梁熙陳國慶田衛(wèi)東
1.口腔疾病研究國家重點(diǎn)實(shí)驗(yàn)室,國家口腔疾病臨床研究中心,
四川大學(xué)華西口腔醫(yī)院創(chuàng)傷與整形外科;
2.口腔再生醫(yī)學(xué)國家地方聯(lián)合工程實(shí)驗(yàn)室 華西口腔醫(yī)院(四川大學(xué)),成都 610041
低氧對人牙囊細(xì)胞生物學(xué)特性的影響
梁熙1,2陳國慶2田衛(wèi)東1,2
1.口腔疾病研究國家重點(diǎn)實(shí)驗(yàn)室,國家口腔疾病臨床研究中心,
四川大學(xué)華西口腔醫(yī)院創(chuàng)傷與整形外科;
2.口腔再生醫(yī)學(xué)國家地方聯(lián)合工程實(shí)驗(yàn)室 華西口腔醫(yī)院(四川大學(xué)),成都 610041
目的 研究低氧對人牙囊細(xì)胞(hDFCs)生物學(xué)特性的影響。方法 利用組織塊酶消化法從年輕恒牙中分離培養(yǎng)hDFCs;采用免疫熒光技術(shù)檢測細(xì)胞表面標(biāo)志物,多向誘導(dǎo)實(shí)驗(yàn)檢測細(xì)胞多向分化潛能;模擬體外低氧微環(huán)境,將細(xì)胞分為常氧組(20%O2)和低氧組(2%O2),分別對兩組細(xì)胞行Transwell小室試驗(yàn)檢測低氧對細(xì)胞遷移的影響,采用CCK-8法檢測低氧對細(xì)胞增殖的影響。通過實(shí)時定量聚合酶鏈反應(yīng)(qRT-PCR)和Western blot分別從基因和蛋白水平檢測hDFCs多能性相關(guān)標(biāo)志物于不同氧體積分?jǐn)?shù)下的表達(dá);分別對兩組細(xì)胞進(jìn)行成骨誘導(dǎo),qRT-PCR檢測成骨相關(guān)基因,茜素紅染色評估礦化結(jié)節(jié)的形成。結(jié)果 hDFCs具有較強(qiáng)的干細(xì)胞特征,具有成骨、成脂及成神經(jīng)多向分化能力,符合間充質(zhì)干細(xì)胞基本標(biāo)準(zhǔn),能夠滿足牙組織工程構(gòu)建對種子細(xì)胞的需求。低氧有利于hDFCs多能性的保持,同時促進(jìn)了hDFCs的遷移和增殖。hDFCs于低氧中進(jìn)行誘導(dǎo)時,其成骨分化能力得到增強(qiáng)。結(jié)論 低氧微環(huán)境對維持hDFCs多能性,促進(jìn)hDFCs增殖、遷移和分化有重要作用。
低氧; 人牙囊細(xì)胞; 增殖; 遷移; 分化
牙囊是牙萌出之前包繞牙胚的一層疏松結(jié)締組織,該組織被認(rèn)為含有干細(xì)胞和形成牙周組織的前體細(xì)胞亞群[1]。在一定的條件下,牙囊細(xì)胞(dental follicle cells,DFCs)可分化為牙周膜細(xì)胞、成牙骨質(zhì)細(xì)胞及成骨細(xì)胞,分別形成牙周膜、牙骨質(zhì)和牙槽骨[2]。目前認(rèn)為,DFCs具有強(qiáng)大的多向分化能力,可以促進(jìn)牙組織結(jié)構(gòu)和功能的修復(fù),因而備受關(guān)注。人DFCs(human DFCs,hDFCs)可從臨床年輕患者拔除的第三磨牙中分離獲得,培養(yǎng)至多代后仍然具有強(qiáng)大的組織再生能力[3],而且因其來源于自體組織,可以避免產(chǎn)生免疫排斥反應(yīng),因而hDFCs被認(rèn)為是應(yīng)用于牙本質(zhì)、牙周再生最合適的種子細(xì)胞之一。
目前體外培養(yǎng)牙源性細(xì)胞時,多是在氧體積分?jǐn)?shù)為20%的常氧環(huán)境下進(jìn)行,但牙源性細(xì)胞在體內(nèi)微環(huán)境中的氧體積分?jǐn)?shù)大大低于此水平。組織病理狀態(tài)如牙髓鈣化、牙周炎等可引起組織缺血缺氧,同樣會使局部細(xì)胞處于低氧環(huán)境中。大量研究[4-7]表明,低氧環(huán)境可以明顯影響細(xì)胞的生物學(xué)特性和功能,對細(xì)胞增殖、調(diào)亡、分化等方面的影響尤為明顯。近年來對低氧的研究[8-12]多集中在牙髓細(xì)胞上,而低氧對hDFCs的影響還少有報道。本實(shí)驗(yàn)的目的即是研究低氧環(huán)境對hDFCs基本生物學(xué)特性的影響,包括細(xì)胞多能性,以及細(xì)胞增殖、分化、遷移等特性。
