朱 霞,魯康洋,江 燕,尹 玉,胡 勇,蔡永萍
FoxM1抑制劑下調(diào)Rad51增敏順鉑對(duì)骨肉瘤耐藥細(xì)胞的化療抑制作用
朱 霞1,魯康洋1,江 燕1,尹 玉1,胡 勇2,蔡永萍1
目的 探討FoxM1是否調(diào)控DNA修復(fù)基因Rad51參與順鉑(CDP)對(duì)骨肉瘤耐藥細(xì)胞化療抑制作用。方法 采用逐步增加劑量間歇作用的方法誘導(dǎo)骨肉瘤耐藥細(xì)胞系并分別命名為MG-63/R和HOS-MNNG/R。qRT-PCR、Western blot法檢測(cè)耐藥細(xì)胞與親本細(xì)胞FoxM1和Rad51的mRNA及蛋白表達(dá);耐藥細(xì)胞中4 μmol/L Thiostrepton處理后qRT-PCR、Western blot法檢測(cè)FoxM1和Rad51的mRNA及蛋白表達(dá)。細(xì)胞計(jì)數(shù)法檢測(cè)單獨(dú)或聯(lián)合運(yùn)用4 μmol/L Thiostrepton和2 μg/mL CDP對(duì)骨肉瘤耐藥細(xì)胞增殖率的影響。結(jié)果 建立在2 μg/mL CDP濃度中穩(wěn)定生長(zhǎng)的耐藥細(xì)胞系MG-63/R和HOS-MNNG/R,耐藥指數(shù)分別為30.52和37.87(均重度耐藥)。FoxM1和Rad51的mRNA及蛋白水平在耐藥細(xì)胞中表達(dá)較親本細(xì)胞明顯增高;在耐藥細(xì)胞中聯(lián)合運(yùn)用4 μmol/L Thiostrepton和2 μg/mL CDP組較單獨(dú)應(yīng)用4 μmol/L Thiostrepton組或2 μg/mL CDP組細(xì)胞增殖率明顯降低;耐藥細(xì)胞4 μmol/L Thiostrepton處理后FoxM1及Rad51的mRNA和蛋白表達(dá)均明顯降低。結(jié)論 FoxM1及Rad51高表達(dá)可能參與骨肉瘤細(xì)胞對(duì)CDP耐藥,F(xiàn)oxM1抑制劑Thiostrepton可能通過(guò)下調(diào)Rad51增強(qiáng)CDP對(duì)骨肉瘤耐藥細(xì)胞的抑制作用。
骨肉瘤;化療耐藥;順鉑;FoxM1;Rad51
骨肉瘤是發(fā)生于青少年的最常見(jiàn)的骨原發(fā)性高度惡性腫瘤,化療是骨肉瘤治療的重要手段之一。自20世紀(jì)80年代以來(lái),盡管各種臨床實(shí)驗(yàn)嘗試增加化療藥物劑量或聯(lián)合新的藥物提高化療效果,但患者的生存率始終無(wú)明顯改善[1]?;熌退帉?dǎo)致化療失敗是患者復(fù)發(fā)和轉(zhuǎn)移的重要原因?;熌退幍脑蛴卸喾N,近年來(lái)研究發(fā)現(xiàn)DNA損傷修復(fù)是導(dǎo)致化療耐藥的因素之一[2]。Rad51是DNA損傷之后同源重組修復(fù)的關(guān)鍵蛋白,研究發(fā)現(xiàn)Rad51在腫瘤組織中高表達(dá),且與化療藥物耐藥相關(guān)[3]。FoxM1(叉頭轉(zhuǎn)錄因子)是調(diào)控細(xì)胞周期的關(guān)鍵因子,新近研究發(fā)現(xiàn)FoxM1通過(guò)調(diào)控DNA損傷修復(fù)基因參與化療耐藥[4],但其是否調(diào)控Rad51參與骨肉瘤對(duì)順鉑(CDP)化療耐藥目前尚未見(jiàn)相關(guān)報(bào)道。本實(shí)驗(yàn)將探討FoxM1及Rad51是否參與骨肉瘤細(xì)胞對(duì)CDP耐藥,以期為臨床逆轉(zhuǎn)骨肉瘤化療耐藥提供新思路。
