• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radiative divertor behavior and physics in Ar seeded plasma on EAST?

    2017-08-30 08:26:08JingboChen陳競博YanminDuan段艷敏ZhongshiYang楊鐘時LiangWang王亮KaiWu吳凱KedongLi李克棟FangDing丁芳HongminMao毛紅敏JichanXu許吉禪WeiGao高偉LingZhang張凌JinhuaWu吳金華GuangNanLuo羅廣南andEASTTeam
    Chinese Physics B 2017年9期
    關鍵詞:高偉

    Jingbo Chen(陳競博),Yanmin Duan(段艷敏),Zhongshi Yang(楊鐘時),?,Liang Wang(王亮),Kai Wu(吳凱), Kedong Li(李克棟),Fang Ding(丁芳),Hongmin Mao(毛紅敏),Jichan Xu(許吉禪),Wei Gao(高偉), Ling Zhang(張凌),Jinhua Wu(吳金華),Guang-Nan Luo(羅廣南),and EAST Team

    1 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,China

    2 Science Island Branch of Graduate School,University of Scienceamp;Technology of China,Hefei 230031,China

    Radiative divertor behavior and physics in Ar seeded plasma on EAST?

    Jingbo Chen(陳競博)1,2,Yanmin Duan(段艷敏)1,Zhongshi Yang(楊鐘時)1,2,?,Liang Wang(王亮)1,Kai Wu(吳凱)1,2, Kedong Li(李克棟)1,2,Fang Ding(丁芳)1,Hongmin Mao(毛紅敏)1,Jichan Xu(許吉禪)1,2,Wei Gao(高偉)1, Ling Zhang(張凌)1,Jinhua Wu(吳金華)1,Guang-Nan Luo(羅廣南)1,2,and EAST Team1

    1 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,China

    2 Science Island Branch of Graduate School,University of Scienceamp;Technology of China,Hefei 230031,China

    To investigate the radiative divertor behavior and physics for the scenario of impurity seeded plasma in ITER,the radiative divertor experiments with argon(Ar)seeding under ITER-like tungsten divertor condition were carried out during recent EAST campaigns.The experimental results reveal the high efficiency of reducing heat load and particle flux onto the divertor targets owing to increased radiation by Ar seeding.We achieve detached plasmas in these experiments.The inner–outer divertor asymmetry reduces after Ar seeding.Impurities,such as Ar,C,Li,and W,exist in the entire space of the vacuum chamber during EAST operations,and play important roles in power exhausting and accelerating the plasma detachment process.It is remarkable that the contamination of the core plasma is observed using Ar seeding owing to the sputtering of plasma facing components(PFCs),particularly when Ar impurity is injected from the upper tungsten divertor.

    argon seeding,power exhaust,ITER-like tungsten divertor,EAST

    1.Introduction

    Increasing divertor radiation by injecting impurity is a general and effective method for reducing the heat flux from the scrape-off layer and for cooling the divertor plasma to detachment.Impurities,such as nitrogen(N2),neon(Ne)and argon(Ar),are widely used in radiative divertor experiments on several to kamaks.In ASDEX Upgrade with full tungsten divertor wall conditions,complete and partial detached plasmas were achieved by feedback controlled N2seeding.In addition,Ar or Ne impurities were also used to control the heat flux onto the divertor successfully.[1,2]In JET,N2seeding was used for comparing the effect of reducing the heat load on the ITER-like wall(ILW)to that on all-carbon wall conditions.The experiment results,such as increasing the plasma density and reducing the ELM frequency and pedestal pressure with N2seeding between two divertors,were clearly different.[3]In JT-60U,with Ne,Ar,and a mixture of Ne and Ar injection in H-mode plasmas,the fractions of divertor radiation power by these impurities besides an intrinsic impurity, C,were investigated.It was found that Ne is the dominant radiator when plasma detached by Ne seeding,but carbon acts as the biggest radiator with other impurities seeding in carbon wall conditions.[4]

    The EAST has previously achieved a minute-scale noninductive H-mode in the 2016 campaign.It aims at obtaining a long pulse discharge over 1000 s with high-performance plasma in the future.In this situation,the EAST divertor faces a severe challenge owing to high heat flux;therefore,the radiative divertor experiments were conducted and investigated. Furthermore,EAST upgraded its upper divertor into actively cooled W/Cu plasma-facing components(PFCs)in 2014.[5,6]Some divertor behavior as demonstrated in the carbon divertor before is necessary to be validated in the ITER-like tungsten divertor.Owing to the routine lithium wall coating conditioning before EAST discharges,Ar,instead of N2which easily reacts with hydrogen and lithium,was used as the seeded impurity for achieving long-pulse high-performance operations in EAST.[7–9]In this study,we introduce the radiative divertor experiments conducted during EAST 2014 and 2015 campaigns by using the mixture of Ar/D2(1:4)as the seeded impurity.These experiments are primarily focused on investigating the divertor heat load reduction,radiation distribution,asymmetry evolution,and impurities behavior under tungsten wall conditions.From the results of the experiment,Ar proved to have high efficiency in reducing heat and particle fluxes onto the divertor targets.However,excessive Ar seeding that easily caused contamination in the core plasma region is discussed in Section 3.The asymmetry between the inner and outer divertor is described in Section 3.2.Impurities,such as Ar,C, Li,and W,induced by impurity injection,play important roles in power exhausting and accelerating the plasma detachment process as described in Section 3.3.A summary is provided in the final section.