1.1 主要試劑和儀器
胎牛血清、α-MEM培養(yǎng)基(Gibco公司,美國),Ⅰ型膠原酶、胰蛋白酶、青鏈霉素混合液(Sigma公司,美國),體視顯微鏡、倒置顯微鏡(Leica公司,德國),三氣培養(yǎng)箱(SANYO公司,日本),Transwell小室(Corning公司,美國),細(xì)胞增殖活性檢測試劑盒(Dojindo公司,日本),RNAiso Plus RNA提取試劑及逆轉(zhuǎn)錄試劑盒(Takara公司,日本),實(shí)時定量聚合酶鏈反應(yīng)(quantitative real-time polymerase chain reaction,qRT-PCR)儀(Applied Biosystems公司,美國),二喹啉甲酸(bicinchoninic acid,BCA)蛋白定量試劑盒(Pierce Biotechnology公司,美國),細(xì)胞角蛋白14(cytokeratin 14,CK14)抗體(M illipore公司,美國,貨號MAB3232),波絲蛋白(Vimentin)抗體(Thermo公司,美國,貨號OMA1-06001),Nanog抗體(Santa Cruz公司,美國,貨號sc-33760),Sox-2抗體(Abcam公司,英國,貨號ab97959),Oct-4抗體[生工生物工程(上海)股份有限公司,貨號D121072],β-actin抗體(Abcam公司,英國,貨號ab3280),βⅢ-微管蛋白(βⅢ-tubulin)抗體(M illipore公司,美國,貨號MAB1637)。
1.2 實(shí)驗(yàn)方法
1.2.1 hDFCs分離與培養(yǎng) 收集16~22歲患者因第三磨牙阻生而需要拔除的健康完整的第三磨牙。用組織塊酶消化法獲得hDFCs[13-15]。待原代細(xì)胞長滿瓶底的80%時,常規(guī)傳代并擴(kuò)大培養(yǎng)。后續(xù)所有實(shí)驗(yàn)均使用第3~5代細(xì)胞。低氧組細(xì)胞置于2%O2、5%CO2、93%N2的37 ℃的三氣培養(yǎng)箱中模擬體外培養(yǎng)的缺氧環(huán)境。
1.2.2 細(xì)胞免疫熒光染色 hDFCs懸液接種于6孔板,待細(xì)胞生長至50%~60%后,多聚甲醛固定20 m in;3%BSA封閉20 m in,加入一抗Vimentin(1∶400稀釋)和CK14(1∶400稀釋),恒溫孵育2 h后4 ℃濕盒中過夜;次日復(fù)溫30 m in,PBS洗3次,加入合適的IgG二抗(1∶200稀釋),37 ℃濕盒中孵育1 h,1 μg·m L-1的4’,6-二脒基-2-苯基吲哚(4’,6-diamidino-2-phenylindole,DAPI)溶液浸染1 m in后置于熒光顯微鏡下觀察。
1.2.3 hDFCs增殖檢測 以每孔2 000個細(xì)胞接種于96孔板,分為常氧組(O2體積分?jǐn)?shù)為20%)和低氧組(O2體積分?jǐn)?shù)為2%),分別接種hDFCs培養(yǎng)1、2、3、4、5、6、7 d,每孔加CCK-8溶液10 μL,在37 ℃下孵育1.5 h,用酶標(biāo)儀在450 nm測定各孔吸光度(optical density,OD)值。每組設(shè)5個復(fù)孔。
1.2.4 Transwell細(xì)胞遷移試驗(yàn) 取對數(shù)生長期的細(xì)胞,加入無血清培養(yǎng)基培養(yǎng)24 h使細(xì)胞同步,胰酶消化細(xì)胞。Transwell小室的上室加入50 000個細(xì)胞,下室加入低血清(2%胎牛血清)培養(yǎng)基,分別置于低氧和常氧環(huán)境下繼續(xù)培養(yǎng)24 h,甲醛固定,0.1%結(jié)晶紫染色,倒置顯微鏡下觀察并進(jìn)行分區(qū)細(xì)胞計(jì)數(shù)。每組設(shè)3個復(fù)孔,每孔計(jì)算5個隨機(jī)視野的細(xì)胞數(shù)均值。
