廖貴華, 黃文峰
(三峽大學(xué)中醫(yī)臨床醫(yī)學(xué)院, 宜昌市中醫(yī)醫(yī)院耳鼻咽喉頭頸外科, 湖北 宜昌 443003)
p62在喉癌Hep-2細(xì)胞化療耐藥中的作用*
廖貴華, 黃文峰△
(三峽大學(xué)中醫(yī)臨床醫(yī)學(xué)院, 宜昌市中醫(yī)醫(yī)院耳鼻咽喉頭頸外科, 湖北 宜昌 443003)
目的: 探討p62在喉癌細(xì)胞Hep-2 化療耐藥中的作用及潛在的作用機(jī)制。方法: 實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(RT-qPCR)及Western blot法檢測(cè)喉癌耐藥細(xì)胞Hep-2/5-FU及其親本細(xì)胞Hep-2中p62的表達(dá)水平。在Hep-2/5-FU細(xì)胞中轉(zhuǎn)染p62 siRNA敲減p62的表達(dá),采用CCK-8法和流式細(xì)胞術(shù)檢測(cè)細(xì)胞生存率及細(xì)胞凋亡狀態(tài);檢測(cè)細(xì)胞中丙二醛(malondialdehyde,MDA)的含量及超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)的活性來(lái)反映細(xì)胞氧化應(yīng)激水平。Western blot檢測(cè)細(xì)胞凋亡相關(guān)調(diào)控因子Bcl-2、Bax、caspase-8/cleaved caspase-8、caspase-3/cleaved caspase-3的蛋白水平及抗氧化通路Keap1/Nrf2的活性。結(jié)果: 耐藥細(xì)胞株Hep-2/5-FU中p62的mRNA及蛋白表達(dá)水平均明顯高于親本細(xì)胞株Hep-2;并且在親本細(xì)胞株Hep-2中,p62和Nrf2的蛋白表達(dá)水平隨著順鉑的濃度增加不斷升高。沉默p62可抑制喉癌耐藥細(xì)胞Hep-2/5-FU的生存,促進(jìn)其凋亡,上調(diào)MDA的含量,降低SOD和GSH-Px的活性,同時(shí)上調(diào)Bax、cleaved caspase-8、cleaved caspase-3和Keap1的蛋白水平,下調(diào)Bcl-2、Nrf2及HO-1的蛋白表達(dá)。結(jié)論: 喉癌耐藥細(xì)胞Hep-2/5-FU中沉默p62可恢復(fù)細(xì)胞對(duì)5-FU的敏感性,其機(jī)制可能與抑制Keap1/Nrf2信號(hào)通路的活化、調(diào)控細(xì)胞內(nèi)氧化應(yīng)激反應(yīng)及細(xì)胞凋亡有關(guān)。
p62; 喉癌; 氧化應(yīng)激; 細(xì)胞凋亡
喉癌是耳鼻喉頭頸外科的一種常見腫瘤,目前的治療依然以外科手術(shù)并應(yīng)用化療藥物為主,但化療過(guò)程中出現(xiàn)的腫瘤耐藥性大大影響了治療效果,同時(shí)降低了患者術(shù)后生存率[1-3]。因而研究喉癌化療耐藥的相關(guān)機(jī)制,尋找耐藥基因?qū)戆┑膫€(gè)體化診療具有十分重要的意義。
p62是一種具有多個(gè)功能性結(jié)構(gòu)域的多功能蛋白[4-5]。研究顯示,在包括胃癌[6]、睪丸癌[7]及非小細(xì)胞肺癌[8]等多種腫瘤中可檢測(cè)到p62的異常表達(dá)。細(xì)胞分子水平的研究進(jìn)一步表明p62可通過(guò)復(fù)雜的信號(hào)通路網(wǎng)絡(luò),參與調(diào)控細(xì)胞的增殖、分化及凋亡等病理生理過(guò)程[9-11]。此外,Lee 等[12]的研究顯示,肺癌耐藥患者癌組織中p62的表達(dá)顯著降低。但是關(guān)于p62在喉癌細(xì)胞化療耐藥中的作用研究甚少,本實(shí)驗(yàn)擬通過(guò)轉(zhuǎn)染p62小干擾RNA (small interfering RNA,siRNA),研究p62在喉癌細(xì)胞Hep-2化療耐藥中的作用,并進(jìn)一步分析其潛在的作用機(jī)制。
1 材料與試劑