    Fig.1.(color online)Toroidal and poloidal cross section of EAST showing relevant diagnostics of experiments and divertor gas puff locations. AXUV:absolute extreme ultraviolet bolometer arrays;U(L)I:upper(lower)inboard divertor;U(L)O:upper(lower)outboard divertor;U(L)D: upper(lower)divertordome;GP:gas puffinlet;IM:innermid plane;TMS:Thomson scattering;IRC:infrared camera;EUV:extreme ultraviolet spectrometer;Div-W:divertor tungsten spectroscopy.

    2.Experimental setup and relevant diagnostics

    During 2014 and 2015 EAST campaigns,radiative divertor experiments were conducted in both L-mode and H-mode discharges in order to compare the differences between these two confinement modes,particularly for heat load reduction, radiation,inboard–outboard asymmetry,and impurities transport behaviors in the divertor region.As shown in Fig.1,the controlled pulsed mixture of Ar/D2(1:4)was injected through a pipe located inside the divertor target near the strike point. The delay time of Ar affecting the divertor plasma was approximately 75–140 ms limited by the length of pipes after the upgrade of the divertor gas puff system in 2014.[10]The width of puffing pulse was controlled using the plasma control system(PCS)program setting.According to different divertor configurations(lower single null(LSN)and upper single null (USN)configuration),the mixture was injected from different regions,that is,lower carbon divertor and upper ITER-like tungsten divertor,in several discharges.The results are discussed in Section 3.

    Table 1.Coordinates of gas puff inlet.

    Information on electron temperature,electron density, heat load,and particle flux on divertor targets were provided by the EAST divertor Langmuir probe diagnostic system consisting of 89 groups of triple probes of which the poloidal layout is shown in Fig.1.[11]The total distribution of radiated power in bulk plasma can be provided by four 16-channels AXUV(absolute extreme ultraviolet)detector arrays,in total 64 channels,installed in the horizontal port P,and one 24-channel AXUV array,installed in the upper-vertical port C.[12]Impurities,such as argon,deuterium,lithium,carbon,and tungsten,in the upper divertor region(only near inboard and outboard targets)can be observed by divertor tungsten spectroscopy with the range of 399–431 nm.[13]Moreover,these results are verified using the filterscope diagnostic system and a flat-field extreme ultraviolet(EUV)spectrometer with fast time resolution at the mid-plane.[14,15]

    3.Results and discussions

    As EAST upgraded its upper divertor into actively cooled W/Cu PFCs in 2014,the heating power simultaneously increased dramatically.Therefore,a considerably bigger heat load is supposed to be deposited on the divertor target.In this study,Ar seeding experiments were performed for controlling the heat flux onto the tungsten divertor target.In addition,the divertor radiation,asymmetry,and impurity transport are also investigated.

    3.1.Heat load and radiation

    The particle flux is related to ion saturation current density js,calculated by the equation

    where Isis the ion saturation current,acquired directly by Langmuir probes,and Apris the tip effective area(2.5 mm2).

    The heat flux to the target is also based on the measurement by the Langmuir probes.The parallel heat flux is given by

    where γshis the total sheath heat transmission factor for deuterium plasma(~7,assuming Ti=Te),Tetis the electron temperature at the divertor target,and kBis the Boltzmann constant.Thus,the heat flux to the target is measured by

    where ? is the grazing angle between the target and the incident magnetic field.[11,16]

    Shot#57417 was an H-mode discharge with USN divertor configuration.The drift pointed toward the top divertor, and the divertor cry-pump was activated.In this shot,Btwas fixed at 2.3 T and Ipat 0.4 MA,and the heating power was fixed at approximately 4.3 MW with the ICRF of 1.5 MW and LHW of 2.8 MW.The upstream density(in separatrix), nup,sep=1.0×1019m?3,was measured by reflectometry.Ar impurity was seeded from the upper outboard target at the rate of 2.2–2.7×1020e?/s for 200 ms.After a delay time of 100 ms,the effect of Ar started at approximately 5.1 s.At the strike point,the ion saturation current js,measured by the divertor Langmuir probe,was decreased by 60%,and the electron temperature Tedecreased to less than 5 eV,because the ionization of the seeded neutral gas led to the increase of radiation to exhaust power in the divertor region.

    Fig.2.(color online)Profiles of(a),(b)ion saturation current,j s,(c), (d)electron temperature,T e,and heat flux,q t,on outer and inner divertor targets before(e),(f)and after Ar seeding.OSP:outer strike point; ISP:inner strike point.The clear error data are marked with circles.

    More importantly,the heat flux,qt,onto the outer divertor target plate,which once was more than 6 MW/m2with ELMy before Ar seeding,was clearly reduced to less than 0.5 MW/m2.The plasma was completely detached(at and near the strike point)from the upper outboard target.During gas puffing,the increase of the radiated power measured using the AXUV was approximately 350 kW in total.

    Figure 3 shows the profile of radiation obtained by the horizontal AXUV arrays.A burst of radiation in the upper and lower divertor regions led to the mitigation of ion and heat fluxes onto the divertor target.However,approximately 30%total radiation,ascribed to Ar impurity puffing,was distributed inside the core plasma region,which caused 5%loss of the entire plasma stored energy,and it rapidly returned to the initial state when the Ar puffing stopped.Nevertheless, for another discharge under similar plasma conditions(Shot #57423,Fig.5)with the long pulse Ar seeding(1s),the results reveal a clear difference in the entire stored energy,which decreased by 32 kJ,~35%.Subsequently,an H-to L-mode transition was observed.The injection method is a key factor to the experimental results of the impurity seeding according to the experience of our device and other devices.For example,a single continuous long pulse Ar seeding,as shown in Shot#57423,easily causes Ar accumulation in the plasma core region,which is possibly of considerable risk to plasma confinement.

