• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graphene oxide membranes supported on the ceramic hollow fibre for efficient H2 recovery☆

    2017-06-01 03:20:16KangHuangJianweiYuanGuoshunShenGongpingLiuWanqinJin

    Kang Huang,Jianwei Yuan,Guoshun Shen,Gongping Liu,Wanqin Jin*

    State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemical Engineering,Jiangsu National Synergetic Innovation Center for Advanced Materials,Nanjing Tech University,Nanjing 210009,China

    1.Introduction

    Gas separation membranes are increasingly becoming an important and convenient technology for the recovery of hydrogen from gas mixtures(H2/N2,H2/CO2,H2/hydrocarbons and so on),oxygen-nitrogen separation,natural gas separation,CO2capture,vapour-vapour separation and air dehydration[1].The attractive and significant reason is that the membrane technology can effectively separate gas mixtures under low pressure,obviously reduce required industry area and minimize necessary energy consumption with relatively low contamination,compared with traditional separation technologies[2,3].Up to now,numerous creative works about gas separation membranes are focused on achieving high flux and surprising selectivity[4-7].In order to obtain this target,three main routes are employed:1)designing and synthesizing new materials with special and excellent properties;2)improving current gas separation membrane materials by modification;3)developing novel and high-effective membrane processes based on current materials.The intrinsic excellent properties of the membrane materials are the precondition to achieve high separation performance.Beyond their outstanding properties,the membrane materials should also satisfy other necessary practical application conditions,such as low production cost,simple preparation process and easy scale-up.

    Recently,considerable interest has been aroused by the emerging two-dimensional structural materials,such as MoS2,[8,9]phosphorene,[10]ZIF-7[11]and graphene,[12]due to their ultra-thin thickness and unique physicochemical property.Utilizing two-dimensional intriguing materials to fabricate thin membranes has been considered as a useful and effective way to overcome the current permeability/selectivity trade-off,[13,14]which often occurred in traditional polymer membranes[14,15].Among them,there is no doubt that graphene,a two-dimensional monolayer of sp2hybridized carbon atoms arrayed in a honeycomb pattern,exhibits the most imaginative and outstanding prospect,because ofa series of unique properties,such asgood chemical stability,excellent thermal conductance and strong mechanical strength[12,16-19].For example,Nairet al.found that graphene oxide(GO,the oxygen-containing analogue of graphene)membrane allowed unimpeded permeation of water while other molecules were blocked,because of the low-friction flow of water molecules through 2D capillaries between graphene sheets[20].Subsequently,based on this interesting discovery,significant amount of researches about GO membranes for water treatment,[21-26]liquid organic separation[27-30]and ion sieve[31,32]were investigated and showed great attractive performance.

    GO's precise transport channels and atomic-scale pores also make it a potential candidate in gas separation.Up to now,some exciting and encouraging works have been achieved[33,34].However,because of the complicated membrane preparation process,[34,35]it is very hard to transfer their membrane to the practical application.On the other hand,the attractive ultra thin flat membrane structure brings ano the rcriticalissue:how to bear complex and harsh long-termoperation environments in the real industry(such as high pressure and unstable gas flow).Usually,extremely careful manipulations are needed for these few-layers GO membranes[33,34].Therefore,it is still necessary to design GO membranes which can satisfy the practical requirements and explore their gas separation.

    In order to make up above shortages,we are apt to prepare porous ceramic supported GO membranes,because porous ceramic substrates not only can decrease thickness of membranes to realize high flux obviously,but also can offer a good mechanical strength for composite membranes[36,37].In this study,the porous ceramic hollow fibre was selected as the substrates due to its characteristic con figuration(low mass transfer resistance and high-packing density)and good chemical and thermal stability[38].Previously,we have proposed a convenient and rapid vacuum suction method to prepare GO membranes on the ceramic hollow fibre,which exhibited excellent pervaporation separation performance[27].The specialcon figuration makes GO membranes very easy to be scale-up.In addition,GO nanosheets stacked to form a cylinder shell around the ceramic hollow fibre,keeping it more stable than flat GO membranes.Herein,we will deeply study the gas separation performance of the ceramic hollow fibre supported GO membranes by:(1)optimizing microstructures of GO membranes;(2)exploring gas separation ability systemically,including single gas and binary mixture;(3)investigating stability of GO membranes in the gas system.Small gas molecules(H2,CO2,N2,O2and CH4)will be employed to investigate the potential separation in the whole study.

    2.Experimental

    2.1.Materials

    GO powder prepared by modified hummer's method[39]was purchased from Nanjing JCNANO Tech Co.,Ltd.,China.The ceramic α-Al2O3hollow fibre support was prepared as our previous method[7].99.999%H2,H2,CO2,N2,O2and CH4were used as the gas sources,which were brought from Nanjing Special Gas Co.,LTD,China.Deionized water was also employed in the whole experiment.

