美日韩卡通动漫| 久久鲁丝午夜福利片| 女人十人毛片免费观看3o分钟| 国产毛片a区久久久久| 欧美zozozo另类| 99久久九九国产精品国产免费| 一个人观看的视频www高清免费观看| 国产精品.久久久| 亚洲精品影视一区二区三区av| 亚洲av二区三区四区| 免费搜索国产男女视频| 亚洲色图av天堂| 国产成人a∨麻豆精品| 插逼视频在线观看| 国产高清有码在线观看视频| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 国产精品永久免费网站| 免费看a级黄色片| 最近的中文字幕免费完整| 日产精品乱码卡一卡2卡三| 成人鲁丝片一二三区免费| 97人妻精品一区二区三区麻豆| 欧美成人精品欧美一级黄| 国产伦精品一区二区三区视频9| av黄色大香蕉| av又黄又爽大尺度在线免费看 | 纵有疾风起免费观看全集完整版 | 91狼人影院| 免费观看性生交大片5| 亚洲国产精品合色在线| 91久久精品国产一区二区成人| 在线观看66精品国产| 亚洲综合精品二区| 人妻夜夜爽99麻豆av| 日韩 亚洲 欧美在线| 午夜日本视频在线| 桃色一区二区三区在线观看| www日本黄色视频网| 午夜久久久久精精品| 一边亲一边摸免费视频| 午夜免费男女啪啪视频观看| 免费看美女性在线毛片视频| 白带黄色成豆腐渣| 一本久久精品| 国产高潮美女av| 韩国av在线不卡| 免费观看a级毛片全部| 亚洲不卡免费看| 亚州av有码| 久久这里有精品视频免费| 淫秽高清视频在线观看| 国产午夜精品论理片| 国产黄色小视频在线观看| 网址你懂的国产日韩在线| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站| 久久人人爽人人片av| 婷婷色综合大香蕉| 精品久久久久久久久久久久久| 亚洲精品色激情综合| 成人一区二区视频在线观看| 亚洲av电影在线观看一区二区三区 | 国产白丝娇喘喷水9色精品| 亚洲熟妇中文字幕五十中出| 青春草国产在线视频| 午夜日本视频在线| 国产片特级美女逼逼视频| 伦理电影大哥的女人| 综合色av麻豆| 午夜久久久久精精品| 亚洲欧美精品专区久久| 国产真实乱freesex| 大香蕉久久网| 69人妻影院| 永久网站在线| 最近手机中文字幕大全| 午夜福利网站1000一区二区三区| 麻豆乱淫一区二区| 日韩精品有码人妻一区|