1.1 試劑 骨肉瘤細(xì)胞系MG-63、HOS-MNNG購(gòu)于中科院上海細(xì)胞庫(kù);qRT-PCR試劑盒購(gòu)于Vazyme公司;Thiostrepton(CAS 1393-48-2)購(gòu)于Sigma公司,溶解于DMSO,-20 ℃保存;CDP生產(chǎn)于南京制藥廠公司;MTT試劑購(gòu)于Sigma公司;FoxM1抗體(克隆號(hào)ab175798)、Rad51抗體(克隆號(hào)ab133534)及HRP標(biāo)記的抗兔或抗鼠二抗均購(gòu)于Abcam公司,β-actin抗體購(gòu)于Abmart公司。
1.2 細(xì)胞培養(yǎng) 細(xì)胞在含10%滅活胎牛血清的DMEM培養(yǎng)液中培養(yǎng),0.25%胰蛋白酶消化傳代。
1.3 耐藥細(xì)胞系建立 采用逐步增加劑量間歇作用的方法誘導(dǎo)細(xì)胞耐藥。接種對(duì)數(shù)生長(zhǎng)期的MG-63和HOS-MNNG細(xì)胞,加入質(zhì)量濃度為0.1 μg/mL的CDP培養(yǎng)48 h,更換不含CDP的培養(yǎng)液,待細(xì)胞穩(wěn)定生長(zhǎng)后傳代,以上方法處理3次后CDP濃度更換為0.2 μg/mL,按此遞增CDP濃度,經(jīng)過(guò)約4個(gè)月的誘導(dǎo)直至在2 μg/mL濃度下穩(wěn)定生長(zhǎng)和傳代,將誘導(dǎo)的耐藥細(xì)胞分別命名為MG-63/R和HOS-MNNG/R。
1.4 MTT法檢測(cè)CDP耐藥指數(shù) 將對(duì)數(shù)生長(zhǎng)期的MG-63、MG-63/R、HOS-MNNG和HOS-MNNG/R細(xì)胞以1×104/mL濃度接種于96孔板中,培養(yǎng)24 h后棄培養(yǎng)液,加入含不同濃度CDP培養(yǎng)液,相鄰藥物濃度設(shè)置相差2倍,繼續(xù)培養(yǎng)48 h,加入5 mg/mL的MTT試劑20 μL培養(yǎng)4 h后加入100 μL DMSO,振蕩搖勻后酶標(biāo)儀(λ=570 nm)測(cè)定每孔A值(A值與活細(xì)胞數(shù)成正比)。采用對(duì)數(shù)計(jì)量作圖法計(jì)算各種藥物對(duì)細(xì)胞達(dá)50%抑制率時(shí)的藥物濃度(IC50),并計(jì)算耐藥指數(shù)(RI)=IC50(耐藥細(xì)胞)/IC50(親本細(xì)胞)。
1.5 qRT-PCR Trizol法提取總RNA,具體步驟見(jiàn)Trizol總RNA抽提試劑盒說(shuō)明書(shū);逆轉(zhuǎn)錄SYBR Green及qRT-PCR步驟見(jiàn)試劑盒說(shuō)明書(shū)。FoxM1引物序列:上游5′-TGCAGCTAGGGATGT GAATCTTC-3′,下游5′-GGAGCCCAGTCCATCAGA ACT-3′;Rad51引物序列:上游5′-CAACCCATTTCA CGGTTAGA-3′,下游5′-TTCTTTGGCGCATAGGCAA CA-3′;18S引物序列:上游5′-CGGCGACGACCCATT CGAAC-3′,下游5′-GAATCGAACCCTGATTCCCCG TC-3′。18 S rRNA為內(nèi)參。
1.6 Western blot法 收集細(xì)胞及蛋白提取后,采用BCA法蛋白定量,SDS聚丙烯酰胺凝膠電泳檢測(cè),轉(zhuǎn)膜后5%脫脂牛奶封閉1 h以上,然后加入一抗FoxM1(1 ∶1 000稀釋)、Rad51(1 ∶1 000稀釋)或β-actin(1 ∶1 000稀釋)孵育過(guò)夜,加入HRP標(biāo)記的抗兔或抗鼠二抗(1 ∶10 000稀釋)孵育2 h,顯影。
1.7 細(xì)胞增殖實(shí)驗(yàn) 將對(duì)數(shù)生長(zhǎng)期的細(xì)胞以2×104/mL接種于12孔板中,12 h后細(xì)胞分別加入DMSO、4 μmol/L Thiostrepton、2 μg/mL CDP和4 μmol/L Thiostrepton+2 μg/mL CDP,于處理1~5天中用細(xì)胞計(jì)數(shù)板對(duì)細(xì)胞進(jìn)行計(jì)數(shù),并繪制增殖曲線。
