王文遞++林雅玲++宋彬妤++劉曉梁+王明亮++趙成瑞++王旭文++吳惠文
[摘要] 目的 研究果糖飲食及皮下注射內(nèi)毒素(LPS)致大鼠肝胰島素抵抗(IR)及內(nèi)毒素血癥中,LPS對肝細胞線粒體功能的影響。 方法 30只SD雄性大鼠隨機分為三組。對照組(NC組):普通飼料喂養(yǎng);果糖組(HFD組):10%果糖水喂養(yǎng);LPS組:皮下注射LPS 300 μg/(kg·d)。8周糖耐量實驗后,檢測血漿肝酶、空腹胰島素、LPS變化,計算IR指數(shù);檢測肝組織氧化損傷及能量代謝指標;Western blot檢測肝組織胰島素信號轉(zhuǎn)導蛋白及線粒體內(nèi)膜蛋白(UCP2)表達;觀察肝組織病理學變化。分離培養(yǎng)大鼠肝細胞分為四組。NC組:DMEM培養(yǎng)液培養(yǎng);HFD組:培養(yǎng)液+果糖水(4.5 g/L);LPS組:培養(yǎng)液+LPS(10 mg/L);果糖+LPS組(H+L組):培養(yǎng)液+果糖水(4.5 g/L)+LPS(10 mg/L)。20 h后,檢測肝細胞線粒體功能及胰島素信號轉(zhuǎn)導蛋白表達。 結(jié)果 與NC組比較,HFD組與LPS組LPS、肝酶及氧化損傷產(chǎn)物顯著升高,能量代謝異常(P < 0.01),胰島素信號轉(zhuǎn)導蛋白表達降低,UCP2表達升高(P < 0.01);HFD組與LPS組上述指標變化差異無統(tǒng)計學意義(P > 0.05)。HFD組、LPS組和H+L組細胞上清液氧化損傷產(chǎn)物高于NC組(P < 0.05或P < 0.01),能量代謝異常(P < 0.05),胰島素信號轉(zhuǎn)導蛋白表達下降,UCP2表達升高(P < 0.05或P < 0.01);各干預(yù)組之間以上指標變化差異無統(tǒng)計學意義(P > 0.05)。 結(jié)論 果糖飲食及皮下注射LPS致大鼠肝IR中,伴有內(nèi)毒素血癥。LPS可促發(fā)肝氧化應(yīng)激,影響肝細胞線粒體功能,促進代謝性疾病的發(fā)生。
[關(guān)鍵詞] 內(nèi)毒素血癥;胰島素抵抗;氧化應(yīng)激;線粒體功能
[中圖分類號] R33 [文獻標識碼] A [文章編號] 1673-7210(2017)04(c)-0033-06
[Abstract] Objective To study the effect of LPS on hepatic mitochondrial function in rats with hepatic insulin resistance (IR) and endotoxemia caused by fructose diet and subcutaneous injection of endotoxin. Methods 30 SD male rats were randomly divided into three groups. The control group (NC group), fed with the general feeding; fructose group (HFD group), fed with 10% fructose water; LPS group was administered subcutaneously with LPS [300 μg/(kg·d)]. 8 weeks later, glucose tolerance test was measured, the changes of liver enzymes, fasting plasma insulin and LPS were detected, and HOMA-IR was calculated. The indexes of hepatic oxidative damage and energy metabolism were measured. Western blot was used to detect the insulin signal transduction proteins and mitochondrial transmembrane protein (UCP2) in hepatic tissue. The pathological changes of liver tissue were observed. Rat hepatocytes were isolated and divided into four groups: NC group incubated with DMEM medium; HFD group incubated with medium containing fructose water (4.5 g/L); LPS group incubated with medium containing LPS (10 mg/L); fructose + LPS group (H + L group) incubated with medium containing fructose water (4.5 g/L) and LPS (10 mg/L). After 20 h, the mitochondrial function and protein expression of insulin signal transduction were detected. Results Compared with NC group, the levels of plasma LPS, liver enzymes, HOMA-IR and oxidative damage products in HFD group and LPS group were significantly increased (P < 0.01), energy metabolism was abnormal (P < 0.01), insulin signal transduction protein expressions were decreased and UCP2 expressions were increased (P < 0.01); these indexes had no significant differences between the HFD group and the LPS group (P > 0.05). Compared with NC group, oxidative damage products of the cell supernatant in HFD group, LPS group and H+L group were higher (P < 0.05 or P < 0.01), energy metabolism was abnormal (P < 0.05), insulin signal transduction protein expressions were decreased and UCP2 expressions were increased (P < 0.05 or P < 0.01); these indexes had no significant difference between the three intervention groups (P > 0.05). Conclusion Fructose diet and subcutaneous injection of LPS can induce liver insulin resistance, and accompany with endotoxemia. LPS can initiate liver oxidative stress, affect hepatocytes mitochondrial function, and promote the occurrence of metabolic diseases.