1.2.5 hDFCs多向分化誘導(dǎo)及檢測 1)成骨誘導(dǎo)。hDFCs接種(10 000個·cm-2)于6孔板,置于普通培養(yǎng)基中正常培養(yǎng)至60%~70%融合后,更換成骨分化誘導(dǎo)培養(yǎng)基分別在常氧和低氧環(huán)境下進(jìn)行成骨分化誘導(dǎo),此時設(shè)為0 d;成骨誘導(dǎo)液每隔3 d換液1次,分別誘導(dǎo)培養(yǎng)7、14、21 d。誘導(dǎo)后PBS緩沖液漂洗3次,4%多聚甲醛室溫固定20 m in,茜素紅室溫染色5 min,倒置顯微鏡下觀察礦化結(jié)節(jié)形成情況。2)成脂誘導(dǎo)。hDFCs培養(yǎng)至60%~70%融合后,更換成脂誘導(dǎo)液誘導(dǎo)21 d,每隔3 d換液1次。將細(xì)胞用PBS洗滌,4%多聚甲醛固定20 m in后,油紅染色30 m in以檢測細(xì)胞內(nèi)脂滴的形成。3)成神經(jīng)誘導(dǎo)。hDFCs培養(yǎng)至60%~70%融合后,更換成神經(jīng)誘導(dǎo)液誘導(dǎo)2 h,PBS洗滌,4%多聚甲醛固定20 m in,然后參照1.2.2方法用βⅢ-tubulin抗體(1∶200稀釋)進(jìn)行免疫熒光染色。
1.2.6 qRT-PCR 采用RNAiso Plus提取細(xì)胞總RNA,檢測總RNA純度和濃度。使用逆轉(zhuǎn)錄試劑盒將提取的總RNA逆轉(zhuǎn)錄為cDNA。qRT-PCR反應(yīng)條件為:95.0 ℃,30 s;95.0 ℃,5 s,40個循環(huán);60.0 ℃,30 s;95.0 ℃,15 s;60.0 ℃,1 min;95.0 ℃,15 s。采用β-actin作為內(nèi)參。目的基因有兩種:細(xì)胞多能性相關(guān)基因,包括Nanog、Oct-4和Sox-2;成骨相關(guān)基因,包括成骨基因特異性轉(zhuǎn)錄因子2(Runt-related transcription factor 2,Runx2)、鋅指結(jié)構(gòu)轉(zhuǎn)錄因子(Osterix,OSX)、骨涎蛋白(bone sialoprotein,BSP)和骨橋蛋白(osteopontin,OPN)。所用引物序列見表1。
表 1 qRT-PCR各引物序列Tab 1 Primer sequences used for qRT-PCR
1.2.7 Western blot檢測 加入放射免疫沉淀試驗(yàn)(radio immunoprecipitation assay,RIPA)裂解液,裂解提取兩組細(xì)胞的總蛋白,并用BCA蛋白定量試劑盒測定蛋白質(zhì)質(zhì)量濃度。每個樣本取30 μg的蛋白量,通過十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(sodiumdodecyl sulfate-polyacrylam ide gel electrophoresis,SDSPAGE)將其分離并轉(zhuǎn)至膜上,質(zhì)量分?jǐn)?shù)為5%的脫脂奶粉室溫封閉2 h,分別加入一抗β-actin(1∶2 000稀釋)、Nanog(1∶200稀釋)、Sox-2(1∶2 000稀釋)、Oct-4(1∶500稀釋),4 ℃孵育過夜后,用TBST(Tris-HCl緩沖鹽溶液+Tween)于搖床洗膜10 m in,3次,加入合適的二抗IgG(均1∶10 000稀釋)室溫孵育2 h,用TBST于搖床上洗膜10 m in,3次,最后進(jìn)行化學(xué)發(fā)光反應(yīng)顯影。
1.3 統(tǒng)計(jì)學(xué)分析
采用SPSS 17.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差表示,兩獨(dú)立樣本均數(shù)比較采用t檢驗(yàn),檢驗(yàn)水準(zhǔn)為雙側(cè)α=0.05。
2.1 hDFCs的鑒定
經(jīng)免疫熒光染色檢測,牙囊組織分離培養(yǎng)的細(xì)胞CK14染色陰性,Vimentin染色陽性,表明本研究培養(yǎng)的細(xì)胞為間充質(zhì)來源。hDFCs經(jīng)過成骨誘導(dǎo)后行茜素紅染色,倒置顯微鏡下可見塊狀礦化結(jié)節(jié)生成;經(jīng)成脂誘導(dǎo)后行油紅染色,光鏡下可見脂滴狀結(jié)構(gòu)生成;經(jīng)成神經(jīng)誘導(dǎo)后行βⅢ-tubulin細(xì)胞免疫熒光染色,熒光顯微鏡下可見類神經(jīng)細(xì)胞樹狀突起形成(圖1)。