人喉癌細(xì)胞株Hep-2購(gòu)于中國(guó)科學(xué)院上海細(xì)胞庫(kù)。胎牛血清(fetal bovine serum,F(xiàn)BS)、RPMI-1640培養(yǎng)基和Opti-NEM培養(yǎng)基購(gòu)于Gibco;5-氟尿嘧啶(5-fluorouracil,5-FU)購(gòu)于Sigma;LipofectamineTM2000購(gòu)于Invitrogen; 抗Bcl-2、Bax、caspase-8/cleaved caspase-8、caspase-3/cleaved caspase-3、Kelch樣ECH相關(guān)蛋白1(Kelch-like ECH-associated protein 1,Keap1)、核因子E2相關(guān)因子2(nuclear factor E2-related factor 2,Nrf2)和血紅素加氧酶1(heme oxygenase-1, HO-1)抗體購(gòu)于Santa Cruz; CCK-8細(xì)胞活力分析試劑盒購(gòu)于Dojindo;丙二醛(malondialdehyde,MDA)、超氧化物歧化酶(superoxide dismutase,SOD)及谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)檢測(cè)試劑盒購(gòu)于南京建成生物工程研究所;細(xì)胞凋亡檢測(cè)試劑盒購(gòu)于南京凱基公司;p62 siRNA、陰性對(duì)照siRNA及SYBR Green I Real-Time PCR Kit由上海吉瑪制藥技術(shù)有限公司提供;其余試劑均為國(guó)產(chǎn)分析純。
2 實(shí)驗(yàn)方法
2.1 細(xì)胞培養(yǎng)、轉(zhuǎn)染和分組 Hep-2細(xì)胞常規(guī)培養(yǎng)于含10% FBS的RPMI-1640培養(yǎng)基中。Hep-2/5-FU細(xì)胞為本實(shí)驗(yàn)室前期所建立,為保持其耐藥性,需在其培養(yǎng)基中定期加用少量5-FU。培養(yǎng)條件為37 ℃、5% CO2恒溫培養(yǎng)箱。每隔1~2 d更換培養(yǎng)基1次。取對(duì)數(shù)生長(zhǎng)期細(xì)胞消化并種植于6孔板中,待細(xì)胞融合至50%~60%左右,更換為無(wú)血清的培養(yǎng)基同步化12 h,轉(zhuǎn)染p62 siRNA或陰性對(duì)照siRNA。組別分為空白對(duì)照(control)組、陰性對(duì)照(negative control,Neg)組和p62 siRNA轉(zhuǎn)染組。將以上siRNA及LipofectamineTM2000分別溶解于Opti-MEM培養(yǎng)基中并孵育5 min,將兩者輕柔混合后室溫靜置20~30 min,形成復(fù)合體。將復(fù)合體分別加入6孔板中,培養(yǎng)箱中孵育6 h,更換為正常培養(yǎng)基繼續(xù)培養(yǎng)24 h,測(cè)定干擾效率并用于后續(xù)實(shí)驗(yàn)分析。
2.2 CCK-8法測(cè)定細(xì)胞生存率 將各組細(xì)胞以每孔2×103個(gè)的密度接種于96孔板中,經(jīng)相應(yīng)處理后繼續(xù)培養(yǎng),在培養(yǎng)時(shí)間截止前2 h加入10 μL CCK-8溶液,置于37 ℃、5% CO2培養(yǎng)箱中孵育2 h。用酶聯(lián)免疫檢測(cè)儀測(cè)定各孔在450 nm波長(zhǎng)處的吸光度(A)值,計(jì)算細(xì)胞的生存率。每組設(shè)3個(gè)復(fù)孔取均值,另設(shè)單孔只加入培養(yǎng)基不加入細(xì)胞作為空白對(duì)照。
2.3 流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡 依據(jù)說(shuō)明書要求,采用流式細(xì)胞術(shù) Annexin V/PI 雙染色法檢測(cè)細(xì)胞凋亡。實(shí)驗(yàn)步驟簡(jiǎn)述如下:各組細(xì)胞消化后1 000×g離心5 min;加入binding buffer 重懸細(xì)胞。室溫避光的條件下,加入Annexin V-FITC混勻后靜置10 min;而后避光加PI染液,室溫下染色5 min,上機(jī)檢測(cè),激發(fā)波長(zhǎng)為488 nm,發(fā)射波長(zhǎng)為530 nm。
2.4 MDA、SOD及GSH-Px的檢測(cè) 各組細(xì)胞經(jīng)相應(yīng)處理后, MDA、SOD及GSH-Px的檢測(cè)依據(jù)南京建成生物工程研究所提供的試劑盒檢測(cè)說(shuō)明書進(jìn)行。