[Key words] Endotoxemia; Insulin resistance; Oxidative stress; Mitochondrial function
近年來,隨著生活方式的改變,代謝性疾病的發(fā)病率逐年增高。研究顯示,代謝性疾病發(fā)病的共同基礎(chǔ)為胰島素抵抗(insulin resistance,IR)。肝臟作為機體的重要代謝器官,在代謝疾病的發(fā)生中起關(guān)鍵作用。Cani等[1]研究發(fā)現(xiàn),小鼠給予4周高脂飲食或內(nèi)毒素(lipopolysaccharide,LPS)注射早期便出現(xiàn)肝促炎因子表達增加及肝IR。可見,肝臟是LPS誘導損傷的首要的目標。研究顯示,肝細胞損傷時往往伴有線粒體功能異常,促氧化物質(zhì)生成增加[2-4],說明氧化應(yīng)激(oxidative stress,OS)致線粒體功能損傷在代謝疾病中扮演著重要角色。本研究擬通過果糖飲食及皮下注射LPS誘導大鼠發(fā)生肝IR及內(nèi)毒素血癥,結(jié)合體內(nèi)及體外實驗研究LPS對肝細胞線粒體功能的影響,以期進一步闡明內(nèi)毒素血癥在代謝疾病發(fā)生中的作用。
1 材料與方法
1.1 動物與分組
30只雄性SD大鼠,體重180~200 g,購自山西醫(yī)科大學實驗動物中心,合格證號:0107010。隨機分為三組,每組各10只。對照組(normal control,NC組),正常飲食;果糖組(high fructose diet,HFD組),給予標準飼料+10%果糖水;LPS組,給予正常飲食并皮下注射LPS 300 μg/(kg·d)。8周末乙醚麻醉,腹主動脈采血并分離血漿,部分肝組織置于4%多聚甲醛溶液固定或-80℃保存。
1.2 細胞分離與分組
采用膠原酶二步灌流法[5-7]分離培養(yǎng)大鼠肝細胞并分為四組:NC組,DMEM培養(yǎng)基培養(yǎng);HFD組,培養(yǎng)液+果糖水(4.5 g/L)[8];LPS組,培養(yǎng)液+LPS(10 mg/L)[9];果糖+LPS組(H+L組),培養(yǎng)液+果糖水(4.5 g/L)+ LPS(10 mg/L)。20 h后,吸取細胞上清液,收集肝細胞于-40℃保存。
1.3 主要試劑
谷胱甘肽過氧化物酶(glutathione peroxidase,GSH-PX)、谷丙轉(zhuǎn)氨酶(glutamic-pyruvic transaminase,ALT)、谷草轉(zhuǎn)氨酶(glutamic oxalacetic transaminase,AST)試劑盒購自南京建成公司。胰島素、鱟試劑盒購于R&D公司。8-羥基脫氧鳥苷(8-hydroxy-2deoxyguanosine,8-OhdG)、丙二醛(Malondialdehyde,MDA)、4-羥壬烯醛(4-hydroxynonenal,4-HNE)、二磷酸腺苷(adenosine diphosphate,ADP)、三磷酸腺苷(adenosine triphosphate,ATP)ELISA試劑盒購自上海西唐公司。胰島素受體底物1(insulin receptor substrate 1,IRS1)及其磷酸化蛋白(phosphorylated insulin receptor substrat 1,p-IRS1Try632)購自Santa Cruz公司,解偶聯(lián)蛋白2(uncoupling protein 2,UCP2)、磷脂酰肌醇3-激酶(phospha?鄄tidylinositol3-kinase,PI3K)及其磷酸化蛋白(phosphorylated phosphatidylinositol-3-kinase,p-PI3KTyr458)購自Abcam公司。
