胡小艷,湯恩杰
·論著·
地塞米松對高原肺水腫大鼠的影響研究
胡小艷1,湯恩杰2
目的 探討地塞米松對高原肺水腫(HAPE)大鼠的影響。方法 2016年5—10月于第三軍醫(yī)大學高原醫(yī)學教育部重點實驗室和西南醫(yī)院中心實驗室進行實驗。選取成年SD大鼠90只,采用隨機數(shù)字表法分為A組、B組和C組,每組30只,剔除實驗過程中死亡大鼠后A組納入22只,B組納入29只,C組納入22只。3組大鼠均進行力竭運動,后將B組和C組大鼠低氧暴露48 h以建立HAPE模型,減壓低氧暴露48 h后B組大鼠予以0.9%氯化鈉溶液300 μl腹腔注射、1次/d,C組大鼠予以地塞米松300 μg腹腔注射、1次/d;連續(xù)用藥3次后處死所有大鼠。觀察3組大鼠肺臟形態(tài)、肺組織學形態(tài)、肺組織超微結構及肺組織Occludin蛋白的表達,比較3組大鼠肺組織含水量、肺泡灌洗液蛋白質含量、肺泡壁血管內皮細胞Occludin蛋白相對表達量、血液和肺泡漏出液炎性因子水平。結果 (1)肺臟形態(tài):A組大鼠肺葉表面光滑,呈淺粉紅色且無泡沫溢出;B組大鼠肺葉腫大,肺表面呈暗紅色,肺組織硬度增加,表面有點狀出血和膿腫形成,切面有較多泡沫溢出;C組大鼠肺表面光滑,呈淺粉紅色,切面少有泡沫溢出,表面無出血和膿腫形成。(2)肺組織學形態(tài):A組大鼠肺泡結構正常,肺泡腔內無紅細胞和粉紅色蛋白樣物質;B組大鼠肺組織結構較致密,肺質地實變,肺血管高度擴張充血,肺泡壁增厚,肺泡間隔增寬,肺泡腔內可見大量紅細胞;C組大鼠僅部分肺泡壁增厚,部分肺泡間隔增寬,肺泡腔內未見紅細胞和粉紅色蛋白樣物質。(3)肺組織超微結構:A組大鼠肺泡壁血管膜雙層結構清晰,結構正常,無融合和斷裂;B組大鼠一側肺泡壁血管膜雙層結構的上皮層疏松、完全斷裂或融合,結構模糊不清,內皮層疏松呈串珠狀;C組大鼠肺泡壁血管膜雙層結構清晰,部分區(qū)域血管膜雙層結構似有融合。(4)肺組織含水量及肺泡灌洗液蛋白質含量:A、C組大鼠肺組織含水量、肺泡灌洗液蛋白質含量低于B組(P<0.05);A組大鼠肺泡灌洗液蛋白質含量低于C組(P<0.05)。(5)肺組織及肺泡壁血管內皮細胞Occludin蛋白的表達:A組大鼠肺組織Occludin蛋白表達呈強陽性,B、C組大鼠肺組織Occludin蛋白表達呈弱陽性。A組大鼠肺泡壁血管內皮細胞Occludin蛋白相對表達量高于B、C組(P<0.01);B組大鼠肺泡壁血管內皮細胞Occludin蛋白相對表達量低于C組(P<0.05)。(6)血液和肺泡漏出液炎性因子水平:3組大鼠血液白介素8(IL-8)水平比較,差異無統(tǒng)計學意義(P>0.05);A組大鼠血液腫瘤壞死因子α(TNF-α)、白介素1β(IL-1β)、白介素6(IL-6)水平低于B組(P<0.05);C組大鼠血液TNF-α水平高于A組,血液IL-1β、IL-6水平低于B組(P<0.05)。A組大鼠肺泡漏出液TNF-α、IL-1β、IL-6、IL-8水平低于B組(P<0.05);C組大鼠肺泡漏出液TNF-α、IL-6水平高于A組,肺泡漏出液IL-1β、IL-6、IL-8水平低于B組(P<0.05)。結論 地塞米松可有效減輕HAPE大鼠肺水腫及炎性反應,改善肺-氣血屏障通透性,有利于減少蛋白質的漏出。
肺水腫;大鼠;地塞米松;炎性反應;水腫
胡小艷,湯恩杰.地塞米松對高原肺水腫大鼠的影響研究[J].實用心腦肺血管病雜志,2017,25(4):56-62.[www.syxnf.net]
HU X Y,TANG E J.Impact of dexamethasone on rats with high altitude pulmonary edema[J].Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease,2017,25(4):56-62.