2.2 低氧影響hDFCs多能性的維持
在低氧環(huán)境中培養(yǎng)1 d后,hDFCs的Nanog、Oct-4、Sox-2基因表達(dá)較常氧組均明顯升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);低氧環(huán)境中培養(yǎng)7 d后,Nanog、Oct-4、Sox-2基因表達(dá)同樣均高于常氧組(P<0.05)。在低氧條件下,細(xì)胞多能性相關(guān)(Nanog、Oct-4、Sox-2)蛋白的表達(dá)顯示出與基因表達(dá)一致的上調(diào)趨勢(圖2)。
2.3 低氧影響hDFCs的增殖
CCK-8檢測結(jié)果見圖3:hDFCs接種1~3 d,低氧組OD值與常氧組差異無統(tǒng)計(jì)學(xué)意義(P>0.05);4~7 d,低氧組OD值高于常氧組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
2.4 低氧影響hDFCs的遷移
Transwell細(xì)胞遷移試驗(yàn)結(jié)果見圖4:培養(yǎng)24 h,低氧組hDFCs穿出孔的細(xì)胞數(shù)量明顯高于常氧組,數(shù)量約為常氧組的2倍,兩組差異有統(tǒng)計(jì)學(xué)意義(P< 0.05)。
圖 1 體外培養(yǎng)hDFCs的生物學(xué)特征Fig 1 Characteristics of cultured hDFCs in vitro
圖 2 低氧對hDFCs表達(dá)Nanog、Oct-4和Sox-2的mRNA及蛋白的影響Fig 2 Effect of hypoxia on the mRNA and protein expression levels of Nanog, Oct-4, and Sox-2 in hDFCs
2.5 低氧影響hDFCs的成骨分化
低氧環(huán)境下hDFCs成骨分化能力增強(qiáng)。成骨誘導(dǎo)7、14、21 d后進(jìn)行茜素紅染色,低氧組hDFCs可觀察到較常氧組更多的礦化結(jié)節(jié)(圖5);qRT-PCR結(jié)果也顯示,hDFCs在成骨誘導(dǎo)7、14、21 d后,低氧組成骨相關(guān)基因Runx2、OSX、BSP、OPN的相對表達(dá)量均較常氧組明顯高(圖6),差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
圖 3 常氧和低氧培養(yǎng)下hDFCs的生長曲線Fig 3 Grow th curves of hDFCs cultured in normoxia and hypoxia plotted
圖 4 低氧對hDFCs遷移的影響 倒置顯微鏡 × 200Fig 4 Effect of hypoxia on the migration of hDFCs inverted mic- roscope × 200
圖 5 低氧對hDFCs成骨分化的影響Fig 5 Effect of hypoxia on the osteogenic differentiation of hDFCs
圖 6 低氧對hDFCs成骨分化相關(guān)基因的影響Fig 6 Effect of hypoxia on the osteogenic differentiation related genes of hDFCs
作為一群具有較強(qiáng)增殖和多向分化能力的前體細(xì)胞,DFCs除了在成牙方面具有突出優(yōu)勢外,在組織工程與再生醫(yī)學(xué)研究領(lǐng)域還可作為重要的種子細(xì)胞,在條件性誘導(dǎo)環(huán)境下分化成為多種不同類型的細(xì)胞。有研究[16]表明,在肝細(xì)胞生長因子重組蛋白存在的條件下對DFCs進(jìn)行誘導(dǎo),DFCs可分化為肝細(xì)胞樣細(xì)胞,并具有肝細(xì)胞功能,包括糖原存儲及尿素生成。還有研究[17]發(fā)現(xiàn),體外羥肟酸可以成功誘導(dǎo)DFCs心肌向分化,并且分化的類心肌細(xì)胞不會引起免疫排斥及炎癥反應(yīng),表明DFCs在心肌細(xì)胞再生領(lǐng)域具有相應(yīng)的潛力。