    Fig.3.(color online)Profile of radiation before and after Ar injection (R=1.85 m).

    3.2.Asymmetry

    The divertor asymmetry for particle and heat fluxes depends on the divertor geometry and the magnetic equilibrium, as well as the plasma shape and parameters.There is a considerably strong in–out asymmetry with considerable difference for heat and particle fluxes between the inner and the outer targets in case of the present geometry in EAST.This asymmetry is clearly evident with the increase of plasma electron density, which is proved by the previous experimental results on the machine.[17]

    Figure 4 shows the time evolution of plasma parameters for the preceding discharge#57417 using Ar seeding.The in–out asymmetry of ion saturation current and heat flux in the upper divertor region reduced significantly after Ar impurity seeding,which led to the detachment on the divertor target. The inner divertor first entered the detached state owing to less particle flow into the inner divertor region.Subsequently,the outer divertor followed the inner one to detachment.

    Fig.4.(color online)Time traces of H-mode discharge with Ar seeding.The Ar mixture was seeded from the upper outer divertor target,and it started to function at 5.1 s owing to the delay of pipe length.(a)Plasma line-averaged density.(b)Ar/D2 mixture seeding rate.(c)Stored energy of plasma.(d)Midplane,upper divertor,lower divertor region line integrated radiation,and total radiation power.(e),(f),(g)Emission intensities of impurity in the upper divertor region,measured using filterscope arrays.Note that the WI+ArII signal may contain two types of impurity:WI(400.87 nm)and ArII(401.38 nm),because the system cannot well distinguish these two spectral lines.(h)Ion saturation current in outer and inner divertor regions.

    Fig.5.(color online)Time evolution of Shot#57423.(a)Line integrated density(n e)and plasma current(I p).(b)Heating power:2.45 GHz LHW,4.6 GHz LHW and ICRF.(c)Impurity seeding rate.(d)Stored energy of plasma:W mhd.(e)Core,upper divertor,lower divertor region line integrated radiation,and total radiation power.

    Deuterium line emission is frequently used for evaluating the plasma characteristics such as the density,electron temperature,and the frequency of ELMs.As shown in Fig.4,the Dαemission increases clearly in both inner and outer divertor regions after Ar injection,which is a sign of divertor detachment onset.The increase of Dαemission was attributed to the increased neutral fluxes.Generally,the Dαline emission exhibits higher photon efficiency in recombining plasmas at higher density and lower electron temperature.[17]These results were firstly found in the EAST ITER-like tungsten divertor to predict and validate the detachment process.To compare the differences between the lower carbon divertor and upper tungsten divertor,Ar impurity was seeded,respectively, from upper and lower divertor targets under similar plasma setting and heating conditions,corresponding to different divertor configurations:USN and LSN,respectively.Compared to the LSN configuration,the in–out asymmetry of the particle flux is smaller than the case under the USN condition.The primary reason is that the geometry shape is different for the upper divertor structure and lower divertor structure.Each of these two divertors exhibits different geometry shapes,which directly affects the divertor plasma parameters such as power flux,pumping efficiency,recycling coefficients,and neutral pressure.[18]From the above experiments,we observed that the distribution of plasma density in the two divertor regions is considerably different.[19]The results indicated that it is easier to achieve detachment on both inner and outer targets in the upper divertor than that in the lower divertor geometry.

    3.3.Impurities

    Impurities,such as Ar,C,Li,and W,may exist in the entire space of the vacuum chamber during EAST operations.In the divertor and SOL regions,it is beneficial for long pulse high performance discharges to bring in moderate impurity that plays an important role in power exhausting and acceler-ating the plasma detachment process.Conversely,impurity in the core plasma region is harmful for the plasma confinement that may cause a considerable loss of stored energy,and then cause the plasma to go into the fluctuated state,even leading to bring disruption finally.

    As Fig.6 shows,the Ar concentration reached a considerably high level after the mixture was injected in the upper divertor region.Ar is a quite strong radiator when the electron temperature Teis in the range of 10–40 eV.The electron temperature close to the targets is typically within this region. Therefore,the results reveal that the heat load and ion flux onto the divertor target decreased rapidly.

    In Section 3.1,concentration of Ar ions in the core region that caused the increase of radiation therein was also confirmed by the EUV spectroscopy.The primary reason was attributed to the transport of the impurity ion along with?B drift direction into the core region and the ionization there. The similar experiment conducted in DIII-D demonstrated that seeded Ar impurity accumulated in the core plasma with the B×?B-ion drift directed toward the X-point.[20–22]

    As Ar gas was injected from the upper divertor target, there was a notable increase of C and Li signals accompanying the gradually increasing Ar impurity signal observed by the divertor impurity spectroscopy.After the peak signal of the Ar intensity was approximately 5.2 s,Li decreased gradually and C either decreased rapidly.This phenomenon was attributed to the increased Ar ions flux,which was accelerated to the target by the sheath potential and produced sputtering on plasma facing components,particularly on divertor targets under the strong Li coating conditioning.The decline of Li and C impurities was also ascribed to the decrease of Ar ions because the seeded Ar cooled the plasma in the divertor region, so that less Ar could be ionized.The similar results of CIII emission in the divertor region,which are measured using the filters cope system,confirmed the phenomenon as well.