高原肺水腫(HAPE)是指特發(fā)于高原低氧環(huán)境中的肺水腫,多發(fā)生于平原地區(qū)生活人群初次進入高原地區(qū)或高原地區(qū)居民進入更高海拔地區(qū)時,發(fā)病率為0.5%~2.0%[1-2]。HAPE具有起病急、病情進展快、危害較重等特點,治療不及時可導致昏迷甚至死亡,嚴重威脅患者生命安全[3]。近半個多世紀以來,高原地區(qū)的醫(yī)學工作者通過各種努力降低了HAPE的發(fā)病率和病死率,但近年來隨著高原地區(qū)開發(fā)建設和高原旅游業(yè)的興起,因公務、商務、開發(fā)、旅游、宗教活動等進出于高原地區(qū)的人數(shù)增加,導致HAPE的發(fā)病率出現(xiàn)升高趨勢[4]。HAPE的具體發(fā)病機制尚不完全明確,多數(shù)研究者認為其可能與炎癥有關[5]。本研究旨在探討地塞米松對HAPE大鼠的影響,為地塞米松治療HAPE提供實驗依據(jù),現(xiàn)報道如下。
1.1 實驗材料
1.1.1 實驗動物 成年SD大鼠90只,體質量(200±20)g,周齡6周,清潔級,雌雄各半,均由第三軍醫(yī)大學實驗動物所提供(實驗動物編號:SYDD003),嚴格按照實驗動物管理規(guī)定處置大鼠。
1.1.2 實驗試劑與儀器 地塞米松購自中國河南潤弘制藥股份有限公司;氯化鈉注射液購自中國大冢制藥有限公司;Occludin大鼠多克隆抗體購自美國Abcam公司;二喹啉甲酸(BCA)蛋白濃度檢測試劑盒購自美國Synergy(Synergy,HT)基因公司;腫瘤壞死因子α(TNF-α)、白介素1β(IL-1β)、白介素6(IL-6)和白介素8(IL-8)試劑盒購自北京北方免疫試劑研究所。Multiskan FC全自動多功能酶標儀購自美國Thermo公司;全自動放免測定儀由中國科技大學中佳公司生產;動物實驗跑臺購自中國安徽淮北正華生物儀器設備公司(ZH-PT型)和東西儀北京科技有限公司(WI32812型);高原環(huán)境模擬艙(DYC-2842T型低壓氧艙)由貴航集團風雷機械廠建造;組織學觀察采用日本Nikon公司50i光學顯微鏡;超微結構觀察采用日本日立公司JEM-1400型透射電子顯微鏡。
1.2 分組與建立模型 2016年5—10月于第三軍醫(yī)大學高原醫(yī)學教育部重點實驗室(主要提供儀器設備并負責相關指標的檢測等)和西南醫(yī)院中心實驗室(主要負責動物模型制備、具體實驗等)進行實驗。采用隨機數(shù)字表法將所有大鼠分為A組、B組及C組,每組30只,剔除實驗過程中死亡大鼠,最終A組納入22只,B組納入29只,C組納入22只。參照文獻[5]中的方法并加以改良后建立動物模型:將3組大鼠置于跑步機上并以15 m/min速度進行力竭運動,運動時間為15 min,休息20 min后再次進行力竭運動,循環(huán)運動直至大鼠力竭,后將B組和C組大鼠暴露于海拔6 000 m高原模擬艙內(低氧暴露)48 h建立HAPE模型,減壓低氧暴露48 h后B組大鼠予以0.9%氯化鈉溶液300 μl腹腔注射,1次/d;C組大鼠予以地塞米松300 μg腹腔注射,1次/d。連續(xù)用藥3次后處死所有大鼠。
1.3 觀察指標 觀察3組大鼠肺臟形態(tài)、肺組織學形態(tài)、肺組織超微結構及肺組織Occludin蛋白的表達,比較3組大鼠肺組織含水量、肺泡灌洗液蛋白質含量、肺泡壁血管內皮細胞Occludin蛋白相對表達量、血液和肺泡漏出液炎性因子水平。
1.3.1 肺臟形態(tài)、肺組織學形態(tài)及肺組織超微結構 (1)減壓低氧暴露5 d后處死大鼠,取出肺組織并觀察肺臟形態(tài),后置于4%多聚甲醛溶液中固定數(shù)天,經梯度乙醇脫水、二甲苯透明、石蠟包埋、連續(xù)切片、HE染色、中性樹膠封片后,于光學顯微鏡下觀察肺組織學形態(tài)并采集圖像。(2)將肺組織標本制成1 mm×1 mm×1 mm大小組織塊,置入含有4 ℃混合固定液的玻璃小瓶內,采用后固定法浸泡過夜;采用1%硝酸鑭-0.1 M二甲砷酸鈉緩沖液漂洗2次,1%四氧化鋨后固定2 h,再采用0.1 mol/L二甲砷酸鈉緩沖液漂洗2次,梯度丙酮脫水,常規(guī)透射電鏡切片并制樣,醋酸鈾與枸櫞酸鉛雙重電子染色,采用透射電子顯微鏡觀察肺組織超微結構。