hDFCs在體外擴(kuò)增過程中如何保持細(xì)胞多能性是其應(yīng)用于臨床前必須解決的問題。Nanog、Oct-4、Sox-2轉(zhuǎn)錄因子是細(xì)胞轉(zhuǎn)錄調(diào)節(jié)系統(tǒng)的重要部分,已被證實(shí)在干細(xì)胞的自我更新及多能性維持過程中起到關(guān)鍵作用[18]。過表達(dá)Nanog、Oct-4、Sox-2的成體細(xì)胞能夠恢復(fù)多能干細(xì)胞的特性[19]。研究[20]發(fā)現(xiàn),低氧可激活Oct-4的表達(dá),Oct-4可作為細(xì)胞多能性動態(tài)變化的關(guān)鍵誘導(dǎo)物。然而,目前就低氧環(huán)境對hDFCs細(xì)胞多能性的維持及相關(guān)標(biāo)志物表達(dá)的影響,尚未見有深入研究。本實(shí)驗(yàn)發(fā)現(xiàn),低氧培養(yǎng)可使hDFCs的Nanog、Oct-4、Sox-2基因表達(dá)增加,蛋白表達(dá)也相對上調(diào),提示在觸發(fā)這些干細(xì)胞標(biāo)志物表達(dá)來保持成體干細(xì)胞特性的過程中,盡管相關(guān)的分子信號通路并不清楚,但低氧環(huán)境可能是關(guān)鍵的影響因素之一。研究[21-23]發(fā)現(xiàn),在包括牙源性間充質(zhì)干細(xì)胞在內(nèi)的大多數(shù)多功能干細(xì)胞中,這3種轉(zhuǎn)錄因子呈現(xiàn)出相似的功能及調(diào)控作用。Sheik Mohamed等[24]指出,Oct-4和Nanog之間可相互影響,Nanog的表達(dá)部分依賴Oct-4的表達(dá)。本實(shí)驗(yàn)中,此3種轉(zhuǎn)錄因子蛋白及基因水平的表達(dá)特征進(jìn)一步證實(shí)hDFCs強(qiáng)大的多能性,也為hDFCs中存在多能性細(xì)胞群提供了證據(jù);同時可推測Nanog、Oct-4、Sox-2這3種轉(zhuǎn)錄因子并不是孤立的發(fā)揮作用,而是三者之間相互作用、相互影響。
過度缺氧引起的細(xì)胞毒性會導(dǎo)致大量的細(xì)胞死亡[25],欲獲得足夠數(shù)量的細(xì)胞用于組織再生,低氧條件下的細(xì)胞增殖備受關(guān)注。Sakdee等[9]發(fā)現(xiàn),低氧條件(3%O2)下培養(yǎng)人牙髓細(xì)胞比常氧條件(20% O2)下的增殖速率快了約1倍;Iida等[8]將人牙髓細(xì)胞置于不同體積分?jǐn)?shù)氧氣中連續(xù)培養(yǎng)7 d后發(fā)現(xiàn),與21%O2組相比較,3%O2組增殖能力提升,而1%O2組和10%O2組增殖能力無明顯變化。Zhou等[26]則發(fā)現(xiàn),2%O2的低氧條件并不能對人牙周膜細(xì)胞和牙髓細(xì)胞的增殖造成影響。上述研究結(jié)果不一致,原因可能在于低氧對牙源性細(xì)胞增殖的影響取決于細(xì)胞類型、氧氣體積分?jǐn)?shù)、處理時間甚至檢測方法等多種因素。本實(shí)驗(yàn)結(jié)果2%O2低氧促進(jìn)hDFCs增殖,推測原因是低氧降低了細(xì)胞內(nèi)DNA的氧化損傷[27]。
遷移是細(xì)胞參與組織損傷修復(fù)的重要生物學(xué)特性,對于組織的修復(fù)治療具有重要意義。Gong等[10]將人牙髓細(xì)胞置于低氧(1%O2)和常氧(20%O2)條件下分別培養(yǎng)18 h后,于常氧環(huán)境中檢測兩組細(xì)胞的遷移能力,結(jié)果可見1%O2低氧組牙髓細(xì)胞遷移能力明顯增強(qiáng)。 Kanafi等[28]采用牙髓細(xì)胞在2.3%O2低氧條件下直接進(jìn)行劃痕試驗(yàn),發(fā)現(xiàn)低氧條件較常氧下遷移的細(xì)胞數(shù)目更多。本實(shí)驗(yàn)直接在2%O2低氧和20%O2常氧條件下進(jìn)行遷移相關(guān)試驗(yàn),結(jié)果發(fā)現(xiàn),直接培養(yǎng)于2%O2低氧環(huán)境中可顯著提升hDFCs的遷移能力,與上述研究結(jié)果一致。
