• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping

    2022-09-24 08:00:16DaWeiLi李大為TaoWang王韜XiaoLeiYin尹曉蕾LiWang王利JiaMeiLi李佳美HuiYu余惠YongCui崔勇TianXiongZhang張?zhí)煨?/span>XingQiangLu盧興強(qiáng)andGuangXu徐光
    Chinese Physics B 2022年9期
    關(guān)鍵詞:王利佳美王韜

    Da-Wei Li(李大為) Tao Wang(王韜) Xiao-Lei Yin(尹曉蕾) Li Wang(王利) Jia-Mei Li(李佳美)Hui Yu(余惠) Yong Cui(崔勇) Tian-Xiong Zhang(張?zhí)煨? Xing-Qiang Lu(盧興強(qiáng)) and Guang Xu(徐光)

    1Key Laboratory of High Power Laser and Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    2Shanghai Institute of Laser Plasma,Chinese Academy of Engineering Physics,Shanghai 201800,China

    3Changzhou Institute of Technology,School of Sciences,Changzhou 213032,China

    4Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: SG PW laser,bandwidth expansion,B-integral,spectral shaping

    1. Introduction

    Since the advent of chirped pulse amplification technology, alongside several to hundreds of nanosecond laser beams,[1-5]the kilojoule-level and picosecond petawatt (PW,1015W) lasers, which are mainly based on the same amplified chain,play important roles in the experiments concerning inertial confinement fusion (ICF)[6-8]and high-energy density sciences.[9-12]However, compared to the energy of the 17 kJ level for nanosecond pulses,the amplified energy of the kilojoule-level PW laser pulse is mainly limited by the systemB-integral,which should be designed to be not larger than two to guarantee the compressed pulse duration and temporal contrast.[13]In addition,the gain-narrowing effect reduces the spectrum bandwidth to 3 nm, while also shortening the pulse duration of the chirped pulse; this restricts the energy of the amplified pulse because of the limited damage threshold of optical elements. Furthermore,the bandwidth limits the compressed pulse duration,which cannot be less than 470 fs.[14-17]Therefore,to improve the existing PW laser to achieve 5 PW-10 PW peak power with multi-kJ energy and duration of hundred femtoseconds,bandwidth expansion,and pulse shape optimized by compensating the gain-narrowing via spectral shaping is a better alternative.

    There are many spectral shaping methods for bandwidth expansions. However, acoustic optic programmable dispersion filters (AOPDFs)[18]and spatial light modulators(SLMs)[19]are only employed for low energies because of their limited damage threshold. The spectral shapes controlled by the time shape of the pump laser in optical parametric chirped-pulse amplification(OPCPA)[20]and spectral filter mirror[21]are mainly used for the wider spectral bandwidth with pulse durations of 30 fs-150 fs. Additionally, these demand complicated design,expensive pump lasers,and difficult to fabricate filters, which are not suitable for the bandwidth of several nanometers of the picosecond PW lasers. Birefringent filters[22]can be used for bandwidth broadening in a regenerative amplifier with the Joule level[23]at 1054 nm,and have been predicted to improve energy by minimizing the risk of damage to mirrors.[24]Moreover,the bandwidth is extended to 15 nm with a compressed pulse duration of 150 fs using mixed glass,the energy achieves 150 J in the Texas PW laser system,[25]and larger energy is designed to 1500 J with 150 fs for ELI beamlines.[20]Compared to other picosecond PW lasers,Texas and ELI use different seed,stretcher,and amplifier modules. To the best of our knowledge,this is the first simulated design and experimental demonstration of spectral shaping using LiNbO3birefringent plate for bandwidth expansion of 7 nm with the energy of 2 kJ based on an existing picosecond PW laser.

    In this study,a theoretical model for a round trip chirped pulse amplification is described. The bandwidth expansion for the SG PW laser and the corresponding systemB-integral are discussed, together with the output spectrum with gainnarrowing,and the required spectral shape parameters for different output bandwidths are covered. The systemB-integral and depletion population inversion of the final amplifier is compared and the criterion of theB-integral for a bandwidth expansion of 7 nm is given. Furthermore,a demonstration experiment for bandwidth expansion of 7 nm with the energy of 2 kJ, which uses spectral shaping based on the LiNbO3birefringent plate and installed after OPCPA. The results suggest that the existing Nd:glass amplifier chain of SG PW laser can afford even 10 PW(4.8 kJ,480 fs)output,which will be beneficial for the performance improvement of single PW beams and the coherent beam combination of multi-PW beams[26]in the future.

    2. Theoretical model

    As shown in Fig. 1, the SG PW laser system consists of five blocks.[27](i) The seed, which is a commercial SESAM mode-locked Nd:glass oscillator(Time-Bandwidth,GLX200),achieves 250 fs pulse duration with full width at half maximum(FWHM)of 6.5 nm at 1054 nm. (ii)The stretcher,which uses the Offner structure to offer 2nd dispersion, which achieves a pulse duration of 3.3 ns. (iii) The OPCPA amplifier block,which can produce pulse energy of 60 mJ, a spectral bandwidth of 10 nm(FWHM),a pulse duration of 5 ns(5th super-Gaussian shape) at 1 Hz. (iv) The rod and disk amplifiers,which include rod (twoφ40 mm and twoφ70 mm rod modules)and disk amplifiers(twoφ100 mm,threeφ200 mm and threeφ350 mm disk modules),and use N31type Nd:glass,can amplify the chirped pulse from several millijoules to 2 kJ with 3 nm (FWHM) withB-integral of 1.72. (v) The compressor and focus, which include four 1740 lines/mm, 1 m×0.35 m large gratings, 0.8 m off-axis parabolic mirror, vacuum system,and diagnostic equipment.