1.3.2 肺組織含水量 減壓低氧暴露5 d后處死大鼠,取出右肺并迅速置于精密電子天平上稱量濕重,后置于60 ℃電熱恒溫干燥箱中烘烤至恒重(2次稱量干重誤差<0.002 g為達到恒重)后取出,記錄組織塊干重。依據(jù)Elliot公式計算肺組織含水量,肺組織含水量(%)=(濕重-干重)/ 濕重×100%。
1.3.3 肺泡灌洗液蛋白質含量 取標準配制液0.8 ml加入標準品20 mg中配成BCA標準A液(25 mg/ml);取25 mg/ml蛋白標準液2 μl加入0.01 M磷酸鹽緩沖溶液(PBS)98 μl制成BCA標準B液(0.5 mg/ml);取BCA標準A液8 ml加入BCA標準B液160 μl以50∶1比例配成BCA工作液;將標準品按0、1、2、4、8、12、16、20 μl加入96孔板標準品孔中,加標準品稀釋液補足至20 μl,后將待測樣本加入96孔板,各孔加入BCA工作液200 μl,于37 ℃烘箱孵育30 min,采用Lowry法在波長562 nm的多功能酶標儀檢測吸光度值,并根據(jù)標準品蛋白吸光度繪制標準曲線,計算肺泡灌洗液蛋白質含量。
1.3.4 肺組織及肺泡壁血管內皮細胞Occludin蛋白的表達 Occludin為肺氣-血屏障內皮細胞間緊密連接蛋白,肺組織Occludin蛋白的表達采用半定量分析:每組隨機抽取10張切片,每張切片隨機選取9個視野,固定窗口面積,采用美國Imaging J圖像處理系統(tǒng)測定其平均累積光密度值(IOD),平均IOD越高表示陽性反應產物強度越強,提示Occludin蛋白表達量越高。采用兩步法測定肺泡壁血管內皮細胞Occludin蛋白表達量,并通過Quantity One 4.6.2圖像分析軟件測定其IOD,計算目的蛋白與內參蛋白IOD比值,即Occludin蛋白相對表達量。
1.3.5 血液和肺泡漏出液炎性因子水平 減壓低氧暴露5 d后將各組大鼠麻醉并固定于動物實驗臺上,沿腹白線剪開腹壁,打開腹腔,暴露腹主動脈并采集腹主動脈血4 ml,于低溫離心機上離心10 min,分離血清,置于-20 ℃冰箱中保存待測;取血完成后沿胸部正中逐層剪開胸壁,暴露胸腔臟器,先結扎右側各肺葉,后經氣管插入塑料導管至左肺,結扎固定導管后予以0.9%氯化鈉溶液緩慢勻速注入左肺,1 ml/次,存留片刻后抽回,再予以0.9%氯化鈉溶液緩慢勻速注入左肺,如此反復3次收集肺泡漏出液3 ml,置于離心管內,混勻后離心,取上清液并置于-20 ℃冰箱中保存待測。采用放射免疫法檢測血液和肺泡漏出液TNF-α、IL-1β、IL-6及IL-8水平。
2.1 肺臟形態(tài)A組大鼠肺葉表面光滑,呈淺粉紅色且無泡沫溢出(見圖1A);B組大鼠肺葉腫大,肺表面呈暗紅色,肺組織硬度增加,表面有點狀出血和膿腫形成,切面有較多泡沫溢出(見圖1B);C組大鼠肺表面光滑,呈淺粉紅色,表面無出血和膿腫形成,切面少有泡沫溢出(見圖1C)。
2.2 肺組織學形態(tài) 光鏡下可見A組大鼠肺泡結構完全正常,肺泡腔內無紅細胞和粉紅色蛋白樣物質(見圖2A);B組大鼠肺組織結構較致密,肺質地實變,肺血管高度擴張充血,肺泡壁增厚,肺泡間隔增寬,肺泡腔內可見大量紅細胞(見圖2B);C組大鼠僅部分肺泡壁增厚,部分肺泡間隔增寬,肺泡腔內未見紅細胞和粉紅色蛋白樣物質(見圖2C)。
2.3 肺組織超微結構 電鏡下可見A組大鼠肺泡壁血管膜雙層結構清晰,結構正常,無融合和斷裂(見圖3A);B組大鼠一側肺泡壁血管膜雙層結構的上皮層疏松、完全斷裂或融合,結構模糊不清,內皮層疏松呈串珠狀(見圖3B);C組大鼠肺泡壁血管膜雙層結構清晰,部分區(qū)域血管膜雙層結構似有融合(見圖3C)。
2.4 肺組織含水量和肺泡灌洗液蛋白質含量 3組大鼠肺組織含水量、肺泡灌洗液蛋白質含量比較,差異有統(tǒng)計學意義(P<0.05);A組、C組大鼠肺組織含水量、肺泡灌洗液蛋白質含量低于B組,差異有統(tǒng)計學意義(P<0.05);A組大鼠肺泡灌洗液蛋白質含量低于C組,差異有統(tǒng)計學意義(P<0.05,見表1)。
Table1Comparisonoflungwatercontentandbronchoalveolarlavagefluidproteincontentamongthethreegroupsofrats