低氧可以提升人牙髓細(xì)胞、牙周膜細(xì)胞[10]和大鼠hDFCs[29]的成骨分化能力。本研究結(jié)果也發(fā)現(xiàn),低氧可明顯促進(jìn)hDFCs的成骨分化能力。hDFCs暴露于低氧環(huán)境后,成骨相關(guān)基因如Runx2、OSX、BSP、OPN表達(dá)均上調(diào)。Runx2是成骨分化的決定性因子并在DFCs中表達(dá)[30-31];OSX是骨生成的晚期標(biāo)志基因,也是Runx2下游調(diào)控基因[31-32];BSP一直被認(rèn)為是成骨分化的早期標(biāo)志基因[33];OPN是一種分泌性鈣結(jié)合磷酸化糖蛋白,在骨重塑中起到關(guān)鍵作用,并且被認(rèn)為是骨中的一種基本成分。上述成骨分化標(biāo)志物隨時間的表達(dá)變化趨勢在hDFCs中基本一致。成骨分化早中期(7 d)即可以檢測到上述成骨標(biāo)志物的表達(dá)上調(diào),而低氧組與常氧組基因表達(dá)量有明顯差異的為早期成骨標(biāo)志物Runx2和BSP。低氧組OSX在成骨分化中晚期(14 d)較常氧組明顯上調(diào);而低氧組BSP于成骨分化中晚期(14 d)表達(dá)降低,可見低氧在成骨分化早、中期可明顯促進(jìn)BSP表達(dá),而晚期對其表達(dá)的影響微弱。
早在2003年,Annabi等[34]就發(fā)現(xiàn),低氧環(huán)境下小鼠骨髓基質(zhì)細(xì)胞在基質(zhì)膠上形成三維毛細(xì)血管狀結(jié)構(gòu)并產(chǎn)生更多的血管內(nèi)皮生長因子。2014年Leijten等[35]發(fā)現(xiàn),在低氧條件下培養(yǎng)的間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)中,成軟骨化關(guān)鍵基因及與合成代謝相關(guān)基因的表達(dá)均上調(diào),可以促進(jìn)MSCs成軟骨分化。此外,有學(xué)者[36]證明,低氧環(huán)境下用成脂培養(yǎng)基培養(yǎng)的MSCs脂滴數(shù)目是常氧條件下的5~6倍;還有研究[37]表明,在5%O2中培養(yǎng)MSCs可增加細(xì)胞中骨形態(tài)發(fā)生蛋白2、Runx2、OSX的表達(dá),同時也可以增加骨細(xì)胞成熟標(biāo)志蛋白OPN的表達(dá)。此外,與常氧組相比,在5%O2中培養(yǎng)的MSCs基質(zhì)中鈣的沉積量可增加2倍[38]。低氧微環(huán)境可有效調(diào)控細(xì)胞進(jìn)程,如增殖、分化、凋亡等,其作用機(jī)制主要是通過激活低氧誘導(dǎo)因子-1α(hypoxia inducible factor-1 alpha,Hif-1α)及其介導(dǎo)的基因轉(zhuǎn)錄、信號轉(zhuǎn)導(dǎo)來操控各種細(xì)胞的生物學(xué)特性[39]。比如Hif-1α可誘導(dǎo)MSCs的成骨細(xì)胞基因過度表達(dá)。另外,過表達(dá)Hif-1α可以促進(jìn)MSCs活性及遷移,并有利于治療缺氧缺血的腦部損傷疾患[40]。低氧可以通過促進(jìn)MSCs表達(dá)Hif-1α來調(diào)控其生物學(xué)特性,由此可以推測低氧同樣可通過促進(jìn)hDFCs表達(dá)Hif-1α來改變其潛能,但還需要進(jìn)一步的體外共培養(yǎng)及體內(nèi)實(shí)驗(yàn)等來驗(yàn)證。
綜上所述,體外持續(xù)低氧培養(yǎng)可以顯著地促進(jìn)hDFCs增殖和遷移,并有利于hDFCs多能性的維持,對成骨分化也有明顯提升作用。本研究結(jié)果提示,低氧環(huán)境是hDFCs用于牙組織工程的關(guān)鍵調(diào)控因素之一。
[1] Morsczeck C, G?tz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of w isdom teeth[J]. Matrix Biol, 2005, 24(2):155-165.