2.5 Western blot檢測(cè)蛋白水平 提取各組蛋白樣品并進(jìn)行蛋白定量,調(diào)整各組上樣量(60 μg)并加入上樣緩沖液(體積比為1∶4),98 ℃水浴變性5 min。采用8%的SDS-PAGE分離后將蛋白電轉(zhuǎn)至PVDF膜(約90 min),加5%脫脂牛奶室溫封閉2 h,加入 I 抗,4 ℃孵育過(guò)夜,TBST洗滌5 min×3次;再加入抗HRP標(biāo)記的 II 抗,室溫孵育90 min,TBST洗滌10 min×3次。于暗室中將PVDF膜的蛋白面浸入HRP-ECL發(fā)光液中激發(fā)熒光,經(jīng)壓片、顯影及定影后對(duì)蛋白條帶行灰度分析。
2.6 實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(RT-qPCR)檢測(cè)p62的mRNA水平 按照Trizol說(shuō)明書提取各組細(xì)胞總RNA,純化后測(cè)定RNA樣品的A280 nm值并定量。取2 μg總RNA在逆轉(zhuǎn)錄酶的作用下逆轉(zhuǎn)錄至終體積為20 μL,而后采用SYBR Green I real-time PCR的方法檢測(cè)mRNA的相對(duì)表達(dá)。p62的正向引物為5’-GAACTCCAGTCCCTACAGAT-3’,反向引物為5’-CGATGTCATAGTTCTTG GTC-3’; GAPDH作為內(nèi)參照,正向引物為5’-GGGTGATGCTGGTGCT GAGTATGT-3’,反向引物為5’-AAGAATGGGAGTTGCTGTTGAAGT-3’。PCR反應(yīng)體系為1 μL逆轉(zhuǎn)錄產(chǎn)物、10 μL SYBR Green PCR Master Mix和100 nmol/L引物,調(diào)整總體積為25 μL。PCR反應(yīng)條件為95 ℃ 5 min,然后進(jìn)行40個(gè)循環(huán)(92 ℃ 10 s, 60 ℃ 50 s)。采用2-ΔΔCt法分析mRNA的相對(duì)表達(dá)量。
3 統(tǒng)計(jì)學(xué)處理
所有實(shí)驗(yàn)數(shù)據(jù)均錄入SPSS 13.0統(tǒng)計(jì)學(xué)分析軟件中進(jìn)行統(tǒng)計(jì)學(xué)分析。實(shí)驗(yàn)結(jié)果以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組數(shù)據(jù)采用單因素方差分析(ANOVA),并用Bonferroni法進(jìn)行均數(shù)組間的兩兩比較,以P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
1 p62的表達(dá)與喉癌細(xì)胞Hep-2化療耐藥之間的關(guān)系
我們首先檢測(cè)了5-FU對(duì)喉癌耐藥細(xì)胞株Hep-2/5-FU及其對(duì)照親本細(xì)胞株Hep-2的IC50[分別為(9.51±0.03) μmol/L和(0.42±0.02) μmol/L],結(jié)果證明Hep-2/5-FU細(xì)胞對(duì)5-FU的耐藥性明顯增強(qiáng)。同時(shí)我們還檢測(cè)了這2株細(xì)胞p62的mRNA及蛋白表達(dá)情況。如圖1所示,耐藥細(xì)胞株Hep-2/5-FU中p62的mRNA及蛋白表達(dá)水平均明顯高于親本細(xì)胞株;并且在親本細(xì)胞株Hep-2中,p62的蛋白表達(dá)水平隨著5-FU的濃度增加不斷升高。該結(jié)果提示p62的表達(dá)可能與Hep-2化療耐藥之間存在相關(guān)關(guān)系。
Figure 1.The relationship between p62 expression and drug resistance in human larygocarcinoma Hep-2 cells. A: the mRNA expression level of p62 in the Hep-2 cells and Hep-2/5-FU cells; B: the protein expression level of p62 in the Hep-2 cells and Hep-2/5-FU cells; C: the p62 and Nrf2 expression increased in a dose-dependent manner in the Hep-2 cells treated with 5-FU. Mean±SD.n=6.*P<0.05vsHep-2 group;#P<0.05vs0 μmol/L group.