    The cumulativeB-integral in CPA plays an important role in determining the shape of the compressed pulses, which introduces a background pedestal and makes pulse duration wider. According to the thumb rule that the cumulativeBintegral should be≤2,[13]the pulse duration will be shorter than two times FTL and keep a better contrast.[27]The SG PW laser can output 2 kJ with a bandwidth of 3 nm, which is mainly limited by the designedB-integral value of 1.72[27]and the damage threshold of the mirrors. In the scheme of bandwidth expansion and pulse shape optimized in this study,a spectral shaping device based on a LiNbO3birefringent plate is placed behind the OPCPA block.After gain-narrowing compensation, the output spectral bandwidth of the CPA can be broadened, and the systemB-integral and the power density on mirrors can be decreased simultaneously; therefore, the output energy can be improved compared to existing the gainnarrowing effect. Nevertheless,the spectral shape parameters required for bandwidth expansion need to be analyzed.

    The propagation of light pulses in the CPA progress can be expressed as follows:[13]

    whereE(z,t),P0(z,t), andN(z,t)are the electric field, polarization intensity, and population inversion, respectively, andzandtare the distance and time variation, respectively.ω0andωaare the carrier frequency and line center frequency,respectively.εandcare the dielectric constant and light speed in a vacuum.β''is the group velocity dispersion of the laser in the gain medium;β2=2πn2/λ;n2is the nonlinear refractive index of the transmission medium,andλis the laser wavelength in vacuum. Δωais the full atomic linewidth;K=εcσΔωa;σ0is relevant to the stimulated emission crosssection(SECS),and ? is the Planck constant. In this study,we do not consider the influence of the spatial distribution of the beam on broadband laser amplification,but only consider the one-dimensional case in the frequency and time domain.

    Here,the electric field intensity can be described as

    whereE0is the peak intensity of the initial pulse electric field;nis the Gaussian pulse order (n=1 is for Gauss, andn >1 is for super-Gauss);τis the pulse duration,andCis the chirp coefficient of the broadband laser, which is generated by the stretcher and compensated by the compressor.

    Equations (1)-(4) can be simulated using the split-step Fourier and Runge-Kutta methods. The inverse problem of a laser amplifier can be solved using the same methods.[28,29]

    Fig.1. Block diagram of the existing SG PW laser system.

    Equation(5)shows how theB-integral, an important parameter is defined,which evaluates self-phase modulation and influences the compressed pulse duration and time fidelity,

    whereλ0is the center wavelength, andLis the length of the medium. TheB-integral varies with time; in this study, only the maximumBin the time domain was considered. When a birefringent plate[22,30]is used for spectral shaping,as shown in Fig. 2. The free spectral range of the plate is proportional to 1/(|Δn|d),[31]where|Δn|=|ne-no| anddis the thickness. Compared to commonly used quartz crystals with|Δn|=0.0087 at 1053 nm,the|Δn|of LiNbO3is 0.076,which results in the thickness of LiNbO3being nearly one-ninth to quartz,and can effectively reduce the effect of beam displacement in the experiment. Therefore, the LiNbO3birefringent plate was used here and set between two polarizers, tilted byθ(relative to the incident surface), and rotated byφ(relative to the optical axis). The shaped pulse energy can be controlled by a half-wave plate together with P1 to meet the injected demand. The damage threshold of LiNbO3after the coating is>3 J/cm2with a maximum diameter of 76 mm, can afford high energy spectrum shaping compared to using the AOPDF and SLM.

    Fig.2. Scheme of the spectral shaping based on a LiNbO3 birefringent plate.P1,P2: polarizers;HWP:half-wave plate.

    The electric field can be described by Eq.(6),and the intensityITMcan be expressed by Eq.(7);

    wherenois the refractive index of the ordinary polarization in the birefringent plate;δoandδedenote the optical paths of the ordinary and extraordinary transmissions in the plate.ωandωare the laser frequency and center frequency.

    3. Bandwidth expansion and pulse shape optimization

    3.1. Bandwidth expansion design with gain-narrowing compensation

    The gain factor, SECS spectrum of Nd:glass,and the input spectral shape constrict the bandwidth expansion of the SG PW laser. To amplify the pulse energy from the millijoule to the kilojoule level and take into account the propagation, the total gain factor is approximately 107. The SECS spectrum of N31Nd:glass[32,33]is shown in Fig.3,where the fluorescence half-line width is 20 nm centered at 1054 nm and normalized to 3.9×10-20cm2. The gain factor and SECS spectrum of the Nd: glass was fixed after the system was established. Therefore, gain-narrowing compensation via spectral shaping is an efficient way to achieve bandwidth expansion and pulse shape optimization, which can efficiently improve the output capability simultaneously.

    Fig.3. The normalized SECS spectrum of N31 neodymium glass.

    In the numerical simulation, an ideal super-Gaussian shape(5th)with a spectral bandwidth of 10 nm(FWHM)and a pulse duration of 5 ns is used as seed,which is fitted from the experimental result of OPCPA. Before the subsequent analysis, the calibration of the simulation to experiment result is done based on the SG PW laser with the gain-narrowing effect. The output spectrum bandwidth of CPA is reduced to 3 nm at 2 kJ with 10 nm and energy of 3 mJ injection,which is shown in Fig.4(a),and the energy is mainly limited by theB-integral and damage threshold of the mirrors. After that,the goals of energy and spectral bandwidth for CPA amplification are fixed,then the input requirements are obtained by solving the inverse progress of Eqs.(1)-(4).