    Fig.6.(color online)Time trace of major types of impurity in upper divertor region:(a)Ar,(b)C,(c)Li,and(d)W,which were observed by divertor tungsten spectroscopy.There was no evident change of tungsten after Ar seeding in this shot.

    Fig.7.(color online)Impurities in the upper divertor region observed by div-W spectroscopy without Ar seeding(4.8 s)and with Ar seeding(5.2 s).In this L-mode discharge,a small amount of tungsten sputtered from the divertor target,which causes a rapid increase of core radiation.

    As is well known,EAST upgraded its upper divertor into actively cooled W/Cu PFCs in 2014,which consequently produced concern over how the W transport and concentration affect the plasma confinement.Typically,the tungsten sputtering was rarely observed by spectroscopy with strong Li-coating wall condition on the chamber surface.In the Shot#56649,an L-mode discharge with the LSN configuration,after Ar seeding,as shown in Fig.7,the sputtered tungsten observed qualitatively by divertor tungsten spectroscopy,entered the core plasma and thus resulted in the degradation of plasma confinement owing to the burst of core radiation.Similar results for Ar seeding were discovered in ASDEX-Up grade as well.[23,24]As previously mentioned,it is deduced that the sputtering of tungsten is primarily ascribed to Ar impurity being ionized in the boundary plasma and accelerated to the target owing to sheath potential.However,the quantitative calibration of tungsten concentration is still in commissioning because the tungsten and argon signals exhibit an overlap in this wavelength range.

    4.Summary

    In this study,the radiative divertor behavior involving the heat flux,radiation,asymmetry,and impurities was investigated by using the Ar mixture as the radiator.

    The asymmetry of the particle fluxes and heat loads between inner and outer divertor reduced significantly after Ar impurity injection.In addition,the respective Armixture gases were seeded,from the upper and lower(carbon)divertors under similar plasma setting and heating conditions.For the lower divertor,this asymmetry is smaller than that for the top one.

    Moreover,impurities were investigated.It is proved that Ar is an efficient radiator.However,there will be the risk that Ar impurity contaminates core plasma and leads to a considerable decrease of plasma stored energy.The concentration of C and Li is associated closely with the Ar injection owing to the sputtering.Unlike the carbon divertor,Ar seeding produced tungsten sputtering on the surface of the PFCs,which was observed in the experiment,and exhibited a considerable influence on plasma confinement.These results will provide a reference forfuture investigation on ITER discharge in the scenario of radiative divertor experiments using tungsten plasma facing components.

    [1]Reimold F,Wischmeier M,Bernert M,et al.2015 Nuclear Fusion 55 033004

    [2]Kallenbach A,Bernert M,Beurskens M,et al.2015 Nuclear Fusion 55 053026

    [3]Maddison G P,Giroud C,Alper B,et al.2014 Nuclear Fusion 54

    [4]Nakano T and Team J T 2015 Journal of Nuclear Materials 463 555

    [5]Wan B.N,Li J G,Guo H Y,et al.2015 Nuclear Fusion 55 104015

    [6]Yao D M,Luo G N,Zhou Z B,et al.2016 Physica Scripta 2016 014003

    [7]Wang D S,Guo H Y,Shang Y Z,et al.2013 Plasma Scienceamp;Technology 15 614

    [8]Guo H Y,Li J,Wan B N,et al.2014 Physics of Plasmas 21 056107

    [9]Guo H Y,Li J,Gong X Z,et al.2014 Nuclear Fusion 54 013002

    [10]Wang W 2015 Upgrade of Gas Puffing System and Preliminary Results in EAST Radiative Divertor Experiment(MS Dissertation)(Hefei:University of Chinese Academy of Sciences)(in Chinese)

    [11]Xu J C,Wang L,Xu G S,et al.2016 Review of Scientific Instruments 87 083504

    [12]Duan Y M,Hu L Q,Mao S T,et al.2011 Plasma Scienceamp;Technology 13 546

    [13]Mao H,Ding F,Luo G N,et al.2017 Review of Scientific Instruments 88 043502

    [14]Zhang L,Morita S,Xu Z,et al.2015 The Review of scientific instruments 86 123509

    [15]Xu Z.,Wu Z.W.,Gao W.,et al.2016 Review of Scientific Instruments 87 11D429

    [16]Pitcher C S and Stangeby P C 1997 Plasma Physics and Controlled Fusion 39 779

    [17]Wang D,Guo H,Wang H,et al.2011 Physics of Plasmas 18 032505

    [18]Loarte A 2001 Plasma Physicsamp;Controlled Fusion 43 R183

    [19]Liu S C,Guo H Y,Xu G S,et al.2012 Physics of Plasmas 19 042505

    [20]Petrie T W,Brooks N H,Fenstermacher M E,et al.2008 Nuclear Fusion 48 045010

    [21]Jackson G L,Murakami M,Staebler G M,et al.1999 Journal of Nuclear Materials 266 380

    [22]Jackson G L,Murakami M,McKee G R,et al.2002 Nuclear Fusion 42 28

    [23]Kallenbach A,Balden M,Dux R,et al.2011 Journal of Nuclear Materials 415 S19

    [24]Neu R,Kallenbach A,Sertoli M,et al.2011 Journal of Nuclear Materials 415 S322

    11 April 2017;revised manuscript

    26 May 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/095205

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11575242,11575243,11505233,11575247,and 11605238)and the National Magnetic Confinement Fusion Science Program(Grant Nos.2013GB105002 and 2013GB105001).