[2] Saito M, Handa K, Kiyono T, et al. Immortalization of cementoblast progenitor cells with Bmi-1 and TERT[J]. J Bone M iner Res, 2005, 20(1):50-57.
[3] Guo W, Gong K, Shi H, et al. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root [J]. Biomaterials, 2012, 33(5):1291-1302.
[4] Grayson WL, Zhao F, Izadpanah R, et al. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs[J]. J Cell Physiol, 2006, 207(2):331-339.
[5] Bosch P, Pratt SL, Stice SL. Isolation, characterization, gene modification, and nuclear reprogramm ing of porcine mesenchymal stem cells[J]. Biol Reprod, 2006, 74(1):46-57.
[6] Mazumdar J, Dondeti V, Simon MC. Hypoxia-inducible factors in stem cells and cancer[J]. J Cell Mol Med, 2009, 13(11/12):4319-4328.
[7] Webb JD, Coleman ML, Pugh CW. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing [J]. Cell Mol Life Sci, 2009, 66(22):3539-3554.
[8] Iida K, Takeda-Kawaguchi T, Tezuka Y, et al. Hypoxia enhances colony formation and proliferation but inhibits differentiation of human dental pulp cells[J]. Arch Oral Biol, 2010, 55(9):648-654.
[9] Sakdee JB, White RR, Pagonis TC, et al. Hypoxia-amplified proliferation of human dental pulp cells[J]. J Endod, 2009, 35(6):818-823.
[10] Gong QM, Quan JJ, Jiang HW, et al. Regulation of the stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp cells[J]. J Endod, 2010, 36(9):1499-1503.
[11] Aranha AM, Zhang Z, Neiva KG, et al. Hypoxia enhances the angiogenic potential of human dental pulp cells[J]. J Endod, 2010, 36(10):1633-1637.
[12] Agata H, Kagami H, Watanabe N, et al. Effect of ischemic culture conditions on the survival and differentiation of porcine dental pulp-derived cells[J]. Differentiation, 2008, 76(9):981-993.
[13] Guo L, Li J, Qiao X, et al. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells[J]. PLoS ONE, 2013, 8(4):e62332.
[14] Guo S, Guo W, Ding Y, et al. Comparative study of human dental follicle cell sheets and periodontal ligament cell sheets for periodontal tissue regeneration[J]. Cell Transplant, 2013, 22(6):1061-1073.
[15] Li R, Guo W, Yang B, et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration[J]. Biomaterials, 2011, 32(20):4525-4538.
[16] Patil R, Kumar BM, Lee WJ, et al. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor[J]. Exp Cell Res, 2014, 320(1):92-107.
[17] Sung IY, Son HN, Ullah I, et al. Cardiomyogenic differentia-tion of human dental follicle-derived stem cells by suberoylanilide hydroxamic acid and their in vivo hom ing property [J]. Int J Med Sci, 2016, 13(11):841-852.
[18] Kashyap V, Rezende NC, Scotland KB, et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell m icroRNAs[J]. Stem Cells Dev, 2009, 18(7):1093-1108.
[19] Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors[J]. Nature, 2008, 451(7175):141-146.
[20] Mathieu J, Zhang Z, Zhou W, et al. HIF induces human embryonic stem cell markers in cancer cells[J]. Cancer Res, 2011, 71(13):4640-4652.
[21] M iura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci USA, 2003, 100(10):5807-5812.
[22] Tamaki Y, Nakahara T, Ishikawa H, et al. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow[J]. Odontology, 2013, 101(2):121-132.
[23] Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers [J]. Cells Tissues Organs, 2006, 184(3/4):105-116.
[24] Sheik Mohamed J, Gaughw in PM, Lim B, et al. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells[J]. RNA, 2010, 16(2):324-337.
[25] Brunelle JK, Shroff EH, Perlman H, et al. Loss of Mcl-1 protein and inhibition of electron transport chain together induce anoxic cell death[J]. Mol Cell Biol, 2007, 27(4):1222-1235.
[26] Zhou Y, Fan W, Xiao Y. The effect of hypoxia on the stemness and differentiation capacity of PDLC and DPC[J]. Biomed Res Int, 2014:890675.
[27] Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer[J]. Cell, 2007, 129(3):465-472.