    Figures 4(b)-4(f)show the comparisons of the amplified output spectral bandwidths at goal energy of 2 kJ for 6,7,8,9,and 15 nm(5th Gaussian shape)with gain-narrowing compensation. The spectral shape and energy are simulated at three positions before and after the rod amplifier,and after the disk amplifier in the CPA block.

    According to the results in Fig.4(a),the simulated bandwidth of 10 nm with an injected energy of 3 mJ from OPCPA is reduced to be 3 nm with an output energy of 2 kJ in the SG PW facility,which is consistent with the experimental results.By contrast, figures 4(b)-4(f) display bandwidth expansions for 6, 7, 8, 9, and 15 nm (5th Gaussian shape and 0.5 ns/nm chirped ratio)with the same output energy of 2 kJ,and the required input spectral shape and energy before the rod and disk amplifier are given at the same time. The detailed parameters of energy, spectral shaping efficiency, and modulation depth defined by the deviation of the intensity between valley and peak at center wavelength are listed in Table 1. The efficiency is evaluated by the ratio of spectrum area(before rod and after disk amplifier for simplifying here). Caused by the SECS of N31neodymium glass(Fig.3),the highest gain is located at the center wavelength of 1054 nm,which leads to the larger bandwidth expansion needing the deeper modulation at 1054 nm,the wider spectral range,and the larger injected energy.

    Table 1. The required input parameters for different bandwidth expansions.

    Fig.4.The required comparisons of spectral shape and energy with output energy of 2 kJ at different positions.(a)Comparison of simulated and experimental results with gain-narrowing. (b)-(f)Bandwidth extended requirements for 6,7,8,9,and 15 nm.

    As seen from Fig. 4(a), the output bandwidth after rod amplifier is 3.6 nm, this position no more suits the requirement for bandwidth expansion further,the spectral shaper device should be installed before rod amplifier. On the other hand, considering the nonlinear amplification in OPCPA, the energy stability will get worse when the injected energy and shaped spectrum are changing, and it is more complicated to fix the demand output spectral shape by OPCPA. Therefore,the shaper is set behind the OPCPA in design and experimental demonstration. As shown in Fig.4(f),in the progress of spectral expansion for 15 nm,the depth of modulation is too deep to be achieved and measured, and the sharper and narrower spectrum brings to higher intensity because of the linear chirp,which makes a largerB-integral. After compared, bandwidth expansion of 7 nm is a better choice here, which requires the shaped pulse energy of 6 mJ with an efficiency of 34%as the seed, and the spectral modulation depth is 93% at the center wavelength of 1054 nm.

    In addition,to ensure the original function of the SG PW laser, it is demanded to switch quickly between shaping and non-shaping case. Benefit from the thin LiNbO3, which can reduce the effect of beam displacement effectively, need to change nothing except for adding a LiNbO3birefringent plate in the existing energy adjustable module in OPCPA.

    3.2. System B-integral and energy output capability for bandwidth expansion

    The evaluation ofB-integral for bandwidth expansion after different amplifiers is given by Fig. 5(a), which is calculated by Eqs.(1)-(4). The systemB-integral is approximately 1 with bandwidth expansion from 6 nm to 9 nm and increased to theB-integral of 1.72 for the bandwidth of 3 nm with gainnarrowing.The simulated parameters are the same as in Fig.4.However,theB-integral for the 15 nm bandwidth expansion is 2.5, which is caused by the significantly spectral modulation in amplification,as displayed in Fig.4(f). Because of the linear chirp of the broadband pulse, the narrower spectral shape means a shorter pulse duration and results in a higher intensity for bandwidth expansion of 15 nm,which demands higher input energy of 0.95 J. Moreover, the narrower pulse duration goes through more amplifiers until reaching saturation amplification. Those reasons lead to the largerB-integral for bandwidth expansion of 15 nm compared to others.

    On the other hand, figure 5(b) shows the population inversion of the 350203 amplifier for different bandwidth expansions at 2 kJ.Only 25%of the population in the upper energy level is used,which means that the amplifier can output energy of at least 6 kJ if 75%of the population is employed.

    Fig. 5. (a) The cumulative B-integral after rod and disk amplifiers; (b) the relative population inversion of 350203 amplifier for different bandwidth expansions of 3,6,7,8,9,and 15 nm.

    3.3. The contrast characteristics with different bandwidth expansions and B-integrals

    The contrasts with a pulse duration of FTL with a time range of±10 ps for different bandwidths expansions are compared in Fig. 6, which uses theB-integral of Fig. 5(a). As shown in Fig. 6(a), the bandwidth from 3 nm to 9 nm has nearly the same FTL duration of 470 fs, the pulse duration for bandwidth of 15 nm withB-integral of 2.5 has not doubled compared to Gaussian shape whichB-integral above 2[27]and shorter than others, which is benefit from the super-Gaussian shape. The contrasts worsen at-10 ps with bandwidth expansions because of the influence of the spectral shape,which agrees with the results of the gain-narrowing effect.[13]Even so, the contrast can still meet the requirement of<10-8at-10 ps after bandwidth expansion.