組別只數(shù)肺組織含水量(%)肺泡灌洗液蛋白質含量(mg/ml)A組2278.49±1.23a0.2853±0.0092aB組2980.25±4.050.6068±0.1274C組2278.16±2.42a0.3178±0.7115abF值5.44411.928P值<0.05<0.05
注:與B組比較,aP<0.05;與A組比較,bP<0.05
2.5 肺組織及肺泡壁血管內皮細胞Occludin蛋白的表達 免疫組化染色結果顯示,Occludin蛋白主要沿肺泡上皮細胞的胞膜頂端及胞質分布,呈棕褐色線狀信號。A組大鼠肺組織Occludin蛋白表達呈強陽性(見圖4A);B、C組大鼠肺組織Occludin蛋白表達呈弱陽性(見圖4B、C)。A組大鼠肺泡壁血管內皮細胞Occludin蛋白相對表達量為(178.372 7±2.099 2),B組為(160.925 2±2.710 9),C組為(165.031 2±1.333 8),3組大鼠肺泡壁血管內皮細胞Occludin蛋白相對表達量比較,差異有統(tǒng)計學意義(F=18.368,P<0.05);A組大鼠肺泡壁血管內皮細胞Occludin蛋白相對表達量高于B、C組,差異有統(tǒng)計學意義(P<0.01);B組大鼠肺泡壁血管內皮細胞Occludin蛋白相對表達量低于C組,差異有統(tǒng)計學意義(P<0.05)。
注:A圖示肺葉表面光滑,呈淺粉紅色且無泡沫溢出;B圖示肺葉腫大,肺表面呈暗紅色,肺組織硬度增加,表面有點狀出血和膿腫形成,切面有較多泡沫溢出;C圖示肺表面光滑,呈淺粉紅色,表面無出血和膿腫形成,切面少有泡沫溢出
圖1 3組大鼠肺臟形態(tài)
Figure 1 Lung morphology of the three groups of rats
注:A圖示肺泡結構正常;B圖示肺組織結構致密,肺泡腔內充滿大量紅細胞和粉紅色蛋白樣物質;C圖示部分肺泡間隔增寬,肺泡腔內未見紅細胞和粉紅色蛋白樣物質
圖2 3組大鼠肺組織學形態(tài)(HE染色,×100)
Figure 2 Lung histological performance of the three groups of rats
注:A圖示大鼠肺泡壁血管膜雙層結構清晰,無融合和斷裂;B圖示大鼠一側肺泡壁血管膜雙層結構的上皮層完全斷裂;C圖示大鼠肺泡壁血管膜雙層結構清晰
圖3 3組大鼠肺組織超微結構(×20 000)
Figure 3 Lung ultrastructure of the three groups of rats
注:A圖示Occludin蛋白主要沿肺泡上皮細胞的胞膜頂端及胞質分布,呈棕褐色線狀信號;B圖示沿肺泡上皮細胞的胞膜頂端及胞質分布的Occludin明顯減少,呈淺褐色;C圖示沿肺泡上皮細胞的胞膜頂端及胞質分布的Occludin明顯減少,呈淺棕褐色
圖4 3組大鼠免疫組化染色結果(×400)
Figure 4 Immunohistochemical staining results of the three groups of rats
2.6 血液和肺泡漏出液炎性因子水平 3組大鼠血液TNF-α、IL-1β、IL-6水平比較,差異有統(tǒng)計學意義(P<0.05);3組大鼠血液IL-8水平比較,差異無統(tǒng)計學意義(P>0.05)。A組大鼠血液TNF-α、IL-1β、IL-6水平低于B組,差異有統(tǒng)計學意義(P<0.05);C組大鼠血液TNF-α水平高于A組,血液IL-1β、IL-6水平低于B組,差異有統(tǒng)計學意義(P<0.05,見表2)。3組大鼠肺泡漏出液TNF-α、IL-1β、IL-6、IL-8水平比較,差異有統(tǒng)計學意義(P<0.05);A組大鼠肺泡漏出液TNF-α、IL-1β、IL-6、IL-8水平低于B組,差異有統(tǒng)計學意義(P<0.05);C組大鼠肺泡漏出液TNF-α、IL-6水平高于A組,肺泡漏出液IL-1β、IL-6、IL-8水平低于B組,差異有統(tǒng)計學意義(P<0.05,見表3)。
Table2Comparisonofbloodinflammatorycytokineslevelsamongthethreegroupsofrats