    ?Corresponding author.E-mail:zsyang@ipp.ac.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    高偉
    Current sensor based on diamond nitrogen-vacancy color center
    Effect of a static pedestrian as an exit obstacle on evacuation
    High-fidelity resonant tunneling passage in three-waveguide system
    我是“隱形人”
    江蘇教育(2021年59期)2021-12-02 18:35:17
    我是“隱形人”
    Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D–D experiment on EAST tokamak?
    Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology*
    運動達人傾情環(huán)保5 年撿40000 余個廢瓶子
    北廣人物(2020年46期)2020-12-11 07:09:40
    秋天的風
    金山(2020年3期)2020-04-15 03:56:36
    爬山虎
    欧美亚洲日本最大视频资源| 亚洲精品成人av观看孕妇| 久久久久久久大尺度免费视频| 欧美在线黄色| 少妇裸体淫交视频免费看高清 | 一区二区三区激情视频| 宅男免费午夜| 久久性视频一级片| svipshipincom国产片| 99九九在线精品视频| 999久久久国产精品视频| 久久精品aⅴ一区二区三区四区| 国内毛片毛片毛片毛片毛片| 老司机午夜十八禁免费视频| 搡老熟女国产l中国老女人| 亚洲精品中文字幕在线视频| 欧美激情 高清一区二区三区| 国产精品久久久久久人妻精品电影 | 黄色怎么调成土黄色| 精品福利观看| 国产av一区二区精品久久| 狠狠狠狠99中文字幕| 十分钟在线观看高清视频www| 国产免费视频播放在线视频| 国产欧美日韩一区二区三区在线| 亚洲中文av在线| 成人黄色视频免费在线看| 国产激情久久老熟女| 欧美人与性动交α欧美软件| 日韩 欧美 亚洲 中文字幕| 亚洲九九香蕉| 久久久久国产一级毛片高清牌| 热re99久久国产66热| 欧美 日韩 精品 国产| 午夜福利,免费看| 久久天躁狠狠躁夜夜2o2o| 人妻久久中文字幕网| 国产亚洲精品一区二区www | 成人免费观看视频高清| 极品人妻少妇av视频| 国精品久久久久久国模美| 妹子高潮喷水视频| 久久久精品免费免费高清| 电影成人av| 亚洲第一欧美日韩一区二区三区 | 在线天堂中文资源库| 青草久久国产| 黄色a级毛片大全视频| 麻豆乱淫一区二区| 精品乱码久久久久久99久播| 国产色视频综合| 久久影院123| 国产精品免费视频内射| 人人妻人人爽人人添夜夜欢视频| 精品熟女少妇八av免费久了| 99久久99久久久精品蜜桃| 好男人电影高清在线观看| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 午夜福利影视在线免费观看| 午夜免费成人在线视频| 少妇裸体淫交视频免费看高清 | 免费观看人在逋| 两人在一起打扑克的视频| av电影中文网址| 免费看a级黄色片| 天天添夜夜摸| 欧美黄色淫秽网站| 老司机在亚洲福利影院| 免费在线观看完整版高清| 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 叶爱在线成人免费视频播放| 国产精品久久电影中文字幕 | 免费在线观看影片大全网站| 精品久久久久久久毛片微露脸| 国产成人av教育| 丁香六月欧美| 亚洲美女黄片视频| 久久久久久久精品吃奶| 最近最新中文字幕大全电影3 | 人人妻,人人澡人人爽秒播| 国产午夜精品久久久久久| 欧美精品人与动牲交sv欧美| 黄频高清免费视频| 激情在线观看视频在线高清 | 亚洲精品av麻豆狂野| 欧美精品亚洲一区二区| 十八禁高潮呻吟视频| 99精品欧美一区二区三区四区| 高清黄色对白视频在线免费看| 热99re8久久精品国产| 成人18禁在线播放| 亚洲自偷自拍图片 自拍| 女人被躁到高潮嗷嗷叫费观| 国产精品香港三级国产av潘金莲| 精品视频人人做人人爽| 精品一品国产午夜福利视频| 日韩欧美一区视频在线观看| 久久久水蜜桃国产精品网| 高清毛片免费观看视频网站 | 亚洲午夜精品一区,二区,三区| 国产成人欧美| 91精品三级在线观看| 亚洲国产精品一区二区三区在线| av福利片在线| 18禁裸乳无遮挡动漫免费视频| 日日爽夜夜爽网站| 老熟妇乱子伦视频在线观看| 在线亚洲精品国产二区图片欧美| 久久国产精品男人的天堂亚洲| 热99久久久久精品小说推荐| 精品人妻熟女毛片av久久网站| 51午夜福利影视在线观看| 麻豆国产av国片精品| 欧美成人免费av一区二区三区 | 精品视频人人做人人爽| 久久久国产精品麻豆| 