    Fig.6.The pulse durations of FTL(a)and the contrasts(b)with computed Bintegral(same as Fig.4)at the time range of±10 ps for different bandwidths of 3,6,7,8,9,and 15 nm.

    Fig.7. The compressed pulse is given in linear(a)and log scale(b)for pulse durations of FTL.

    Furthermore, to investigate the energy output capability of the SG PW laser,the influences of the pulse duration andBintegral on the contrast with a bandwidth of 7 nm are compared in Fig.7.Here,the spectrum shape with the bandwidth of 7 nm is checked from Fig.4(c),and the extraB-integral are added to the uncompressed amplified chirped pulse,which is similar to the method.[13]Figure 7(a)shows that the contrasts are 10-12,10-11, 10-9, and 10-8at-10 ps withB-integrals of 1, 2,3, and 4, while the compressed pulse duration of~470 fs is given in Fig.7(b).Because theB-integral adds extra frequency chirp to the original linear frequency chirp of the compressed pulse and changes the laser power, which makes the contrast smooth but the noise higher as theB-integral increases,which are according to similar reported results.[34,35]Compared to the Gaussian spectral shape whereB-integral should be designed to be≤2, which mainly ensures that the energy is concentrated within twice pulse duration. The cumulativeBintegral can be designed toπwhen the spectrum is changed to a super-Gaussian shape similar to theB-integral result of 4.5,[17]which can guarantee the contrast of 10-8without pulse duration broadening much. Therefore, compared to the case with gain-narrowing, the energy output capability of the SG PW laser can be effectively increased via bandwidth expansions.

    4. Experiment results

    To demonstrate the bandwidth expansion effect for the SG PW laser, an experiment was conducted. First, the required parameters for the bandwidth expansion were confirmed. The spectral shape of the OPCPA amplifier is shown in Fig. 8(a),which has a bandwidth of 10 nm centered at 1054 nm with an energy of 60 mJ(RMS=2%). The output spectrum bandwidth is narrowed to 3 nm FWHM(Fig.4(a))with an energy of 2 kJ without spectral shaping. After comparing the required bandwidth, energy, and shaping efficiency, it was concluded that the best choice for bandwidth expansion is 7 nm, which requires the energy of 6 mJ with an efficiency of 34% efficiency and needs 17.6 mJ from the OPCPA with a total energy of 60 mJ.

    Fig.8. The output spectrum of OPCPA in the SG PW laser,and the transmission curves of LiNbO3 with φ =36 degree and θ =40, 50, and 60 degrees for a 1 mm LiNbO3 birefringent plate.

    To compensate the gain-narrowing effect by spectral shaping,and according to Fig.2,a spectral shaping device was installed behind OPCPA. Based on the OPCPA output spectrum of 10 nm FWHM(Fig.8(a)),with the goal of bandwidth expansion of 7 nm(Fig.4(c)),the length of the LiNbO3birefringent plate is designed and fabricated to be 1 mm with a coating(T >98%)for 1054 nm±20 nm. The designed transmission curves for a 1 mm LiNbO3are shown in Fig.8(b),in which the modulated depth of spectrum shaping is achieved by setting the angle ofφto 36 degrees,and the center wavelength is controlled byθto 50 degrees.

    The required experimental shaped spectrum is displayed in Fig.9(a)by adjusting the LiNbO3birefringent plate,which is measured by optical fiber spectrometer (HR4000 from Ocean). The efficiency of the filter is about 50% and larger than the design of 34%in Table 1,which is caused by the difference of the injected spectrums. The difference between the two is because the spectrum bandwidth of 10 nm from OPCPA is larger than the theoretical design,but the center area of the spectrum is suitable for a bandwidth expansion of 7 nm, and the wavelength range means to have the ability for broadening more with a larger injected energy, as shown in Table 1. The amplified spectrum after CPA is displayed in Fig.9(b),which is measured by an optical grating spectrometer(ARC-SP-2760 from Princeton Instruments), the detailed modulations come from the noise of the infrared detector. From the compared results,the experimental bandwidth of 7 nm corresponds to the design, and the spectral shaping by the LiNbO3birefringent plate is effective.

    Furthermore, if the energy of the injected shaped seed is increased from 6 mJ to 18 mJ,which can be afforded by nearly updated OPCPA with the energy of 1 J.The output energy after CPA can be increased to be at least 6 kJ with aB-integral less thanπ,and it can afford 10 PW with a compressed pulse energy of 4.8 kJ(efficiency=80%)at 480 fs.

    Fig.9. The results for bandwidth expansion of bandwidth of 7 nm with the energy of 2 kJ,based on the SG PW laser by using LiNbO3 birefringent spectral shaping. The injected(a)and output(b)spectrum of CPA amplification with design(dash line)and experimental(solid line)are demonstrated.

    5. Conclusion and perspectives

    A bandwidth expansion and pulse shape optimized scheme for the SG PW laser via LiNbO3birefringent spectral shaping is designed and experimentally demonstrated. The gain-narrowing compensation with different bandwidth expansions is analyzed, and the required injected parameters of the broadband pulse are confirmed. A bandwidth expansion of 7 nm and the energy of 2 kJ with aB-integral of 1 is achieved,which corresponds to the theoretical design. The results indicate that the SG Nd:glass amplifier chain can output energy of more than 6 kJ with aB-integral ofπ, which can afford the demands of bandwidth and energy for 10 PW laser design with a compressed pulse energy of 4.8 kJ(efficiency=80%)at 480 fs. The results will be beneficial for the performance improvement of single PW beams and the coherent beam combination of multi-PW beams also in the future.