1.4 檢測指標與方法
1.4.1 腹腔注射糖耐量實驗(IPGTT) 每周檢測大鼠體重,8周末空腹腹腔注射50%葡萄糖溶液(2 g/kg)。尾靜脈采血,采用快速血糖儀(羅氏活力型)分別檢測注射前(0 min)、注射后(15、30、120 min)血糖水平。
1.4.2 血漿肝酶、LPS檢測及肝IR評估 采用酶法測定血糖、血漿AST及ALT;鱟試劑法檢測LPS水平;ELISA檢測胰島素變化,計算IR指數(shù)(HOMA-IR)。公式:HOMA-IR=空腹血糖(mmol/L)×空腹胰島素(EU/mL)/22.5。
1.4.3 氧化損傷產(chǎn)物及能量代謝指標檢測 酶法測定GSH-PX,ELISA法檢測肝組織與肝細胞8-OhdG、MDA、4-HNE、ADP及ATP的變化。
1.4.4 肝組織病理學檢測 取固定后的肝組織,常規(guī)石蠟包埋、切片,HE染色,觀察其病理學變化。
1.4.5 Western blot檢測 組織或細胞樣本,加入裂解液于冰上裂解,4℃ 13 000 r/min離心10 min,取上清,BCA法定量并調(diào)整蛋白樣品濃度后煮沸變性,經(jīng)電泳及轉(zhuǎn)膜后,于5% BSA或脫脂奶粉中封閉2 h,加一抗4℃過夜孵育,TBST洗滌3 次/10 min,加二抗,室溫孵育90 min,洗滌后滴加ECL發(fā)光液,于Fluor Chem成像系統(tǒng)采集并分析蛋白表達。
1.5 統(tǒng)計學方法
采用 SPSS 17.0統(tǒng)計學軟件進行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標準差(x±s)表示,多組間比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗;以P < 0.05為差異有統(tǒng)計學意義。
2 結(jié)果
2.1 在體實驗
2.1.1 大鼠一般狀況 實驗期間,HFD組與LPS組大鼠體重在2~6周顯著高于NC組,差異有統(tǒng)計學意義(P < 0.05或P < 0.01)。見圖1。
2.1.2 IPGTT結(jié)果 與NC組相比,HFD組與LPS組糖耐量異常,差異有統(tǒng)計學意義(P < 0.05或P < 0.01)。見圖2。
2.1.3 血漿肝酶、LPS及肝IR評估結(jié)果 HFD組與LPS組血漿肝酶、LPS及HOMA-IR較NC組顯著升高(P < 0.01);HFD組與LPS組各指標比較,差異無統(tǒng)計學意義(P > 0.05)。見表1。
2.1.4 氧化損傷產(chǎn)物及能量代謝指標變化 與NC組相比,HFD組與LPS組氧化損傷產(chǎn)物顯著增高(P < 0.01),抗氧化物質(zhì)GSH-PX及能量代謝指標明顯下降(P < 0.01);HFD組與LPS組各指標比較,差異無統(tǒng)計學意義(P > 0.05)。見表2。
2.1.5 肝組織病理學變化 HE染色后光鏡下可見NC組肝細胞無空泡和壞死,而HFD組與LPS組肝細胞包漿內(nèi)有明顯脂滴空泡。見圖3。
2.1.6 Western blot結(jié)果 與NC組相比,HFD組與LPS組胰島素信號轉(zhuǎn)導蛋白p-IRS1Tyr632/IRS1和p-PI3KTyr458/PI3K比值顯著降低(P < 0.01),UCP2表達顯著升高(P < 0.01);HFD組與LPS組各蛋白表達水平比較,差異無統(tǒng)計學意義(P > 0.05)。見圖4。
2.2 離體實驗