亚洲一区二区三区欧美精品| 男人操女人黄网站| 国产日韩一区二区三区精品不卡| 亚洲欧美一区二区三区久久| 国产精品1区2区在线观看. | 国产成+人综合+亚洲专区| 丝袜在线中文字幕| videosex国产| 久久久久国产一级毛片高清牌| 一二三四在线观看免费中文在| 男女无遮挡免费网站观看| 久久久久久久久久久久大奶| 9色porny在线观看| 亚洲国产毛片av蜜桃av| 久久性视频一级片| 国产成人精品久久二区二区免费| 久久国产精品男人的天堂亚洲| 国产成人精品久久二区二区91| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月 | 久久久久国产一级毛片高清牌| 在线十欧美十亚洲十日本专区| 99re在线观看精品视频| 香蕉国产在线看| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 色精品久久人妻99蜜桃| 99国产精品99久久久久| 在线观看免费视频网站a站| 午夜成年电影在线免费观看| 国产精品久久久久久精品古装| 欧美日本中文国产一区发布| 成年女人毛片免费观看观看9 | 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩在线播放| 亚洲avbb在线观看| 悠悠久久av| 丝袜美腿诱惑在线| 国产片内射在线| 一边摸一边做爽爽视频免费| 亚洲精品粉嫩美女一区| 国产成人免费观看mmmm| 黄网站色视频无遮挡免费观看| 两个人免费观看高清视频| 露出奶头的视频| 国产一区二区在线观看av| 精品一区二区三区av网在线观看 | 成在线人永久免费视频| av又黄又爽大尺度在线免费看| 女同久久另类99精品国产91| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看 | 嫁个100分男人电影在线观看| 777米奇影视久久| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 色尼玛亚洲综合影院| 老司机靠b影院| 91av网站免费观看| 国产精品电影一区二区三区 | 久久久国产成人免费| 亚洲成a人片在线一区二区| 成年女人毛片免费观看观看9 | 久久国产精品人妻蜜桃| 一区二区三区乱码不卡18| videos熟女内射| 高清黄色对白视频在线免费看| 国产精品亚洲av一区麻豆| 99riav亚洲国产免费| 午夜成年电影在线免费观看| 777久久人妻少妇嫩草av网站| 欧美av亚洲av综合av国产av| 午夜福利免费观看在线| 18禁裸乳无遮挡动漫免费视频| 欧美精品啪啪一区二区三区| 1024香蕉在线观看| 精品福利永久在线观看| 99久久精品国产亚洲精品| 王馨瑶露胸无遮挡在线观看| 纯流量卡能插随身wifi吗| 久久久水蜜桃国产精品网| 人人妻人人澡人人看| 精品卡一卡二卡四卡免费| 无遮挡黄片免费观看| 最近最新中文字幕大全免费视频| 黄色丝袜av网址大全| 亚洲成人免费电影在线观看| 99在线人妻在线中文字幕 | 可以免费在线观看a视频的电影网站| 亚洲欧美一区二区三区久久| 国产成人系列免费观看| 久久亚洲真实| 欧美日韩亚洲国产一区二区在线观看 | 久久久久精品人妻al黑| 成人手机av| 天堂8中文在线网| 老汉色∧v一级毛片| 在线天堂中文资源库| 日本一区二区免费在线视频| 少妇猛男粗大的猛烈进出视频| 嫩草影视91久久| 女性生殖器流出的白浆| 99久久国产精品久久久| 正在播放国产对白刺激| 亚洲精品一卡2卡三卡4卡5卡| 少妇被粗大的猛进出69影院| 免费看十八禁软件| 国产精品免费大片| 黑人巨大精品欧美一区二区mp4| 亚洲久久久国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 窝窝影院91人妻| 99国产极品粉嫩在线观看| 少妇裸体淫交视频免费看高清 | 欧美日韩一级在线毛片| 精品少妇久久久久久888优播| 国产精品亚洲一级av第二区| 国产精品免费一区二区三区在线 | 十八禁网站网址无遮挡| 国产精品自产拍在线观看55亚洲 | 午夜成年电影在线免费观看| 色播在线永久视频| 在线亚洲精品国产二区图片欧美| 国产精品av久久久久免费| 国产麻豆69| 午夜福利影视在线免费观看| 欧美在线黄色| 一级,二级,三级黄色视频| 国产一区二区 视频在线| 在线观看免费视频日本深夜| 久久久久精品人妻al黑| 桃花免费在线播放| 99久久99久久久精品蜜桃| 无遮挡黄片免费观看| 亚洲一码二码三码区别大吗| 国产1区2区3区精品| 在线永久观看黄色视频| 午夜久久久在线观看| 国产在线一区二区三区精| 亚洲七黄色美女视频| 国产成人啪精品午夜网站| 在线观看舔阴道视频| 最新美女视频免费是黄的| 不卡一级毛片| 欧美激情高清一区二区三区| 极品少妇高潮喷水抽搐| 久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 久久久久网色| a级片在线免费高清观看视频| 欧美日韩视频精品一区| 国产高清videossex| 真人做人爱边吃奶动态| 