    Acknowledgments

    Project supported by the International Partnership Program of Chinese Academy of Sciences (Grant No.181231KYSB20170022)and the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.20KJB140020).

    猜你喜歡
    王利佳美王韜
    紡織+非遺,讓傳統(tǒng)文化在紡城“潮”起來
    保護(hù)知識產(chǎn)權(quán) 激發(fā)創(chuàng)新動能
    基于“脾胃內(nèi)傷”辨治隱源性機(jī)化性肺炎
    Hydrogen isotopic replacement and microstructure evolution in zirconium deuteride implanted by 150 keV protons?
    Quantum dynamics on a lossy non-Hermitian lattice?
    王韜輔助理雅各翻譯中國典籍過程考
    行政法論叢(2018年2期)2018-05-21 00:48:16
    風(fēng)雨嘀嗒正跑馬
    出其不意,走出精彩人生
    百家講壇(2016年11期)2016-09-01 12:18:45
    教師作品選登
    一个人免费在线观看电影| 免费电影在线观看免费观看| 国产亚洲精品一区二区www| 99精品在免费线老司机午夜| 18+在线观看网站| 在线天堂最新版资源| eeuss影院久久| 国产一区二区在线av高清观看| 亚洲黑人精品在线| 女人被狂操c到高潮| 国产激情偷乱视频一区二区| 99久久久亚洲精品蜜臀av| 国产成人系列免费观看| 婷婷六月久久综合丁香| 亚洲熟妇中文字幕五十中出| 欧美成人性av电影在线观看| 日韩高清综合在线| 1024手机看黄色片| av片东京热男人的天堂| 99久久成人亚洲精品观看| 精品国内亚洲2022精品成人| 观看免费一级毛片| 制服人妻中文乱码| 精品国内亚洲2022精品成人| 在线播放无遮挡| 亚洲中文日韩欧美视频| 亚洲av中文字字幕乱码综合| 91在线观看av| 老司机在亚洲福利影院| 国内精品美女久久久久久| 999久久久精品免费观看国产| 女人高潮潮喷娇喘18禁视频| 午夜免费观看网址| 久久九九热精品免费| 在线播放国产精品三级| 午夜福利在线观看免费完整高清在 | а√天堂www在线а√下载| 婷婷亚洲欧美| 国产伦一二天堂av在线观看| 国产一区二区三区视频了| 国产精品香港三级国产av潘金莲| 99在线人妻在线中文字幕| 午夜福利在线观看吧| 国产精品嫩草影院av在线观看 | 亚洲成人免费电影在线观看| 亚洲精品在线观看二区| 久久久久久久久大av| 99国产精品一区二区蜜桃av| 18禁裸乳无遮挡免费网站照片| 亚洲av熟女| 99精品久久久久人妻精品| www.www免费av| 国产淫片久久久久久久久 | 国产高清有码在线观看视频| 在线观看午夜福利视频| 三级毛片av免费| 成年女人毛片免费观看观看9| 午夜久久久久精精品| 中文字幕高清在线视频| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 国产麻豆成人av免费视频| 窝窝影院91人妻| ponron亚洲| 亚洲内射少妇av| 精品一区二区三区视频在线 | 亚洲狠狠婷婷综合久久图片| 少妇的丰满在线观看| 无限看片的www在线观看| 亚洲自拍偷在线| 亚洲性夜色夜夜综合| 在线看三级毛片| 午夜免费男女啪啪视频观看 | 黄色丝袜av网址大全| 国产精品1区2区在线观看.| 九九久久精品国产亚洲av麻豆| 欧美zozozo另类| 国产精品久久电影中文字幕| av天堂中文字幕网| 深夜精品福利| 精品欧美国产一区二区三| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | a级一级毛片免费在线观看| 在线观看66精品国产| 国产精品影院久久| 国产成年人精品一区二区| 国产黄色小视频在线观看| а√天堂www在线а√下载| 日本黄色视频三级网站网址| 国产伦一二天堂av在线观看| 成人亚洲精品av一区二区| 亚洲天堂国产精品一区在线| 欧美最黄视频在线播放免费| 香蕉久久夜色| 波野结衣二区三区在线 | 国内揄拍国产精品人妻在线| 亚洲18禁久久av| 制服丝袜大香蕉在线| 亚洲五月天丁香| 亚洲成a人片在线一区二区| 国产av一区在线观看免费| 久久人妻av系列| 欧美日韩瑟瑟在线播放| 老熟妇仑乱视频hdxx| 宅男免费午夜| 18禁黄网站禁片午夜丰满| 在线观看舔阴道视频| 国产野战对白在线观看| 欧美成人a在线观看| 天堂影院成人在线观看| 久久精品人妻少妇| 51午夜福利影视在线观看| 