2.1 耐藥細(xì)胞系的建立及耐藥指數(shù)檢測(cè) 采用逐步遞增濃度間歇作用的方法對(duì)MG-63和HOS-MNNG細(xì)胞進(jìn)行體外誘導(dǎo)篩選,歷時(shí)4個(gè)月獲得在質(zhì)量濃度為2 μg/mL CDP作用下生長(zhǎng)良好的耐藥細(xì)胞系MG-63/R和HOS-MNNG/R。MTT法檢測(cè)結(jié)果表明MG-63/R和HOS-MNNG/R細(xì)胞對(duì)CDP的耐藥指數(shù)分別為30.52和37.87(表1)。
2.2 FoxM1和Rad51在骨肉瘤耐藥細(xì)胞及親本細(xì)胞中表達(dá)的比較 在前期建立的穩(wěn)定的耐藥細(xì)胞系和親本細(xì)胞中運(yùn)用qRT-PCR和Western blot法檢測(cè)FoxM1和Rad51的表達(dá),結(jié)果發(fā)現(xiàn)在骨肉瘤耐藥細(xì)胞系MG-63/R和HOS-MNNG/R中FoxM1與Rad51的mRNA水平(圖1A、B)較親本細(xì)胞明顯升高。Western blot檢測(cè)結(jié)果顯示,與親本細(xì)胞MG-63(FoxM1:0.421±0.020,Rad51:0.848±0.110)相比,耐藥細(xì)胞MG-63/R(FoxM1:0.981±0.140,Rad51:3.166±0.180)的蛋白明顯升高;與親本細(xì)胞HOS-MNNG(FoxM1:0.675±0.015,Rad51:1.352±0.230)相比,耐藥細(xì)胞HOS-MNNG/R(FoxM1:1.266±0.011,Rad51:3.255±0.050)蛋白表達(dá)明顯增加(圖1C、D)。實(shí)驗(yàn)結(jié)果表明:與骨肉瘤親本細(xì)胞相比,耐藥細(xì)胞中FoxM1和Rad51的表達(dá)明顯升高。
表1 骨肉瘤細(xì)胞對(duì)CDP耐藥的IC50及骨肉瘤耐藥細(xì)胞的耐藥指數(shù)
2.3 FoxM1抑制劑Thiostrepton增加耐藥細(xì)胞系MG-63/R、HOS-MNNG/R對(duì)CDP的敏感性 本實(shí)驗(yàn)在MG-63/R和HOS-MNNG/R細(xì)胞系中分別加入4 μmol/L Thiostrepton、2 μg/mL CDP或4 μmol/L Thiostrepton+2 μg/mL CDP,于處理1~5天中每天分別對(duì)細(xì)胞進(jìn)行計(jì)數(shù),結(jié)果顯示聯(lián)合運(yùn)用4 μmol/L Thiostrepton和2 μg/mL CDP組較單獨(dú)應(yīng)用4 μmol/L Thiostrepton組或2 μg/mL CDP組增殖明顯減慢,表明聯(lián)合運(yùn)用Thiostrepton可增敏CDP對(duì)骨肉瘤耐藥細(xì)胞的化療抑制作用(圖2A、B)。
2.4 FoxM1抑制劑Thiostrepton對(duì)Rad51 mRNA和蛋白表達(dá)的作用 為探究耐藥細(xì)胞系中FoxM1抑制劑Thiostrepton是否通過(guò)下調(diào)Rad51增敏耐藥骨肉瘤對(duì)CDP的敏感性,耐藥細(xì)胞中加入4 μmol/L Thiostrepton處理24 h后qRT-PCR法檢測(cè)FoxM1及Rad51的mRNA水平表達(dá),處理48 h后Western blot法檢測(cè)FoxM1及Rad51的蛋白水平表達(dá)。qRT-PCR結(jié)果顯示,耐藥細(xì)胞中4 μmol/L Thiostrepton處理后FoxM1及Rad51的mRNA水平(圖3A、B)明顯下降。