2.2.1 氧化損傷產(chǎn)物及能量代謝指標檢測結(jié)果 HFD組、LPS組和H+L組氧化損傷產(chǎn)物較NC組顯著增高(P < 0.05或P < 0.01),能量代謝指標較NC組顯著降低(P < 0.05);HFD組、LPS組和H+L組間各指標差異無統(tǒng)計學意義(P > 0.05)。見表3。
3 討論
線粒體是細胞中制造能量主要場所,其代謝的穩(wěn)定影響細胞正常生理功能。研究證實,線粒體功能異常在代謝疾病發(fā)病中發(fā)揮重要作用[10-12]。代謝疾病發(fā)病的共同基礎(chǔ)為IR。研究發(fā)現(xiàn),小鼠給予高脂飲食或LPS注射后,出現(xiàn)血漿LPS升高及肝IR[1,13]。Zhou等[14]研究也證實,高果糖飲食致大鼠發(fā)生代謝疾病中伴有內(nèi)毒素血癥。本研究旨在探討高果糖飲食致大鼠肝IR中,LPS對肝細胞線粒體功能的影響,為進一步闡明代謝疾病發(fā)病提供理論依據(jù)。
實驗結(jié)果顯示,果糖誘導大鼠肝IR時,肝臟處于OS狀態(tài)(MDA、4-HNE增多及GSH-PX減少),且伴有線粒體結(jié)構(gòu)和功能損傷(8-OhdG增高,ADP及ATP降低)。Bonnard等[15]研究亦證實,高糖、高脂飲食可致小鼠肌細胞活性氧(ROS)生成增加,線粒體功能異常。由此可見,OS與肝細胞線粒體功能障礙參與果糖致大鼠肝IR的發(fā)病。研究結(jié)果同時顯示,皮下低劑量注射LPS模擬內(nèi)毒素血癥及體外實驗LPS干預(yù)肝細胞,均可致過氧化物生成增多及線粒體損傷。由此推測,在肝IR中,LPS可誘導ROS生成增多,使肝臟處于OS狀態(tài),致使線粒體功能障礙。OS與細胞線粒體關(guān)系密切。線粒體既是ROS產(chǎn)生的主要場所,又是ROS攻擊的首要目標。由于線粒體DNA缺乏保護性組蛋白修飾,ROS可干擾線粒體DNA、RNA復(fù)制及氧化線粒體蛋白,影響其功能[16-17]。此外,ROS還可誘導線粒體內(nèi)膜通透性改變,使Ca2+大量內(nèi)流,引起線粒體氧化磷酸化障礙,損傷線粒體[18-19]。內(nèi)流Ca2+不僅會致ATP合成減少加重細胞損傷,且可通過激活Ca2+依賴性蛋白酶促進ROS生成??梢?,OS與線粒體功能損傷相互作用,損傷肝細胞,促進肝IR的發(fā)生。
UCP2是線粒體內(nèi)膜蛋白,在調(diào)節(jié)線粒體內(nèi)氧化磷酸化和ATP產(chǎn)生中發(fā)揮著重要作用。正常線粒體可通過氧化磷酸化解偶聯(lián)和啟動抗氧化防御系統(tǒng)對抗氧化損傷作用。Chan等[20]發(fā)現(xiàn),胰島β細胞UCP2 mRNA表達增高可使線粒體氧化磷酸化過程解偶聯(lián),減少ATP產(chǎn)生。本實驗結(jié)果顯示,果糖及LPS致肝細胞損傷時,UCP2表達升高,說明果糖與LPS促進了UCP2的表達,可能與其代償性發(fā)揮抗氧化功能有關(guān)。實驗結(jié)果提示,LPS可引起肝UCP2的表達上調(diào),使線粒體能量儲備減少,最終導致線粒體功能障礙。實驗中還發(fā)現(xiàn),果糖在肝損傷中對線粒體的影響與LPS十分相似,其機制有待進一步探討。
綜上所述,果糖致肝損傷時,LPS可促發(fā)肝臟OS,影響線粒體功能,促使肝臟IR及代謝疾病的發(fā)生。
[參考文獻]
[1] Cani PD,Amar J,Iglesias MA,et al. Metabolic endotoxemia initiates obesity and insulin resistance [J]. Diabetes,2007, 56(7):1761-1772.