圖1 p62的表達(dá)與Hep-2化療耐藥之間的關(guān)系
2 沉默p62對(duì)耐藥細(xì)胞株Hep-2/5-FU化療敏感性的影響
為進(jìn)一步證明p62的表達(dá)與喉癌化療耐藥之間的相互關(guān)系,我們?cè)谀退幖?xì)胞株Hep-2/5-FU中沉默p62,并檢測(cè)細(xì)胞對(duì)5-FU敏感性的變化。CCK-8實(shí)驗(yàn)的結(jié)果顯示,在Hep-2/5-FU細(xì)胞中沉默p62后,細(xì)胞對(duì)5-FU的敏感性明顯增加,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05),見圖2。
Figure 2.Knockdown ofp62 increased the sensitivity of Hep-2/5-FU cells to 5-FU exposure. A: the efficacy ofp62 siRNA transfection; B: knockdown ofp62 increased the sensitivity of Hep-2/5-FU cells to 5-FU exposure. Mean±SD.n=6.*P<0.05vscontrol group.
圖2 沉默p62可提高耐藥細(xì)胞Hep-2/5-FU對(duì)5-FU的敏感性
3 沉默p62對(duì)Hep-2/5-FU細(xì)胞凋亡的影響
流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡結(jié)果顯示,沉默p62可致耐藥細(xì)胞Hep-2/5-FU的凋亡率明顯增加(P<0.05)。除此之外,我們還檢測(cè)了凋亡相關(guān)蛋白的表達(dá)情況,結(jié)果顯示在Hep-2/5-FU細(xì)胞中敲減p62之后Bcl-2的表達(dá)降低,而Bax、cleaved caspase-8和cleaved caspase-3的蛋白水平增加(P<0.05),見圖3。這提示沉默p62可影響凋亡相關(guān)蛋白的表達(dá)并促進(jìn)細(xì)胞凋亡。
4 沉默p62對(duì)Hep-2/5-FU細(xì)胞氧化應(yīng)激反應(yīng)的影響
結(jié)果如圖4所示,在Hep-2/5-FU細(xì)胞中沉默p62,可致MDA的含量增加,同時(shí)SOD及GSH-Px的活性顯著降低,差異有統(tǒng)計(jì)學(xué)意義。結(jié)果說(shuō)明沉默p62可提高細(xì)胞內(nèi)氧化應(yīng)激水平。
5 沉默p62對(duì)Hep-2/5-FU細(xì)胞 Keap1/Nrf2信號(hào)通路的影響
Western blot 的結(jié)果顯示(圖1),在親本細(xì)胞株Hep-2中,Nrf2的蛋白表達(dá)水平隨著5-FU的濃度增加不斷升高,提示Nrf2可能參與影響Hep-2/5-FU細(xì)胞的化療耐藥。為進(jìn)一步研究Keap1/Nrf2信號(hào)通路與p62調(diào)控化療耐藥之間的關(guān)系,我們檢測(cè)了沉默p62后Hep-2/5-FU細(xì)胞中Keap1/Nrf2信號(hào)通路的活性。如圖5所示,沉默p62后,Keap1的蛋白表達(dá)水平明顯升高,而Nrf2及HO-1蛋白的表達(dá)水平顯著降低。結(jié)果提示沉默p62可抑制Keap1/Nrf2信號(hào)通路的激活。
腫瘤細(xì)胞化療耐藥性的出現(xiàn)是影響治療效果及患者預(yù)后和生存率的重要原因之一,既往的研究讓我們對(duì)腫瘤化療耐藥性的認(rèn)識(shí)愈加深入,一般可將其概括為藥物代謝動(dòng)力學(xué)的改變、腫瘤細(xì)胞及腫瘤微環(huán)境的改變等方面[13-14]。自噬因其在清除受損蛋白,促進(jìn)細(xì)胞生存中發(fā)揮重要的作用而備受研究者的關(guān)注。大量的研究均表明自噬是多種分子調(diào)控化療耐藥的作用途徑[15-16]。本研究選擇p62作為靶點(diǎn),系統(tǒng)分析了其在喉癌細(xì)胞Hep-2化療耐藥中的作用。研究結(jié)果發(fā)現(xiàn),在喉癌5-FU耐藥細(xì)胞株中p62 mRNA和蛋白的表達(dá)水平均顯著增加,且親本細(xì)胞株Hep-2中p62的表達(dá)與5-FU 之間存在劑量依賴的關(guān)系,提示p62可能參與調(diào)控喉癌Hep-2細(xì)胞5-FU耐藥現(xiàn)象的發(fā)生。通過(guò)轉(zhuǎn)染p62 siRNA,我們發(fā)現(xiàn)在喉癌5-FU耐藥細(xì)胞株Hep-2/5-FU中沉默p62可提高細(xì)胞對(duì)5-FU的敏感性。因此我們認(rèn)為,沉默p62可逆轉(zhuǎn)喉癌5-FU耐藥。
Figure 3.The effect ofp62 knockdown on the apoptosis of the Hep-2/5-FU cells. A: the cell apoptotic rate detected by flow cytometry; B: the effect ofp62 knockdown on the expression of apoptosis-related proteins detected by Western blot. Mean±SD.n=6.*P<0.05vscontrol group.