国产亚洲精品第一综合不卡| 捣出白浆h1v1| 免费不卡黄色视频| 国产在视频线精品| 国产一卡二卡三卡精品| 精品国产一区二区久久| 国产老妇伦熟女老妇高清| 天堂动漫精品| 女人精品久久久久毛片| 国产精品免费视频内射| 性高湖久久久久久久久免费观看| 日韩大片免费观看网站| 一级黄色大片毛片| 久久毛片免费看一区二区三区| 国产精品 国内视频| 99九九在线精品视频| 99re6热这里在线精品视频| 成人18禁在线播放| 国产高清激情床上av| 一本—道久久a久久精品蜜桃钙片| 国产一区二区三区视频了| av网站免费在线观看视频| 亚洲专区字幕在线| 国产男女超爽视频在线观看| 久久人人爽av亚洲精品天堂| 另类亚洲欧美激情| 色尼玛亚洲综合影院| 国产日韩欧美在线精品| 久久精品国产99精品国产亚洲性色 | 在线观看舔阴道视频| 精品人妻熟女毛片av久久网站| 国产亚洲午夜精品一区二区久久| 亚洲国产毛片av蜜桃av| 性少妇av在线| 亚洲伊人色综图| 18在线观看网站| 亚洲一区中文字幕在线| 纵有疾风起免费观看全集完整版| 超碰成人久久| 90打野战视频偷拍视频| 精品国产乱子伦一区二区三区| 十八禁高潮呻吟视频| 色精品久久人妻99蜜桃| 19禁男女啪啪无遮挡网站| 亚洲av日韩精品久久久久久密| 老司机午夜十八禁免费视频| 色老头精品视频在线观看| 黄片小视频在线播放| 18禁裸乳无遮挡动漫免费视频| 久热爱精品视频在线9| 欧美激情 高清一区二区三区| 99久久国产精品久久久| 久久久久网色| 91麻豆精品激情在线观看国产 | 日韩视频在线欧美| 午夜激情久久久久久久| 天天影视国产精品| 久久精品国产99精品国产亚洲性色 | videos熟女内射| 视频在线观看一区二区三区| 中文字幕av电影在线播放| 妹子高潮喷水视频| 精品少妇内射三级| 欧美国产精品va在线观看不卡| 国产又色又爽无遮挡免费看| 美女高潮到喷水免费观看| 成人国产av品久久久| 国产在线观看jvid| 欧美精品人与动牲交sv欧美| 国产av国产精品国产| 999精品在线视频| 亚洲av日韩精品久久久久久密| 午夜老司机福利片| 一边摸一边抽搐一进一出视频| 视频区欧美日本亚洲| 国产在线精品亚洲第一网站| 国产亚洲精品第一综合不卡| 欧美精品一区二区免费开放| 欧美乱码精品一区二区三区| 精品人妻在线不人妻| 十八禁人妻一区二区| 激情在线观看视频在线高清 | 另类亚洲欧美激情| 中文字幕人妻熟女乱码| 国产精品久久久久久精品电影小说| 精品人妻熟女毛片av久久网站| 成人18禁在线播放| 久久久久久久大尺度免费视频| 久久久久精品人妻al黑| 欧美国产精品一级二级三级| 欧美av亚洲av综合av国产av| 国产av又大| 精品国产乱子伦一区二区三区| 成年动漫av网址| 亚洲国产精品一区二区三区在线| 大片免费播放器 马上看| 欧美日本中文国产一区发布| 欧美大码av| 欧美精品高潮呻吟av久久| 国产av又大| 亚洲欧美精品综合一区二区三区| 日韩欧美免费精品| 久久国产亚洲av麻豆专区| 欧美变态另类bdsm刘玥| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 黄色视频,在线免费观看| 熟女少妇亚洲综合色aaa.| 纯流量卡能插随身wifi吗| 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 天天躁夜夜躁狠狠躁躁| 久久国产精品大桥未久av| 久久人人爽av亚洲精品天堂| av欧美777| 日本一区二区免费在线视频| 精品久久久精品久久久| 一区二区日韩欧美中文字幕| 别揉我奶头~嗯~啊~动态视频| 两性午夜刺激爽爽歪歪视频在线观看 | 不卡av一区二区三区| av视频免费观看在线观看| 热99re8久久精品国产| 变态另类成人亚洲欧美熟女 | 黄片大片在线免费观看| 一本久久精品| 欧美黑人欧美精品刺激| 日韩中文字幕视频在线看片| 午夜精品国产一区二区电影| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| bbb黄色大片| 日本五十路高清| 久久久久久亚洲精品国产蜜桃av| 亚洲国产看品久久| 成人影院久久| 黄色视频不卡| 欧美乱码精品一区二区三区| 69av精品久久久久久 | tocl精华| 丝瓜视频免费看黄片| 女人精品久久久久毛片| 99re在线观看精品视频| 男女高潮啪啪啪动态图| 99re6热这里在线精品视频| 国产精品电影一区二区三区 | 黄色片一级片一级黄色片| 精品亚洲乱码少妇综合久久| 成人三级做爰电影| 亚洲精品在线观看二区| 精品欧美一区二区三区在线| 久久毛片免费看一区二区三区| 91大片在线观看| www.999成人在线观看| 国产成人免费无遮挡视频| 午夜福利在线免费观看网站| 女性被躁到高潮视频| 交换朋友夫妻互换小说| 精品国产亚洲在线| 三级毛片av免费| 一个人免费看片子| 2018国产大陆天天弄谢| 精品乱码久久久久久99久播| 中文字幕av电影在线播放| 老司机影院毛片| 亚洲va日本ⅴa欧美va伊人久久| 啪啪无遮挡十八禁网站| 欧美日韩黄片免| bbb黄色大片| 少妇精品久久久久久久| 在线播放国产精品三级| 80岁老熟妇乱子伦牲交| 欧美一级毛片孕妇| 老司机深夜福利视频在线观看| 蜜桃国产av成人99| 交换朋友夫妻互换小说| 亚洲成人手机| 高清视频免费观看一区二区| 免费久久久久久久精品成人欧美视频| 韩国精品一区二区三区| 在线观看免费日韩欧美大片| 久久精品亚洲精品国产色婷小说| 国产在线免费精品| 成人影院久久| 男女无遮挡免费网站观看| 99久久精品国产亚洲精品| 久久久精品区二区三区| 亚洲av欧美aⅴ国产| 一本久久精品| 国产精品.