欧美中文综合在线视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产欧洲综合997久久,| 女人被狂操c到高潮| 内射极品少妇av片p| 男女下面进入的视频免费午夜| 男女视频在线观看网站免费| 日日夜夜操网爽| 精品国产亚洲在线| 成年女人永久免费观看视频| 色av中文字幕| 亚洲专区国产一区二区| 国产精品香港三级国产av潘金莲| 欧美不卡视频在线免费观看| 黄色片一级片一级黄色片| av女优亚洲男人天堂| 亚洲男人的天堂狠狠| 国产精品电影一区二区三区| 日本熟妇午夜| 亚洲成人久久性| 国产伦精品一区二区三区视频9 | 最近最新免费中文字幕在线| 免费搜索国产男女视频| 中文字幕人成人乱码亚洲影| 精品不卡国产一区二区三区| 色综合亚洲欧美另类图片| 欧美日韩乱码在线| 女人被狂操c到高潮| 国产熟女xx| 亚洲国产精品999在线| 日本精品一区二区三区蜜桃| 成人无遮挡网站| 亚洲成人久久爱视频| 色av中文字幕| 国产免费男女视频| 两个人的视频大全免费| 亚洲精品一区av在线观看| 欧美黑人欧美精品刺激| 亚洲av一区综合| 亚洲欧美日韩高清专用| 蜜桃久久精品国产亚洲av| 免费看光身美女| 国内少妇人妻偷人精品xxx网站| avwww免费| 国产一区二区三区在线臀色熟女| 国产亚洲av嫩草精品影院| 亚洲精品456在线播放app | 听说在线观看完整版免费高清| 小说图片视频综合网站| 日韩精品青青久久久久久| 97超视频在线观看视频| 国产国拍精品亚洲av在线观看 | 欧美成人免费av一区二区三区| 三级毛片av免费| 成人精品一区二区免费| 精品一区二区三区人妻视频| 中文字幕人成人乱码亚洲影| or卡值多少钱| 男插女下体视频免费在线播放| 欧美日韩乱码在线| 国产亚洲欧美在线一区二区| 国模一区二区三区四区视频| 国产美女午夜福利| 精品一区二区三区av网在线观看| 国产精品1区2区在线观看.| 国产成人系列免费观看| 欧美性猛交╳xxx乱大交人| 最后的刺客免费高清国语| 99热这里只有精品一区| 国产亚洲精品一区二区www| 国产乱人视频| 欧美性猛交黑人性爽| 午夜精品久久久久久毛片777| 国产在线精品亚洲第一网站| 欧美激情久久久久久爽电影| 精品久久久久久,| 十八禁网站免费在线| 中国美女看黄片| 午夜久久久久精精品| 国产毛片a区久久久久| 国产精品久久久久久久电影 | 亚洲成a人片在线一区二区| 亚洲国产欧美网| 亚洲 国产 在线| 麻豆国产97在线/欧美| 最近在线观看免费完整版| 国产精品久久电影中文字幕| 国产精品乱码一区二三区的特点| 人人妻人人澡欧美一区二区| 国产一区二区三区在线臀色熟女| 国产日本99.免费观看| 99久久成人亚洲精品观看| www日本在线高清视频| 日本与韩国留学比较| 欧美一区二区国产精品久久精品| 精品一区二区三区视频在线 | 欧美午夜高清在线| 99国产综合亚洲精品| e午夜精品久久久久久久| 国内精品久久久久精免费| 日本黄大片高清| 午夜福利欧美成人| 久久久久久久精品吃奶| 一级作爱视频免费观看| 天堂影院成人在线观看| 身体一侧抽搐| 丁香欧美五月| 男女视频在线观看网站免费| 天堂影院成人在线观看| 国产精品亚洲一级av第二区| 国产爱豆传媒在线观看| 色综合站精品国产| e午夜精品久久久久久久| 日韩欧美在线乱码| 91字幕亚洲| 成人特级av手机在线观看| 黄色片一级片一级黄色片| 国产成+人综合+亚洲专区| 亚洲国产精品sss在线观看| 制服丝袜大香蕉在线| 性欧美人与动物交配| 国产午夜精品论理片| 亚洲国产精品999在线| 国内毛片毛片毛片毛片毛片| 国产单亲对白刺激| av福利片在线观看| 搡女人真爽免费视频火全软件 | 久久九九热精品免费| 国产成人a区在线观看| 国产精品综合久久久久久久免费| 哪里可以看免费的av片| 亚洲成人久久爱视频| 午夜日韩欧美国产| 12—13女人毛片做爰片一| 少妇的逼好多水| 最近在线观看免费完整版| 成人精品一区二区免费| 日韩精品青青久久久久久| 99热只有精品国产| 午夜福利在线观看免费完整高清在 | 三级国产精品欧美在线观看| 国产精品亚洲美女久久久| 日本五十路高清| 综合色av麻豆| 嫩草影院入口| 日本五十路高清| 九九热线精品视视频播放| 国内精品美女久久久久久| 国产亚洲精品一区二区www| 少妇高潮的动态图| 在线视频色国产色| 丁香欧美五月| 最后的刺客免费高清国语| 国产aⅴ精品一区二区三区波| 亚洲电影在线观看av| 99热只有精品国产| 一个人观看的视频www高清免费观看| 久久午夜亚洲精品久久| 日本一本二区三区精品| 欧美三级亚洲精品| 中文字幕人妻丝袜一区二区| 熟女人妻精品中文字幕| 亚洲第一欧美日韩一区二区三区| 老司机在亚洲福利影院| 一二三四社区在线视频社区8| aaaaa片日本免费| 国产探花极品一区二区| 男人舔奶头视频| 亚洲欧美日韩卡通动漫| 欧美黄色淫秽网站| 欧美乱色亚洲激情| 欧美+亚洲+日韩+国产| 欧美性猛交╳xxx乱大交人| 久久草成人影院| 