圖3 沉默p62對(duì)Hep-2/5-FU細(xì)胞凋亡的影響
Figure 4.The effect ofp62 knockdown on the cell oxidative stress. A: the changes of MDA contents; B: the changes of SOD activity; C: the changes of GSH-Px activity. Mean±SD.n=6.*P<0.05vscontrol group.
圖4 沉默p62對(duì)Hep-2/5-FU細(xì)胞氧化應(yīng)激水平的影響
細(xì)胞的凋亡抵抗作用是多種腫瘤細(xì)胞化療耐藥的重要機(jī)制,為進(jìn)一步了解沉默p62逆轉(zhuǎn)喉癌5-FU耐藥的作用機(jī)制,我們檢測(cè)了耐藥細(xì)胞Hep-2/5-FU沉默p62后,細(xì)胞的凋亡水平。結(jié)果顯示,沉默p62可致耐藥細(xì)胞Hep-2/5-FU的凋亡率明顯增加,同時(shí)影響凋亡相關(guān)Bcl-2和Bax蛋白并激活caspase-8及其下游的效應(yīng)蛋白caspase-3,從而誘導(dǎo)細(xì)胞凋亡。這提示,沉默p62可通過(guò)誘導(dǎo)細(xì)胞凋亡來(lái)逆轉(zhuǎn)喉癌5-FU耐藥。作為程序性細(xì)胞死亡的2種不同形式,自噬與凋亡之間既有聯(lián)系又有區(qū)別,且兩者之間的轉(zhuǎn)化關(guān)系目前并不清晰,而內(nèi)質(zhì)網(wǎng)和氧化應(yīng)激可能涉及到兩種作用的整合[17]。研究顯示多種損傷性刺激打破細(xì)胞內(nèi)氧化應(yīng)激的平衡狀態(tài)是誘導(dǎo)細(xì)胞凋亡的一條重要途徑[18]。p62是一種重要的選擇性自噬接頭蛋白,可參與清除泛素化蛋白;同時(shí)p62/SQSTM1和泛素化修飾是調(diào)控氧化應(yīng)激損傷的關(guān)鍵分子[19],而這種氧化應(yīng)激水平的改變又可影響腫瘤的化療耐藥[20]。故而我們檢測(cè)了p62對(duì)喉癌耐藥細(xì)胞Hep-2/5-FU氧化應(yīng)激反應(yīng)的影響,結(jié)果發(fā)現(xiàn),沉默p62可提高細(xì)胞內(nèi)氧化應(yīng)激水平。提示沉默p62可引發(fā)細(xì)胞氧化應(yīng)激損傷,并進(jìn)一步導(dǎo)致細(xì)胞的死亡,這可能是p62調(diào)控Hep-2/5-FU化療耐藥的一種方式。
Figure 5.The effect ofp62 knockdown on the expression of Keap1/Nrf2 pathway-related proteins in the Hep-2/5-FU cells. Mean±SD.n=6.*P<0.05vscontrol group.