Western blot結(jié)果顯示,4 μmol/L Thiostrepton處理后MG-63/R(FoxM1:0.744±0.236,Rad51:0.240±0.227)較對(duì)照組MG-63/R(FoxM1:1.524±0.234,Rad51:0.389±0.156)的FoxM1與Rad51蛋白明顯下降;同樣,4 μmol/L Thiostrepton處理后HOS-MNNG/R(FoxM1:0.648±0.087,Rad51:0.367±0.023)的FoxM1與Rad51蛋白水平較對(duì)照組HOS-MNNG/R(FoxM1:1.438±0.210,Rad51:0.576±0.223)的蛋白明顯降低(圖3C、D)。結(jié)果表明在骨肉瘤耐藥細(xì)胞中,F(xiàn)oxM1抑制劑Thiostrepton下調(diào)FoxM1及Rad51的表達(dá)。
圖1 骨肉瘤耐藥細(xì)胞中FoxM1和Rad51的mRNA及蛋白表達(dá)水平較其親本細(xì)胞明顯增高
A、B.qRT-PCR法檢測(cè)骨肉瘤親本細(xì)胞及其耐藥細(xì)胞FoxM1和Rad51 mRNA表達(dá);C、D.Western blot法檢測(cè)骨肉瘤親本細(xì)胞及其耐藥細(xì)胞FoxM1和Rad51蛋白表達(dá)水平,*P<0.05
圖2 FoxM1抑制劑Thiostrepton增敏骨肉瘤耐藥細(xì)胞對(duì)CDP的敏感性
骨肉瘤耐藥細(xì)胞系MG-63/R(A)、HOS-MNNG/R(B)加入DMSO、4 μmol/L Thiostrepton、2 μg/mL CDP、4 μmol/L Thiostrepton+2 μg/mL CDP的5天細(xì)胞增殖曲線圖,*P<0.05
骨肉瘤是一種來(lái)源于間葉組織的最常見(jiàn)的骨原發(fā)性惡性腫瘤,好發(fā)于青少年,常發(fā)生肺轉(zhuǎn)移。目前治療方法包括術(shù)前新輔助化療和瘤體切除在內(nèi)的綜合治療,新輔助化療標(biāo)準(zhǔn)化療方案為CDP、阿霉素和甲氨蝶呤三聯(lián)療法[5]。然而近30年來(lái)骨肉瘤患者的預(yù)后無(wú)明顯改善,尤其是對(duì)化療耐藥的患者預(yù)后極差,約20%患者出現(xiàn)復(fù)發(fā)和轉(zhuǎn)移[1]?,F(xiàn)階段,化療耐藥使得近年來(lái)骨肉瘤的治療進(jìn)入瓶頸期。
本組實(shí)驗(yàn)首先以CDP為誘導(dǎo)劑,建立穩(wěn)定骨肉瘤耐藥細(xì)胞系MG-63/R與HOS-MNNG/R。Snow等[6]認(rèn)為為耐藥指數(shù)﹤5為低度耐藥,5~15為中度耐藥,>15為高度耐藥。本實(shí)驗(yàn)建立的骨肉瘤耐藥細(xì)胞系MG-63/R與HOS-MNNG/R耐藥指數(shù)分別為30.52和37.87,均顯示高度耐藥。CDP是骨肉瘤化療標(biāo)準(zhǔn)方案的基礎(chǔ)藥物之一,以CDP為誘導(dǎo)劑建立的人骨肉瘤耐藥細(xì)胞系對(duì)臨床耐藥研究具有重要意義,為后續(xù)研究提供良好基礎(chǔ)。
CDP是一種細(xì)胞毒性藥物,引起DNA雙鏈斷裂和抑制DNA的合成,最終導(dǎo)致細(xì)胞死亡[7]。當(dāng)DNA修復(fù)能力增強(qiáng)時(shí),常會(huì)導(dǎo)致腫瘤細(xì)胞對(duì)化療藥物的耐受,因此DNA損傷修復(fù)與CDP化療耐藥有重要聯(lián)系,同源重組是體內(nèi)DNA損傷修復(fù)的主要機(jī)制[2]。
圖3 FoxM1抑制劑Thiostrepton抑制Rad51的mRNA及蛋白水平表達(dá)