組別只數(shù)TNF-α(fmol/ml)IL-1β(ng/ml)IL-6(pg/ml)IL-8(pg/ml)A組226.1118±2.16310.2512±0.056189.0519±4.08290.5238±0.1390B組2912.3289±1.6517a0.4775±0.0474a135.2610±4.9489a0.5908±0.1352C組2211.1694±1.8163a0.2375±0.0375b82.2869±8.9623b0.5167±0.1254F值51.478222.244266.2822.423P值<0.05<0.05<0.05>0.05
注:TNF-α=腫瘤壞死因子α,IL-1β=白介素1β,IL-6=白介素6,IL-8=白介素8;與A組比較,aP<0.05;與B組比較,bP<0.05
Table3Comparisonofalveolartransudationinflammatorycytokineslevelsamongthethreegroupsofrats
組別只數(shù)TNF-α(fmol/ml)IL-1β(ng/ml)IL-6(pg/ml)IL-8(pg/ml)A組222.7546±0.96870.1417±0.072342.3825±5.19040.1838±0.0822B組294.0209±2.8775a0.2730±0.0269a171.8725±4.4376a0.2945±0.0879aC組223.3586±3.5242a0.1945±0.0663b61.6921±5.5865ab0.1950±0.0921bF值13.61327.403175.35215.518P值<0.05<0.05<0.05<0.05
注:與A組比較,aP<0.05;與B組比較,bP<0.05
HAPE是高原地區(qū)特發(fā)性疾病,也是高原地區(qū)常見危重癥,具有起病急、病情較重、發(fā)展較快等特點,若救治不及時則會危及患者生命安全。近年研究表明,HAPE仍是威脅急進高原人群生命安全的主要原因[6-7],因此,早發(fā)現(xiàn)、早診斷、早治療HAPE對確保急進或移居高原者生命安全具有重要意義。2010年4月,中國青海省玉樹洲結古鎮(zhèn)發(fā)生強烈地震,造成數(shù)十萬民房倒塌,數(shù)萬居民急需救援救治,HAPE患者數(shù)量急劇增加,給高原救援帶來了極大的挑戰(zhàn),而由于來自平原地區(qū)的救援人員缺乏高原救治知識,部分救援隊受到HAPE威脅而不得不在到達救援現(xiàn)場的第3天撤離,因此,深入探討HAPE的發(fā)病機制,尋找簡便、快速、高效的HAPE救治方法具有重要現(xiàn)實意義。
HAPE最可靠的救治方法是盡快脫離低氧環(huán)境,下送平原地區(qū)并通過氧療將血氧飽和度提高至90%以上[8],不能及時下送平原地區(qū)者應及時就地使用高壓氧艙治療[9]。藥物治療為HAPE的常用治療方法,主要為使用血管擴張劑降低肺動脈壓力,但口服給藥起效時間長、見效慢,并不是大批量救治HAPE患者的最佳救治方法[10]。研究表明,吸入低濃度一氧化氮(NO)可有效縮短HAPE患者肺部啰音消失時間、胸部X線陰影消失時間及住院時間,吸入低濃度NO治療HAPE的效果良好[8],但吸入NO須有專用設備,受儀器設備限制而無法廣泛應用; L-精氨酸能有效改善HAPE患者臨床癥狀,降低患者肺動脈高壓[9];抗膽堿藥治療HAPE具有起效迅速、療效確切、療程短、不良反應少、治愈率高等優(yōu)點[11]。地塞米松屬于炎性反應阻斷劑,可通過阻斷炎癥通路而抑制炎性因子的活化,降低炎性級聯(lián)反應。CHEN等[12]采用布地奈德吸入防治HAPE,結果顯示,其預防HAPE的效果優(yōu)于口服地塞米松,但吸入布地奈德是否適用于救治HAPE尚缺少相應臨床證據(jù)。