圖5 沉默p62對(duì)Hep-2/5-FU細(xì)胞keap1/Nrf2信號(hào)通路相關(guān)蛋白表達(dá)的影響
Keap1/Nrf2信號(hào)通路是近年來(lái)發(fā)現(xiàn)的抵抗氧化等刺激的重要防御性信號(hào)通路; p62則是Keap1-Nrf2的一個(gè)重要調(diào)控因子,可通過(guò)結(jié)合Keap1阻斷Keap1對(duì)Nrf2的調(diào)控,進(jìn)而導(dǎo)致Nrf2的持續(xù)活化,上調(diào)下游的抗氧化基因如HO-1等的表達(dá),降低胞內(nèi)ROS的水平,促進(jìn)癌細(xì)胞生長(zhǎng)并參與癌細(xì)胞化療耐藥[21-22]。我們的檢測(cè)結(jié)果發(fā)現(xiàn),沉默p62可抑制Keap1/Nrf2信號(hào)通路的激活,提示沉默p62逆轉(zhuǎn)喉癌5-FU耐藥可能與Keap1/Nrf2信號(hào)通路有關(guān),但是否還有其它通路的參與及其具體的調(diào)控機(jī)制還有待進(jìn)一步的研究。
綜上所述,喉癌耐藥細(xì)胞Hep-2/5-FU中沉默p62可恢復(fù)細(xì)胞對(duì)5-FU的敏感性,其機(jī)制可能與抑制Keap1/Nrf2信號(hào)通路的活化,調(diào)控細(xì)胞內(nèi)氧化應(yīng)激反應(yīng)及細(xì)胞凋亡有關(guān)。
[1] Steuer CE, El-Deiry M, Parks JR, et al. An update on larynx cancer[J]. CA Cancer J Clin, 2017, 67(1):31-50.
[2] Eskiizmir G, Baskn Y, Yal?n F, et al. Risk factors for radiation failure in early-stage glottic carcinoma: a syste-matic review and meta-analysis[J]. Oral Oncol, 2016, 62:90-100.
[3] Howard JD, Lu B, Chung CH. Therapeutic targets in head and neck squamous cell carcinoma: identification, evaluation, and clinical translation[J]. Oral Oncol, 2012, 48(1):10-17.
[4] Moscat J, Karin M, Diaz-Meco MT. p62 in cancer: signaling adaptor beyond autophagy[J]. Cell, 2016, 167(3):606-609.
[5] Zhang J, Yang Z, Dong J. p62: An emerging oncotarget for osteolytic metastasis[J]. J Bone Oncol, 2016, 5(1):30-37.
[6] Masuda GO, Yashiro M, Kitayama K, et al. Clinicopathological correlations of autophagy-related proteins LC3, beclin 1 and p62 in gastric cancer[J]. Anticancer Res, 2016, 36(1):129-136.
[7] Bartsch G, Jennewein L, Harter PN, et al. Autophagy-associated proteins BAG3 and p62 in testicular cancer[J]. Oncol Rep, 2016, 35(3):1629-1635.
[8] Wang X, Du Z, Li L, et al. Beclin 1 and p62 expression in non-small cell lung cancer: relation with malignant behaviors and clinical outcome[J]. Int J Clin Exp Pathol, 2015, 8(9):10644-10652.
[9] Nozaki F, Hirotani Y, Nakanishi Y, et al. p62 regulates the proliferation of molecular apocrine breast cancer cells[J]. Acta Histochem Cytochem, 2016,49(4):125-130.
[10]Huang H, Zhu J, Li Y, et al. Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells[J]. Autophagy, 2016, 12(10):1687-1703.
[11]De Amicis F, Guido C, Santoro M, et al. Ligand activated progesterone receptor B drives autophagy-senescence transition through a Beclin-1/Bcl-2 dependent mechanism in human breast cancer cells[J]. Oncotarget, 2016, 7(36):57955-57969.
[12]Lee JG, Shin JH, Shim HS, et al. Autophagy contributes to the chemo-resistance of non-small cell lung cancer in hypoxic conditions[J]. Respir Res, 2015, 16:138.
[13]Zhu J, Zhi Q, Zhou BP, et al. The role of tumor associated macrophages in the tumor microenvironment: mechanism and functions[J]. Anticancer Agents Med Chem, 2016, 16(9):1133-1141.
[14]Kachalaki S, Ebrahimi M, Mohamed Khosroshahi L, et al. Cancer chemoresistance; biochemical and molecular aspects: a brief overview[J]. Eur J Pharm Sci, 2016, 89:20-30.