欧美激情久久久久久爽电影| 久久国产乱子伦精品免费另类| 欧美性感艳星| 可以在线观看的亚洲视频| 亚洲av中文字字幕乱码综合| 日韩欧美精品v在线| 丰满乱子伦码专区| 国产97色在线日韩免费| 久久精品亚洲精品国产色婷小说| 成人国产一区最新在线观看| 中文字幕熟女人妻在线| 97超级碰碰碰精品色视频在线观看| 久久久久久久久中文| 在线天堂最新版资源| 九九久久精品国产亚洲av麻豆| 免费大片18禁| 99久久综合精品五月天人人| 国产精品一区二区三区四区免费观看 | 51国产日韩欧美| 人人妻人人看人人澡| 免费在线观看影片大全网站| 岛国视频午夜一区免费看| 男人的好看免费观看在线视频| 最新美女视频免费是黄的| 老熟妇乱子伦视频在线观看| 搡女人真爽免费视频火全软件 | 乱人视频在线观看| 国产97色在线日韩免费| 亚洲va日本ⅴa欧美va伊人久久| 亚洲片人在线观看| 午夜免费激情av| 天堂影院成人在线观看| 99久久久亚洲精品蜜臀av| 欧美一区二区国产精品久久精品| 亚洲欧美激情综合另类| 中文字幕高清在线视频| 婷婷精品国产亚洲av在线| 最近视频中文字幕2019在线8| 操出白浆在线播放| 波多野结衣巨乳人妻| 成人三级黄色视频| 制服丝袜大香蕉在线| 日韩欧美国产在线观看| 亚洲人成网站在线播放欧美日韩| 男女床上黄色一级片免费看| 狂野欧美白嫩少妇大欣赏| 真实男女啪啪啪动态图| 亚洲在线自拍视频| 99久久精品一区二区三区| 成年版毛片免费区| 午夜影院日韩av| 国产精品一区二区三区四区久久| 最近最新中文字幕大全免费视频| 久久天躁狠狠躁夜夜2o2o| 别揉我奶头~嗯~啊~动态视频| 亚洲av不卡在线观看| 午夜久久久久精精品| 亚洲一区二区三区不卡视频| 欧美区成人在线视频| 日韩成人在线观看一区二区三区| 高清日韩中文字幕在线| 黄色视频,在线免费观看| 毛片女人毛片| 精品午夜福利视频在线观看一区| 小蜜桃在线观看免费完整版高清| 免费一级毛片在线播放高清视频| 免费搜索国产男女视频| 90打野战视频偷拍视频| 丰满乱子伦码专区| 亚洲国产精品久久男人天堂| 午夜日韩欧美国产| 全区人妻精品视频| 日本与韩国留学比较| 香蕉av资源在线| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 欧美又色又爽又黄视频| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频| 午夜福利在线在线| 露出奶头的视频| 亚洲精品久久国产高清桃花| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 免费观看人在逋| 脱女人内裤的视频| 村上凉子中文字幕在线| 十八禁人妻一区二区| 99热6这里只有精品| 欧美日韩综合久久久久久 | 久久久色成人| 特级一级黄色大片| 国产高清激情床上av| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添小说| 少妇熟女aⅴ在线视频| 99国产极品粉嫩在线观看| 在线观看午夜福利视频| 国产亚洲精品av在线| 少妇丰满av| 国产麻豆成人av免费视频| 亚洲国产精品合色在线| 美女黄网站色视频| 成人性生交大片免费视频hd| 免费看光身美女| 欧美在线黄色| 欧美成狂野欧美在线观看| 99热这里只有是精品50| 性色avwww在线观看| 精品久久久久久久人妻蜜臀av| 男女午夜视频在线观看| 欧美黑人巨大hd| 蜜桃久久精品国产亚洲av| 老汉色∧v一级毛片| 国产黄色小视频在线观看| 免费在线观看日本一区| 91av网一区二区| 成人av在线播放网站| 亚洲欧美日韩东京热| 少妇的逼好多水| 精品午夜福利视频在线观看一区| 一个人看的www免费观看视频| 少妇的逼好多水| 99热这里只有精品一区| 一进一出抽搐gif免费好疼| 69av精品久久久久久| 精品一区二区三区av网在线观看| 我的老师免费观看完整版| 午夜亚洲福利在线播放| 亚洲欧美日韩高清在线视频| 午夜福利在线在线| 亚洲五月天丁香| 99久久99久久久精品蜜桃| 午夜a级毛片| 精品熟女少妇八av免费久了| 日韩精品中文字幕看吧| 国产一区二区亚洲精品在线观看| 日韩高清综合在线| netflix在线观看网站| 日本 av在线| 亚洲成a人片在线一区二区| 亚洲 欧美 日韩 在线 免费| 淫秽高清视频在线观看| 色尼玛亚洲综合影院| 国产av在哪里看| 亚洲精品影视一区二区三区av| 天堂网av新在线| 午夜福利18| 久久香蕉国产精品| svipshipincom国产片| 中文字幕av成人在线电影| 国产高清视频在线观看网站| 亚洲精品影视一区二区三区av| 国产高清三级在线| 中文字幕av在线有码专区| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| 亚洲精品在线观看二区| 亚洲成av人片免费观看| 国产一区二区三区视频了| 十八禁人妻一区二区| 搞女人的毛片| 一个人免费在线观看的高清视频| 国产色爽女视频免费观看| 婷婷六月久久综合丁香| 99在线视频只有这里精品首页| 手机成人av网站| av视频在线观看入口| 久久久久免费精品人妻一区二区| 欧美一区二区国产精品久久精品| 少妇丰满av| 欧美日韩福利视频一区二区| 校园春色视频在线观看| 免费一级毛片在线播放高清视频| 88av欧美| 精品无人区乱码1区二区| 国产精品1区2区在线观看.