[28] Kanafi MM, Ramesh A, Gupta PK, et al. Influence of hypoxia, high glucose, and low serum on the grow th kinetics of mesenchymal stem cells from deciduous and permanent teeth [J]. Cells Tissues Organs, 2013, 198(3):198-208.
[29] Dai Y, He H, W ise GE, et al. Hypoxia promotes grow th of stem cells in dental follicle cell populations[J]. J Biomed Sci Eng, 2011, 4(6):454-461.
[30] Komori T. Runx2, a multifunctional transcription factor in skeletal development[J]. J Cell Biochem, 2002, 87(1):1-8.
[31] Matsubara T, Kida K, Yamaguchi A, et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation[J]. J Biol Chem, 2008, 283(43):29119-29125.
[32] Nakashima K, Zhou X, Kunkel G, et al. The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell, 2002, 108 (1):17-29.
[33] Huang W, Yang S, Shao J, et al. Signaling and transcriptional regulation in osteoblast commitment and differentiation[J]. Front Biosci, 2007, 12:3068-3092.
[34] Annabi B, Lee YT, Turcotte S, et al. Hypoxia promotes murine bone-marrow-derived stromal cell m igration and tube formation[J]. Stem Cells, 2003, 21(3):337-347.
[35] Leijten J, Georgi N, Moreira Teixeira L, et al. Metabolic programm ing of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate[J]. Proc Natl Acad Sci U S A, 2014, 111(38):13954-13959.
[36] Ren H, Cao Y, Zhao Q, et al. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions[J]. Biochem Biophys Res Commun, 2006, 347(1):12-21.
[37] Prado-Lòpez S, Duffy MM, Baustian C, et al. The influence of hypoxia on the differentiation capacities and immunosuppressive properties of clonal mouse mesenchymal stromal cell lines[J]. Immunol Cell Biol, 2014, 92(7):612-623.
[38] Lee JS, Park JC, Kim TW, et al. Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration[J]. Bone, 2015, 78:34-45.
[39] Grayson WL, Zhao F, Bunnell B, et al. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2007, 358 (3):948-953.
[40] Lin D, Zhou L, Wang B, et al. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxicischemic brain damage in rats[J]. C R Biol, 2017, 340(1): 18-24.
(本文編輯 吳愛華)
Effect of hypoxia on the biological characteristics of hum an dental follicle cells
Liang Xi1,2, Chen Guoqing2, Tian Weidong1,2. (1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Oral and Maxillofacial Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; 2. National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
ObjectiveThis study aimed to investigate the effects of hypoxia on the characteristics of human dental follicle cells (hDFCs). Methods The tissue explant collagenase method was used to isolate hDFCs from young permanent teeth. The immunofluorescence technique was used to detect cell surface markers, and the multi-differentiation potential was detected by multilineage differentiation induction assay. Then, the hypoxic microenvironment was physically mimicked, and the cells were divided into the normoxia group (20%O2) and the hypoxia group (2%O2). The effects of hypoxia on cell m igration and proliferation were exam ined by Transwell chamber test and CCK-8 assay, respectively. The gene and protein expression levels of stemness-related markers at both oxygen concentrations were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. A fter osteogenic induction of both groups, qRT-PCR was performed to evaluate the osteogenesis-related gene, and alizarin red staining was used to assess the formation of m ineralized nodules.Resultswith the multi-differentiation capacity of osteogenic cells, adipogenic cells, and nerves, hDFCs demonstrate strong stem cell characteristics and possess the criteria of mesenchymal stem cells, which can meet the requirements of seed cells in dental tissue engineering. Hypoxia was conducive to the maintenance of hDFC stemness. Hypoxia promoted the m igration and proliferation of hDFCs. The hDFCs were induced to osteogenic differentiation under hypoxic conditions, thereby enhancing osteogenesis.ConclusionHypoxic m icroenvironment plays an important role in maintaining the stemnessand promoting the proliferation, m igration, and differentiation of hDFCs. Thus, this m icroenvironment could also serve several important functions in future clinical applications.
hypoxia; human dental follicle cells; proliferation; m igration; differentiation
R 780.2
A
10.7518/hxkq.2017.03.004
Supported by: National Natural Science Foundation of China (81271119) . Correspondence: Tian Weidong, E-mail: drtwd @sina.com.
2016-12-15;
2017-03-20
國家自然科學(xué)基金(81271119)
梁熙,碩士,E-mail:307922567@qq.com
田衛(wèi)東,教授,博士,E-mail:drtwd@sina.com