[15]Li Y, Jiang W, Hu Y, et al. MicroRNA-199a-5p inhibits cisplatin-induced drug resistance via inhibition of auto-phagy in osteosarcoma cells[J].Oncol Lett, 2016, 12(5):4203-4208.
[16]Kim TW, Lee SJ, Kim JT, et al. Kallikrein-related peptidase 6 induces chemotherapeutic resistance by attenuating auranofin-induced cell death through activation of auto-phagy in gastric cancer[J]. Oncotarget, 2016, 7(51):85332-85348.
[17]劉關(guān)羽, 何衛(wèi)陽(yáng), 朱 鑫, 等. 氧化應(yīng)激誘導(dǎo)自噬對(duì)骨髓間充質(zhì)干細(xì)胞增殖與凋亡的影響[J]. 中國(guó)病理生理雜志, 2015, 31(12):2176-2182.
[18]Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, et al. Diosmin-induced senescence, apoptosis and autophagy in breast cancer cells of different p53 status and ERK activity[J]. Toxicol Lett, 2017, 265:117-130.
[19]Park JS, Oh SY, Lee DH, et al. p62/SQSTM1 is required for the protection against endoplasmic reticulum stress-induced apoptotic cell death[J]. Free Radic Res, 2016, 50(12):1408-1421.
[20]Sheng X, Tucci J, Parmentier JH, et al. Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response[J].Oncotarget, 2016, 7(45):73147-73159.
[21]Hayashi K, Dan K, Goto F, et al. The autophagy pathway maintained signaling crosstalk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress[J]. Cell Signal, 2015, 27(2):382-393.
[22]Tian Y, Wu K, Liu Q, et al. Modification of platinum sensitivity by KEAP1/NRF2 signals in non-small cell lung cancer[J]. J Hematol Oncol, 2016, 9:83.
(責(zé)任編輯: 陳妙玲, 羅 森)
Effects of p62 on drug resistance of human laryngocarcinoma cell line Hep-2
LIAO Gui-hua, HUANG Wen-feng
(DepartmentofENT&HNSurgery,YichangHospitalofTCM,CollegeofClinicalMedicineofTCM,ChinaThreeGorgesUniversity,Yichang443003,China.E-mail:hwfhuangwenfeng@126.com)
AIM: To investigate the effects of p62 on drug resistance of human laryngocarcinoma cell line Hep-2. METHODS: The abundance of p62 in Hep-2/5-FU and Hep-2 cells was measured by RT-qPCR and Western blot. After silencing ofp62 withp62 siRNA in the Hep-2/5-FU cells, the cell viability and cell apoptosis were determined by CCK-8 assay and flow cytometry. The levels of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured to reflect the status of oxidative stress in the cells. The protein levels of apoptosis-related molecules Bcl-2, Bax, caspase-8/cleaved caspase-8 and caspase-3/cleaved caspase-3, and the activity of anti-oxidative stress pathway-related proteins Keap1/Nrf2 were measured by Western blot. RESULTS: The expression of p62 at both mRNA and protein levels was significantly up-regulated in the Hep-2/5-FU cells. The expression of p62 and Nrf2 increased in a dose-dependent manner in the Hep-2 cells. Knockdown ofp62 inhibited the viability and promoted the apoptosis of the Hep-2/5-FU cells. Increased content of MDA, and suppressed activity of SOD and GSH-Px were also observed. Furthermore, knockdown ofp62 up-regulated the protein levels of Bax, cleaved caspase-8, cleaved caspase-3 and Keap1, but down-regulated the protein levels of Bcl-2, Nrf2 and HO-1. CONCLUSION: Knockdown ofp62 increases the sensitivity of Hep-2/5-FU cells to 5-FU exposure. The mechanism may be related to the inhibition of Keap1/Nrf2 pathway and the modulation of oxidative stress and cell apoptosis.
p62; Laryngeal neoplasms; Oxidative stress; Apoptosis
1000- 4718(2017)06- 1031- 07
2016- 12- 06
2017- 03- 28
宜昌市大學(xué)科學(xué)研究與計(jì)劃項(xiàng)目(No. A201230234)
R739.65; R730.23
A
10.3969/j.issn.1000- 4718.2017.06.012
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 Tel: 0717-6912538; E-mail: hwfhuangwenfeng@126.com