A、B.qRT-PCR檢測(cè)骨肉瘤耐藥細(xì)胞系MG63/R、HOS-MNNG/R中4 μmol/L Thiostrepton處理24 h后FoxM1和Rad51的mRNA表達(dá);C、D.Western blot法檢測(cè)骨肉瘤耐藥細(xì)胞系MG63/R、HOS-MNNG/R中4 μmol/L Thiostrepton處理48 h后FoxM1和Rad51蛋白表達(dá),*P<0.05
DNA雙鏈斷裂修復(fù)蛋白R(shí)ad51是一種高度保守的主要在同源重組中發(fā)揮作用的DNA修復(fù)蛋白,是同源重組中最重要的關(guān)鍵酶,對(duì)維持基因的穩(wěn)定性起重要作用[2]。本組實(shí)驗(yàn)發(fā)現(xiàn)Rad51的mRNA及蛋白水平在骨肉瘤耐藥細(xì)胞系較親本細(xì)胞表達(dá)均明顯升高。與非小細(xì)胞肺癌中,Rad51高表達(dá)與CDP化療耐藥相關(guān)[3]相一致。另外有研究結(jié)果表明運(yùn)用shRNA抑制Rad51表達(dá)增強(qiáng)骨肉瘤細(xì)胞對(duì)放、化療的敏感性[8]。因此,作者推測(cè)Rad51高表達(dá)與骨肉瘤細(xì)胞化療耐藥密切相關(guān),并且有望成為逆轉(zhuǎn)骨肉瘤化療耐藥的新靶點(diǎn)。然而,近來(lái)研究發(fā)現(xiàn),目前已知的Rad51抑制劑缺乏特異性,無(wú)法應(yīng)用于臨床實(shí)驗(yàn)[9]。因此,本實(shí)驗(yàn)試圖尋找它的上游基因調(diào)控Rad51的表達(dá)逆轉(zhuǎn)骨肉瘤細(xì)胞耐藥。
FoxM1是一種與細(xì)胞增殖密切相關(guān)的轉(zhuǎn)錄因子,在調(diào)控細(xì)胞周期特別是G2/M期轉(zhuǎn)換中尤為重要[10];且在多種惡性腫瘤中高表達(dá),與腫瘤的發(fā)生、發(fā)展密切相關(guān)[11]。本實(shí)驗(yàn)結(jié)果發(fā)現(xiàn)FoxM1的mRNA及蛋白水平在骨肉瘤耐藥細(xì)胞系中表達(dá)較其親本細(xì)胞明顯升高,提示FoxM1高表達(dá)可能參與骨肉瘤CDP耐藥。研究表明FoxM1高表達(dá)與耐藥相關(guān),抑制FoxM1表達(dá)增加腫瘤耐藥細(xì)胞對(duì)化療藥物的敏感性[12]。此外,研究報(bào)道在多形性膠質(zhì)細(xì)胞瘤中,F(xiàn)oxM1直接調(diào)節(jié)Rad51的表達(dá),調(diào)節(jié)細(xì)胞對(duì)化療藥物的耐藥性[13]。然而骨肉瘤中FoxM1與Rad51的表達(dá)是否存在相關(guān)性目前尚未見(jiàn)報(bào)道。
Thiostrepton是一種特異性抑制FoxM1轉(zhuǎn)錄活性的噻唑抗生素[14],具有廣譜的抗革蘭陰性、陽(yáng)性細(xì)菌的作用。研究發(fā)現(xiàn)在體內(nèi)實(shí)驗(yàn)中,Thiostrepton抑制FoxM1表達(dá)從而抑制腫瘤生長(zhǎng)[15]。本實(shí)驗(yàn)發(fā)現(xiàn)在耐藥細(xì)胞系中,單獨(dú)應(yīng)用Thiostrepton處理后耐藥細(xì)胞的增殖率明顯下降,可能與Thiostrepton抑制FoxM1表達(dá)導(dǎo)致細(xì)胞周期停滯在G2/M期有關(guān)[10]。聯(lián)合運(yùn)用Thiostrepton與CDP處理組的耐藥細(xì)胞的增殖率明顯低于單獨(dú)運(yùn)用其中一種藥物處理組的細(xì)胞增殖率,提示Thiostrepton可能增敏CDP對(duì)骨肉瘤耐藥細(xì)胞的生長(zhǎng)抑制作用。有趣的是,實(shí)驗(yàn)發(fā)現(xiàn)應(yīng)用Thiostrepton處理耐藥細(xì)胞后,F(xiàn)oxM1與Rad51的mRNA和蛋白水平也明顯下降。因此,作者推測(cè)FoxM1可能通過(guò)調(diào)控Rad51的表達(dá)來(lái)介導(dǎo)細(xì)胞耐藥。