| 搡老妇女老女人老熟妇| 窝窝影院91人妻| 宅男免费午夜| 国产亚洲欧美98| 91久久精品电影网| 免费看十八禁软件| 欧美日韩精品网址| 天天添夜夜摸| 精品久久久久久久久久免费视频| 久久国产乱子伦精品免费另类| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 久久精品影院6| xxx96com| 欧美午夜高清在线| 亚洲精品乱码久久久v下载方式 | 哪里可以看免费的av片| 亚洲精品乱码久久久v下载方式 | 成年免费大片在线观看| 国产爱豆传媒在线观看| 青草久久国产| 国内精品一区二区在线观看| 精品久久久久久久毛片微露脸| 99久久精品一区二区三区| 国产精品久久久人人做人人爽| 欧美一级毛片孕妇| 日韩欧美精品v在线| 中文字幕精品亚洲无线码一区| 每晚都被弄得嗷嗷叫到高潮| 99riav亚洲国产免费| 99热这里只有是精品50| 欧美日韩综合久久久久久 | 欧美最黄视频在线播放免费| 欧美午夜高清在线| 亚洲av不卡在线观看| 村上凉子中文字幕在线| 少妇人妻精品综合一区二区 | 91麻豆av在线| 亚洲精品一区av在线观看| 国产欧美日韩一区二区精品| 亚洲电影在线观看av| 久久久久九九精品影院| 国产乱人伦免费视频| 成人午夜高清在线视频| 欧美日韩亚洲国产一区二区在线观看| 嫩草影视91久久| 欧美黑人巨大hd| 搞女人的毛片| 俄罗斯特黄特色一大片| 欧洲精品卡2卡3卡4卡5卡区| 少妇高潮的动态图| 19禁男女啪啪无遮挡网站| 美女被艹到高潮喷水动态| 日韩欧美三级三区| 久久草成人影院| 在线视频色国产色| 成年免费大片在线观看| 老汉色∧v一级毛片| 十八禁人妻一区二区| 一区二区三区激情视频| 在线观看午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 夜夜爽天天搞| 757午夜福利合集在线观看| 搡老妇女老女人老熟妇| 国产精品99久久久久久久久| 国产精品精品国产色婷婷| 亚洲国产欧美网| 国产一区二区亚洲精品在线观看| 日韩大尺度精品在线看网址| 岛国视频午夜一区免费看| 天堂影院成人在线观看| 欧美午夜高清在线| 性欧美人与动物交配| 日韩成人在线观看一区二区三区| 色av中文字幕| av国产免费在线观看| 99久久综合精品五月天人人| 亚洲自拍偷在线| x7x7x7水蜜桃| 国产精品久久久久久亚洲av鲁大| 久久久久性生活片| 一个人看的www免费观看视频| 欧美成人a在线观看| 成人国产综合亚洲| 成人无遮挡网站| 老司机深夜福利视频在线观看| 中文字幕人妻丝袜一区二区| 啦啦啦观看免费观看视频高清| 88av欧美| 99精品在免费线老司机午夜| 亚洲av电影在线进入| 成熟少妇高潮喷水视频| 男女下面进入的视频免费午夜| av黄色大香蕉| 午夜a级毛片| 国产亚洲精品久久久com| 看片在线看免费视频| 亚洲熟妇中文字幕五十中出| 少妇的逼水好多| 丰满乱子伦码专区| 欧美日本视频| 免费看美女性在线毛片视频| 18+在线观看网站| 日韩欧美一区二区三区在线观看| 精品人妻一区二区三区麻豆 | 五月玫瑰六月丁香| 免费人成在线观看视频色| 国产一区二区在线av高清观看| 脱女人内裤的视频| 亚洲av美国av| 色综合欧美亚洲国产小说| 午夜福利欧美成人| 国产精品久久久久久久久免 | 亚洲国产精品合色在线| 国产精品日韩av在线免费观看| 国产 一区 欧美 日韩| 欧美黑人欧美精品刺激| 日日夜夜操网爽| 18禁国产床啪视频网站| 日韩欧美国产在线观看| 日韩欧美三级三区| 国产色爽女视频免费观看| 天堂动漫精品| 亚洲欧美日韩高清在线视频| 女生性感内裤真人,穿戴方法视频| 看片在线看免费视频| 床上黄色一级片| 欧美最黄视频在线播放免费| 99国产综合亚洲精品| 国产精品国产高清国产av| 最近最新免费中文字幕在线| 精品国产亚洲在线| 精品欧美国产一区二区三| 午夜福利在线观看免费完整高清在 | 国产又黄又爽又无遮挡在线| 亚洲国产欧洲综合997久久,| 日韩欧美在线乱码| 亚洲国产精品成人综合色| 亚洲精品在线美女| 精品无人区乱码1区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产久久久一区二区三区| 国产成年人精品一区二区| 国产欧美日韩精品一区二区| 免费观看人在逋| 国产精品一区二区三区四区免费观看 | 亚洲国产精品成人综合色| 国产精品久久久久久久电影 | 成人av一区二区三区在线看| 老司机午夜十八禁免费视频| 亚洲国产精品999在线|