久久久| 黑人欧美特级aaaaaa片| 欧美黑人精品巨大| 一本—道久久a久久精品蜜桃钙片| 在线亚洲精品国产二区图片欧美| 黄片大片在线免费观看| 国产精品99久久99久久久不卡| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕av电影在线播放| a级片在线免费高清观看视频| 2018国产大陆天天弄谢| 日韩成人在线观看一区二区三区| 国产一区二区在线观看av| 18禁观看日本| 久久久国产成人免费| 亚洲全国av大片| 成年女人毛片免费观看观看9 | 一区福利在线观看| 日本av手机在线免费观看| 黄色视频,在线免费观看| 手机成人av网站| 如日韩欧美国产精品一区二区三区| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 国产一区二区三区综合在线观看| 免费在线观看视频国产中文字幕亚洲| 国产成人影院久久av| 久久人人97超碰香蕉20202| 大码成人一级视频| 日韩欧美三级三区| 国产1区2区3区精品| 一夜夜www| 亚洲欧美激情在线| 精品久久久久久电影网| 欧美变态另类bdsm刘玥| 热re99久久国产66热| 久久久久久久精品吃奶| 悠悠久久av| 一本—道久久a久久精品蜜桃钙片| 一进一出好大好爽视频| 大片免费播放器 马上看| av网站免费在线观看视频| 老汉色∧v一级毛片| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一二三| 国产成人精品久久二区二区免费| 精品福利永久在线观看| 久久久久久人人人人人| 午夜激情久久久久久久| 亚洲精品美女久久av网站| 不卡av一区二区三区| 久久性视频一级片| 无遮挡黄片免费观看| 成人影院久久| 极品教师在线免费播放| 国产精品亚洲一级av第二区| 日本撒尿小便嘘嘘汇集6| 考比视频在线观看| 亚洲av成人一区二区三| 一级片免费观看大全| 国产欧美日韩一区二区三区在线| 久久久国产一区二区| 十八禁网站网址无遮挡| 国产精品熟女久久久久浪| 制服诱惑二区| 亚洲第一av免费看| 久久青草综合色| 亚洲七黄色美女视频| 蜜桃国产av成人99| 精品欧美一区二区三区在线| 老汉色av国产亚洲站长工具| 热99国产精品久久久久久7| 成年人黄色毛片网站| 国产精品麻豆人妻色哟哟久久| 中文字幕最新亚洲高清| 精品久久久久久久毛片微露脸| 亚洲精品一卡2卡三卡4卡5卡| 黄色片一级片一级黄色片| 久久亚洲精品不卡| 亚洲成人手机| 久久久久国内视频| 午夜免费成人在线视频| 最新美女视频免费是黄的| 国内毛片毛片毛片毛片毛片| 动漫黄色视频在线观看| 老司机午夜福利在线观看视频 | 成人三级做爰电影| 在线天堂中文资源库| 手机成人av网站| 麻豆国产av国片精品| 国产日韩欧美在线精品| 啦啦啦在线免费观看视频4| 人成视频在线观看免费观看| 黄色 视频免费看| av网站在线播放免费| 国产三级黄色录像| av免费在线观看网站| 精品久久久久久电影网| 1024香蕉在线观看| 又黄又粗又硬又大视频| 久9热在线精品视频| 天天影视国产精品| 久久人妻av系列| 男女之事视频高清在线观看| 丰满饥渴人妻一区二区三| 一本—道久久a久久精品蜜桃钙片| 91精品三级在线观看| 成年人午夜在线观看视频| 国产欧美日韩综合在线一区二区| 在线永久观看黄色视频| 香蕉久久夜色| 免费观看a级毛片全部| 久久亚洲精品不卡| 精品国产国语对白av| 久久性视频一级片| 国产真人三级小视频在线观看| 中文字幕av电影在线播放| av超薄肉色丝袜交足视频| 亚洲少妇的诱惑av| 成人18禁高潮啪啪吃奶动态图| 一夜夜www| 18禁观看日本| 国产人伦9x9x在线观看| 黄频高清免费视频| 纯流量卡能插随身wifi吗| 伦理电影免费视频| 黄色视频,在线免费观看| 不卡一级毛片| √禁漫天堂资源中文www| 天天添夜夜摸| 欧美亚洲日本最大视频资源| www.精华液| 叶爱在线成人免费视频播放| 婷婷成人精品国产| 高清av免费在线| 天天添夜夜摸| 亚洲精品国产区一区二| 国产激情久久老熟女| 老司机影院毛片| 亚洲精品在线美女| 国产激情久久老熟女| 久久这里只有精品19| 国产精品久久久人人做人人爽| 亚洲专区字幕在线| 日韩有码中文字幕| a级片在线免费高清观看视频| 国产精品熟女久久久久浪| 国产成人一区二区三区免费视频网站| 免费在线观看完整版高清| 欧美激情久久久久久爽电影 | 亚洲国产看品久久| 丝袜美足系列| 亚洲色图 男人天堂 中文字幕|