化療耐藥是導(dǎo)致腫瘤化療失敗的關(guān)鍵因素,探究腫瘤耐藥機(jī)制對(duì)于提高腫瘤化療效果至關(guān)重要。本組實(shí)驗(yàn)結(jié)果表明,在骨肉瘤耐藥細(xì)胞中抑制FoxM1表達(dá)能夠降低Rad51的表達(dá)增敏耐藥骨肉瘤細(xì)胞對(duì)CDP的敏感性。FoxM1及Rad51可能成為逆轉(zhuǎn)骨肉瘤化療耐藥的重要靶點(diǎn),F(xiàn)oxM1抑制劑Thiostrepton有望與化療藥物聯(lián)合應(yīng)用于骨肉瘤治療,提高耐藥骨肉瘤的化療效果。
[1] Isakoff M S, Bielack S S, Meltzer P,etal. Osteosarcoma: current treatment and collaborative pathway to success[J]. J Clin Oncol, 2015,33(27):3029-3035.
[2] Gavande N S, VanderVere-Carozza P S, Hinshaw H D,etal. DNA repair targeted therapy: the past or future of cancer treatment?[J]. Pharmacol Ther, 2016,160(2):65-83.
[3] 彭亞婷, 梅金紅. Rad51與腫瘤關(guān)系的研究進(jìn)展[J]. 臨床與實(shí)驗(yàn)病理學(xué)雜志, 2011,27(1):86-89.
[4] Zona S, Bella L, Burton M J,etal. FoxM1: an emerging master regulator of DNA damage response and genotoxic angent resistance[J]. Biochim Biophys Acta, 2014,1839(11):1316-1322.
[5] Hattinger C M, Fanelli M, Tavanti E,etal. Advances in emerging drugs for Osteosarcoma[J]. Expert Opin Emerg Drugs, 2015,20(3):495-514.
[6] Snow K, Judd W. Characterization of adriamycin- and amsacrine-resistant human leukaemic T cell lines[J]. Br J Cancer, 1991,63(1):17-28.
[7] Yan D, An G, Kuo M T. C-Jun N-terminal kinase signalling pathway in response to cisplatin[J]. J Cell Mol Med, 2016,20(11):2013-2019.
[8] Du L Q, Wang Y, Wang H,etal. Knockdown of Rad51 expression induces radiation- and chemo-sensitivity in osteosarcoma cells[J]. Med Oncol, 2011,28(4):1481-1487.
[9] Zhao H, Luoto K R, Meng A X,etal. The receptor tyrosine kinase inhibitor amuvatinib (MP470) sensitizes tumor cells to radio- and chemo-therapies in part by inhibiting homologous recombination[J]. Radiother Oncol, 2011,101(1):59-65.