HAPE是一種免疫炎性反應,患者早期支氣管肺泡漏出液肺泡巨噬細胞、中性粒細胞、淋巴細胞及清蛋白、低密度脂蛋白、IL-1β、IL-6、IL-8、TNF-α水平升高[13],而激活肺部炎性因子的信號可能來源于缺氧及應激損傷等。研究表明,活性氧(ROS)具有直接損傷細胞作用,可破壞正常組織和細胞,而受損細胞釋放損傷相關分子模式(DAMPs)可激活肺部模式識別受體(PRRs)和核因子κB(NF-κB)通路,上調IL-1β前體和Caspase-1的表達[14];ROS還可損傷鄰近正常線粒體并形成連鎖反應[15],因此,為保護細胞免受過量產生的ROS損傷,產ROS的損傷線粒體不斷以自噬形式被清除[16],而抑制線粒體自噬會導致產ROS損傷線粒體累積,造成NLRP3炎性小體過度活化和IL-1β分泌增多[17-19]。此外,還原型輔酶Ⅱ(NADPH)氧化酶家族的產ROS酶可通過在肺細胞大量表達而放大內源性ROS信號,進而調節(jié)缺氧反應[20];肺血管內皮細胞NADPH氧化酶家族產生的ROS可促進NLRP3與硫氧還原蛋白結合蛋白(TXNIP)相互作用,誘導內皮細胞炎性小體活化和IL-1β分泌;中性粒細胞來源的ROS可增強內皮細胞NADPH氧化酶的活性,進而放大缺血缺氧對炎性小體的活化作用[21]。IL-1β是引起肺損傷的最主要的炎性遞質,主要由ROS激活P38 MAPk信號通路而高表達;IL-1β與受體結合后可上調肺毛細血管內皮細胞黏附因子的表達,趨化并激活白細胞釋放更多炎性因子,繼而引發(fā)炎癥瀑布效應,同時還可通過未知效應蛋白使肌動蛋白重組,進而影響內皮細胞間的緊密連接[22-23]。白介素1(IL-1)受體激活MYD88-ARNO-ARF6通路可引起血管內皮細胞鈣黏蛋白內化,進而破壞內皮細胞穩(wěn)定性,促進肺水腫的發(fā)生[24]。上述研究表明,炎性信號通路在HAPE的發(fā)生發(fā)展過程中發(fā)揮著重要作用。
本研究結果顯示,C組大鼠肺表面光滑,呈淺粉紅色,表面無出血和膿腫形成,切面少有泡沫溢出;僅部分肺泡壁增厚,部分肺泡間隔增寬,肺泡腔內未見紅細胞和粉紅色蛋白樣物質,肺泡壁血管膜雙層結構清晰;C組大鼠肺組織含水量、肺泡灌洗液蛋白質含量低于B組,A組大鼠肺泡灌洗液蛋白質含量低于C組;C組大鼠肺組織Occludin蛋白表達呈弱陽性,C組大鼠肺泡壁血管內皮細胞Occludin蛋白相對表達量低于A組,B組大鼠肺泡壁血管內皮細胞Occludin蛋白相對表達量低于C組;C組大鼠血液TNF-α水平高于A組,肺泡漏出液TNF-α、IL-6水平高于A組,肺泡漏出液IL-1β、IL-6、IL-8水平低于B組。表明地塞米松治療可有效降低HAPE大鼠肺組含水量、肺泡灌洗液蛋白質含量、血液及肺泡漏出液中炎性因子水平,減輕肺水腫及炎性反應,改善肺-氣血屏障通透性,有利于減少蛋白質的漏出。
綜上所述,地塞米松可有效減輕HAPE大鼠肺水腫及炎性反應,改善肺-氣血屏障通透性,有利于減少蛋白質的漏出,為臨床應用地塞米松治療HAPE提供了實驗依據(jù)。
作者貢獻:胡小艷進行實驗實施、資料收集整理、撰寫論文;湯恩杰進行實驗設計、評估、資料收集整理、質量控制及審校并對文章負責。
本文無利益沖突。
[1]TANG E,CHEN Y,LUO Y.Dexamethasone for the prevention of acute mountain sickness:systematic review and meta-analysis[J].Int J Cardiol,2014,173(2):133-138.DOI:10.1016/j.ijcard.2014.03.019.
[2]HACKETT P H,ROACH R C.High altitude cerebral edema[J].High Alt Med Biol,2004,5(2):136-146.
[4]XIAO-LIN M A,JIN R B,ZHANG X H,et al.Study on management of 726 victims in military hospitals following Yushu earthquake in Qinghai province[J].Journal of Traumatic Surgery,2010,12(4):339-342.
[5]SWENSON E R,MAGGIORINI M,MONGOVIN S P,et al.athogenesis of high-altitude pulmonary edema:inflammation is not an etiologic factor[J].JAMA,2002,287(17):2228-2235.