[2] Kojima H,Sakurai S,Uemura M,et al. Mitochondrial abnor?鄄mality and oxidative stress in nonalcoholic steatohepatitis [J]. Alcoholism,Clinical and Experimental Research,2007,31(Supplement):61-66.
[3] Mantena SK,King AL,Andringa KK,et al. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases [J]. Free Radical Biology & Medicine,2008,44(7):1259-1272.
[4] Koek GH,Liedorp PR,Bast A. The role of oxidative stress in non-alcoholic steatohepatitis [J]. Clinica Chimica Act:International Journal of Clinical Chemistry,2011,412(15-16):1297-1305.
[5] 葉娟,王群,付溪,等.原代大鼠肝細胞分離及培養(yǎng)鑒定[J].中華實用兒科臨床雜志,2012,27(7):531-533.
[6] 楊友生,瞿祥春,胡松,等.三種大鼠肝細胞分離及原代培養(yǎng)方法的比較[J].中華實驗外科雜志,2016,33(3):656-658.
[7] 張義冉,王玲玲,王家晶,等.原代大鼠肝細胞分離培養(yǎng)方法改良[J].中國獸醫(yī)學報,2013,33(2):292-295.
[8] Chapnik N,Rozenblit-Susan S,Genzer Y,et al. Differential effect of fructose on fat metabolism and clock gene expression in hepatocytes vs. myotubes [J]. International Journal of Biochemistry & Cell Biology,2016,77(Pt A):35-40.
[9] 梁秀彬,喬中東,尹鐳,等.內(nèi)毒素體外誘導大鼠肝細胞凋亡[J].中華肝臟病雜志,1999,7(2):72-73.
[10] Leuner K,Kurz C,Guidetti G,et al. Improved Mitochon?鄄drial Function in Brain Aging and Alzheimer Disease-the New Mechanism of Action of the Old Metabolic Enhancer Piracetam [J]. Frontiers in Neuroscience,2010,4(4):1-11.
[11] Satapati S,Kucejova B,Duarte JA,et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver [J]. Journal of Clinical Investigation,2015,125(12):4447-4462.
[12] Wada J,Nakatsuka A. Mitochondrial Dynamics and Mitoc?鄄hondrial Dysfunction in Diabetes [J]. Acta Medica Okayama,2016,70(3):151-158.
[13] Cani PD,Bibiloni R,Knauf C,et al. Changes in gut mic?鄄robiota control metabolic endotoxemia-induced inflam?鄄mation in high-fat diet-induced obesity and diabetes in mice [J]. Diabetes,2008,57(6):1470-1481.
[14] Zhou X,Han D,Xu R,et al. A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet [J]. Plos One,2014, 9(12):1-22.
[15] Bonnard C,Durand A,Peyrol S,et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice [J]. Journal of Clinical Investigation,2008,118(2):789-800.
[16] Rolo AP,Teodoro JS,Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis [J]. Free Radical Biology & Medicine,2012,52(1):59-69.
[17] Park CB,Larsson NG. Mitochondrial DNA mutations in disease and aging [J]. Journal of Cell Biology,2011,193(5):809-818.
[18] Rains JL,Jain SK. Oxidative stress,insulin signaling and diabetes [J]. Free Radical Biology & Medicine,2011,50(5):567-575.
[19] Maiese K,Morhan SD,Zhao ZC. Oxidative Stress Biology and Cell Injury During Type 1 and Type 2 Diabetes Mellitus [J]. Current Neurovascular Research,2007,4(1):63-71.
[20] Chan CB,Saleh MC,Koshkin V,et al. Uncoupling protein 2 and islet function [J]. Diabetes,2004,53 (2):S136-142.
(收稿日期:2016-12-12 本文編輯:程 銘)