[10] Kwok C T D, Leung M H, Qin J,etal. The forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells[J]. Stem Cell Res, 2016,16(3):651-661.
[11] Halasi M, Gartel A L. FOX(M1) news-it is cancer[J]. Mol Cancer Ther, 2013,12(3):245-254.
[12] Xu X S, Miao R C, Wan Y,etal. FoxM1 as a novel therapeutic target for cancer drug therapy[J]. Asian Pac J Cancer Prev, 2015,16(1):23-29.
[13] Zhang N, Wu X J, Yang L X,etal. FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair gene Rad51[J]. Clin Cancer Res, 2012,18(21):5961-5971.
[14] Hegde N S, Sanders D A, Rodriguez R,etal. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton[J]. Nat Chem, 2011,3(9):725-731.
[15] Gartel A L. Suppression of the oncogenic transcription factor FOXM1 by proteasome inhibitors[J]. Scientifica (Cairo), 2014,28(3):596528.
FoxM1 inhibitor sensitize resistant osteosarcoma cells to cisplatin by down-regulation of Rad51
ZHU Xia1, LU Kang-yang1, JIANG Yan1, YIN Yu1, HU Yong2, CAI Yong-ping1
(1DepartmentofPathology,BasicMedicalInstituteofAnhuiMedicalUniversity,Hefei230032,China;2DepartmentofOrthopedics,theFirstAffiliatedHospitalofAnhuiMedicalUniversity,Hefei230032,China)
Purpose To investigate whether FoxM1 participate in inhibitory effect of cisplatin (CDP) in resistant osteosarcoma cell lines by down-regulation of Rad51. Methods The resistant osteosarcoma cell lines were induced by gradually increasing dose intermittent action, and were named MG-63/R and HOS-MNNG/R respectively. The mRNA and protein level of FoxM1 and Rad51 were detected by qRT-PCR and Western blot analysis in resistant cells and parental cells. The mRNA and protein level of FoxM1 and Rad51 were detected by qRT-PCR and Western blot analysis in resistant cells after treatment of 4 μmol/L Thiostrepton . The effect of single or combined treated of 4 μmol/L Thiostrepton or 2 μg/mL CDP on the rate of cell proliferation in resistant cells was examed by cell counting. Results Resistant osteosarcoma cell lines MG-63/R and HOS-MNNG/R were established and stablely growthed in the concentration of 2 μg/mL CDP, and the resistance index was 30.52 and 37.87 respectively (severe CDP resistance). The mRNA and protein level of FoxM1 and Rad51 were significantly increaced in resistant cells compared with parental cells. The proliferation rate of resistant cells in conbination of 4 μmol/L Thiostrepton and 2 μg/mL CDP treated group was significantly lower than these two drugs single treated group. The level of mRNA and protein of FoxM1 and Rad51 were significantly decreased after 4 μmol/L Thiostrepton treatment in CDP resistant cells. Conclusion The results suggest that FoxM1 and Rad51 may participate in the resistant osteosarcoma cells to CDP. FoxM1 inhibitor Thiostrepton may strengthen the inhibitory effect of CDP in the resistant cells by down-regulation of Rad51.
osteosarcoma; chemotherapy resistance; cisplatin; FoxM1; Rad51
國(guó)家自然科學(xué)青年基金(81102041)、安徽省自然科學(xué)基金(11040606Q17)
1安徽醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院病理學(xué)教研室,合肥 2300322安徽醫(yī)科大學(xué)第一附屬醫(yī)院骨科,合肥 230032
朱 霞,女,碩士研究生。E-mail: zhuxia@stu.ahmu.edu.cn 蔡永萍,女,博士,副教授,通訊作者。E-mail: cyply221@163.com
時(shí)間:2017-4-17 18:19
http://kns.cnki.net/kcms/detail/34.1073.R.20170417.1819.011.html
R 738.1
A
1001-7399(2017)04-0403-05
10.13315/j.cnki.cjcep.2017.04.011
接受日期:2017-02-07