[6]GUO P,LUO H,F(xiàn)AN Y,et al.Establishment and evaluation of an experimental animal model of high altitude cerebral edema[J].Neurosci Lett,2013,547:82-86.DOI:10.1016/j.neulet.2013.05.008.
[7]BASNYAT B,SUBEDI D,SLEGGS J,et al.Disoriented and ataxic pilgrims:an epidemiological study of acute mountain sickness and high-altitude cerebral edema at a sacred lake at 4300 m in the Nepal Himalayas[J].Wilderness Environ Med,2000,11(2):89-93.
[8]MAGGIORINI M.Prevention and treatment of high-altitude pulmonary edema[J].Prog Cardiovasc Dis,2010,52(6):500-506.DOI:10.1016/j.pcad.2010.03.001.
[9]BHAGI S,SRIVASTAVA S,SINGH S B.High-altitude pulmonary edema:review[J].J Occup Health,2014,56(4):235-243.
[10]REN Y,F(xiàn)U Z,SHEN W,et al.Incidence of high altitude illnesses among unacclimatized persons who acutely ascended to Tibet[J].High Alt Med Biol,2010,11(1):39-42.DOI:10.1089/ham.2009.1049.
[11]ZHOU Q.Standardization of methods for early diagnosis and on-site treatment of high-altitude pulmonary edema[J].Pulm Med,2011:190648.DOI:10.1155/2011/190648.
[12]CHEN G Z,ZHENG C R,QIN J,et al.Inhaled budesonide prevents acute mountain sickness in young Chinese men[J].J Emerg Med,2015,48(2):197-206.DOI:10.1016/j.jemermed.2014.07.047.
[13]MOU X B,GANG-LIN Y E,TANG H Y.Clinical effects of L-arginine in patients with high altitude pulmonary edema and its hemodynamic changes[J].Chinese Journal of Critical Care Medicine,2003,23(12):827-828.
[14]ZHANG X.Study on anticholinergics for the treatment of high altitude pulmonary edema[J].Zhonghua Jie He He Hu Xi Za Zhi,1999,22(4):234-236.
[15]WANG W,ZHANG X,MA Y.Low-concentration nitrous oxide inhalation in the treatment of high-altitude pulmonary edema[J].Zhonghua Jie He He Hu Xi Za Zhi,1998,21(4):212-214.
[16]KUBO K,HANAOKA M,HAYANO T,et al.Inflammatory cytokines in BAL fluid and pulmonary hemodynamics in high-altitude pulmonary edema[J].Respir Physiol,1998,111(3):301-310.
[17]KORDE A S,YADAV V R,ZHENG Y M,et al.Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes[J].Free Radic Biol Med,2011,50(8):945-952.DOI:10.1016/j.freeradbiomed.2011.01.010.
[18]ZHOU L,AON M A,ALMAS T,et al.A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network[J].PLoS Comput Biol,2010,6(1):e1000657.DOI:10.1371/journal.pcbi.1000657.
[19]LEMASTERS J J.Selective mitochondrial autophagy,or mitophagy,as a targeted defense against oxidative stress,mitochondrial dysfunction,and aging[J].Rejuvenation Res,2005,8(1):3-5.
[20]SAITOH T,F(xiàn)UJITA N,JANG M H,et al.Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production[J].Nature,2008,456(7219):264-268.DOI:10.1038/nature07383.
[21]ZHOU R,TARDIVEL A,THORENS B,et al.Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J].Nat Immunol,2010,11(2):136-140.DOI:10.1038/ni.1831.
[22]RATHORE R,ZHENG Y M,NIU C F,et al.Hypoxia activates NADPH oxidase to increase [ROS] i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells[J].Free Radic Biol Med,2008,45(9):1223-1231.DOI:10.1016/j.freeradbiomed.2008.06.012.
[23]MAGGIORINI M,MéLOT C,PIERRE S,et al.High-altitude pulmonary edema is initially caused by an increase in capillary pressure[J].Circulation,2001,103(16):2078-2083.
[24]ZHU W,LONDON N R,GIBSON C C,et al.Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability[J].Nature,2012,492(7428):252-255.DOI:10.1038/nature11603.
(本文編輯:李潔晨)
Impact of Dexamethasone on Rats with High Altitude Pulmonary Edema
HUXiao-yan1,TANGEn-jie2
1.DepartmentofAnesthesiology,SouthwestHospitaloftheThirdMilitaryMedicalUniversity,Chongqing400038,China2.AirForceQionglaiTerminalHospital,Qionglai611530,China
TANGEn-jie,E-mail:enjietang@163.com
Objective To investigate the impact of dexamethasone on rats with high altitude pulmonary edema(HAPE).Methods From May to October in 2016,the experiment was carried out in the Key Laboratory Ministry of Education for High Altitude Medicine in the Third Military Medical University and Central Laboratory of Southwest Hospital.A total of 90 adult SD rats were randomly divided into A group,B group and C group according to random number table,each of 30 cases;excluded the dead rats during the experiment,eventually 22 rats involved in A group,29 rats involved in B group,and rats involved in C group.Rats of the three groups take the exhaustion exercise,then rats of B group and C group
hypoxic exposure to prepare HAPE model;after 48 hours of decompressive hypoxic exposure,rats of B group received intraperitoneal injection of 0.9% sodium chloride injection(300 μl),1 time per day,rats of C group received intraperitoneal injection of dexamethasone(300 μg)1 time per day;both B group and C group continuously injected for 3 times,then rats of the three groups were killed.Lung morphology,lung histological performance,lung ultrastructure and expression of Occludin protein in lung tissue of the three groups were observed,lung water content and bronchoalveolar lavage fluid protein content,relative expression quantity of Occludin protein of vascular endothelial cells of alveolar wall,blood and alveolar transudation inflammatory cytokines levels were compared among the three groups.Results (1)Lung morphology:lung lobes of A group A were smooth,pale pink,without foam spill;lung lobes of B group were dropsical,with dark red lung surface, increased solidity of lung tissue,punctate bleeding and abscess,and relatively large foam spill;lung surface of C group was smooth,pale pink,with relatively less foam spill,without bleeding or abscess in lung surface.(2)Lung histological performance:alveolus structure of A group was normal,without red blood cells or pink protein-like substance in the alveolus cavity;lung tissue structure of B group was relatively compact,with increased solidity of lung tissue,high ectatic and congestive pulmonary vessels,thickened alveolar wall and widened alveolar septum,large amount of red blood cells can in the alveolus cavity;part of alveolar wall of C group plumped,part of alveolar septum widened,without red blood cells or pink protein-like substance in the alveolus cavity.(3)Lung ultrastructure:vascular membrane double layer structure of alveolar wall of A group was clear and normal,without fusion and fracture;unilateral epithelial layer of vascular membrane double layer structure of alveolar wall of B group was loose,completely fractured or fusional,with blurry structure and bead-like loose entoderm;vascular membrane double layer structure of alveolar wall of C group was clear,with fusion-like partial vascular membrane double layer structure.The alveolus pulmonis wall structure in group C is clear,just some regional membrane double layer structure seems to have fusion.(4)Lung water content and bronchoalveolar lavage fluid protein content:lung water content and bronchoalveolar lavage fluid protein content of A group and C group were statistically significantly lower than those of B group(P<0.05),meanwhile bronchoalveolar lavage fluid protein content of A group was statistically significantly lower than that of C group(P<0.05).(5)Expression of Occludin protein in lung tissue and relative expression quantity of Occludin protein of vascular endothelial cells of alveolar wall:expression of Occludin protein in lung tissue of A group was strongly positive,while expressions of Occludin protein in lung tissue of B group and C group were both weakly positive.Relative expression quantity of Occludin protein of vascular endothelial cells of alveolar wall of A group was statistically significantly higher than that of B group and C group,respectively(P<0.01),while relative expression quantity of Occludin protein of vascular endothelial cells of alveolar wall of B group was statistically significantly lower than that of C group(P<0.05).(6)Blood and alveolar transudation inflammatory cytokines levels:no statistically significant differences of blood IL-8 level was found among the three groups(P>0.05);blood levels of TNF-α,IL-1β and IL-6 of A group were statistically significantly lower than those of B group(P<0.05);blood TNF-α level of C group was statistically significantly higher than that of A group,while blood levels of IL-1β and IL-6 of C group were statistically significantly lower than those of B group(P<0.05).Alveolar transudation levels of TNF-α,IL-1β,IL-6 and IL-8 of A group were statistically significantly lower than those of B group(P<0.05);alveolar transudation levels of TNF-α and IL-6 of C group were statistically significantly higher than those of A group,while alveolar transudation levels of IL-1β,IL-6 and IL-8 of C group were statistically significantly lower than those of B group(P<0.05).Conclusion Dexamethasone can effectively relive the pulmonary edema and inflammatory reaction,improve the permeability of lung air-blood barrier of rats with HAPE,is helpful to reduce the leakage of protein.
Pulmonary edema;Rats;Dexamethasone;Inflammatory response;Edema
國家科技支撐計劃項目(2009BAI85B03)
湯恩杰,E-mail:enjietang@163.com
R 541.63
A
10.3969/j.issn.1008-5971.2017.04.013
2017-01-05;
2017-04-08)
1.400038重慶市,第三軍醫(yī)大學西南醫(yī)院麻醉科
2.611530四川省邛崍市,空軍邛崍場站醫(yī)院