    2.2.Preparation of GO membrane

    A typical process to prepare GO membranes is described as follow:Firstly,preparation of GO aqueous solution.GO powder was dissolved into deionized water,and at the same time the mixture solution was treated by ultrasound equipment for 1 h to form a high concentration GO aqueous solution.In this step,GO powder was exfoliated to nanosheets.Then,above GO solution was centrifuged at 3000 r·min-1for 10 min in order to remove agglomerated powder and impurity.After this,the as-prepared solution was diluted 1000 times to form a very low concentration solution(about 0.001 mg·ml-1).Secondly,fabrication of GO membranes.GO membranes were prepared by our previous reported method(i.e.,Vacuum Suction method)[27].The detailed steps are listed as below.One side of the ceramic hollow fibre was sealed and the other side was connected to a vacuum pump.Then,the whole hollow fibre was immersed in the GO aqueous solution.With the pressure driving,GO flakes were stacked on the surface in order.Through changing the operation time,different thickness GO membranes were fabricated.Finally,the as-prepared GO membrane was dried in a vacuum oven at 45°C over 48 h.The quality of as prepared GO membranes was examined by testing the H2and CH4single gas permeation.

    2.3.Characterization

    The morphologies of the GO membranes and the ceramic hollow fibre were characterized by field emission scanning electron microscope(FESEM S4800,Hitachi,Japan).The working parameters were a voltage(HV)of 5 kV and a work distance(WD)of 8 mm.Fourier transform infrared spectroscopy were recorded by using a FTIR spectrophotometer(AVATAR-FT-IR-360,Thermo Nicolet,USA)over the range of 4000-500 cm-1.The X-ray photoelectron spectroscopy(XPS)was carried out through an X-ray photoelectron spectrometer(Thermo ESCALAB 250,USA)with monochromatized AlKαradiation.Atomic force microscopy(AFM,XE-100,Park Systems,Korea)was used to detect the size of GO flakes and the surface morphologies of the GO membrane.

    2.4.Gas permeation test

    Gas permeation experiments were performed by small gas molecules(H2,CO2,N2,O2and CH4)on the permeation setup.Fig.1 shows the schematic of the gas separation setup.All the measurements were performed using the Wicke-Kallenbach technique with an on-line gas chromatography(Agilent Technologies 7820A)at room temperature.Before test,the membrane was activated at 45°C.And,all the results were tested three times,making sure that the results were reliable.

    For the single gas measurement,the feed flow rate was set to 30 ml·min-1.When studying the influence of humidity,the dried gas flow would go through a water bottle.For the binary mixture,the feed side was fed at a total volumetric flow rate of 60 ml·min-1with each gas of 30 ml·min-1.When investigating the influence of H2fraction in the feed,the total flow was kept at 60 ml·min-1.In all measurements,helium was used as sweep gas at a flow rate of 30 ml·min-1.Atmosphere pressure was applied to both sides of the permeation cell.The temperature was controlled by a circulation oven.

    Fig.1.Schematic diagram of the gas separation setup.“MFC”and “GC”are mass flow controller and gas chromatography(Agilent Technologies 7820A),respectively.“F”and“P”are the flow rate and pressure,respectively.

    The membrane permeance(Fi)is defined as:

    whereNiis the permeate rate of componenti(mol·s-1),ΔPiis the trans membrane pressure difference ofi(Pa),andAis the effective membrane area(m2).

    The idealselectivity is calculated by the ratio of single gas permeances.

    The separation factor was calculated as:

    wherexandyare the molar fraction of the one component in the feed and permeate,respectively.

    3.Results and Discussion

    3.1.Basic characterization of GO materials and hollow fibre support

    As we know,the properties of membrane materials have great effect on the eventual separation performance.Before experiments,we first characterized the basic properties of GO materials,including AFM,FTIR,XPS and Raman spectrum.Fig.2(a)shows the AFM image of GO flakes deposited on the mica substrate.The size of GO flake is about 1μm size.The depth pro file indicates that the GO sheetis approximately 1 nmin thickness.The FTIR spectrum(Fig.2(b))proves the presences of O--H stretching vibrations(3415 cm-1),C═O stretching vibrations from carbonyl and carboxylic groups(1733 cm-1),unoxidized sp2C═C bonds in the carbon lattice(1624 cm-1),and C--O stretching vibrations from epoxy groups(1051 cm-1).These functional groups were further confirmed by the XPS measurement.As shown in Fig.2(c),the XPS C1s spectrum of GO clearly indicates four kinds of C atoms in different functional groups:C--C(~284.8 eV),C--O(~286.8 eV),C═O(~287.8 eV),and C(O)O(~289.0 eV).The C--O groups(representing hydroxyl and epoxide groups)comprise approximately 45.3%of the total C1s peak area,whereas C═O and C(O)O are 11.07%and 5.4%,respectively.The results show that the ratio of O/C in GO is approximately 0.6,which is relatively high as compared to the reported values[40].XPS and FTIR results are well in agreement with the Lerf-Klinowski Model of the GO sheet[41,42].When the Hummer method produced amount of oxygen-containing groups,some intrinsic defects were also created at the same time.The present of defects can be supported by the Raman spectrum.As shown in Fig.2(d),theID/IGratio of the GO powder is about 1.05,which will be assigned to higher defects/disorders in the GO flake[33].The diverse carbon functional groups and intrinsic defects on the GO structure will be beneficial for the gas separation through the molecular interaction and sieving.

    Fig.2.(a)AFM image of GO flakes deposited on the mica substrate;(b)FTIR,(c)XPS and(d)Raman spectrum characterization of GO;(e)Optical picture of the ceramic tube and hollow fibre;(f)FESEM images of the ceramic hollow fibre(insert i:cross-section;insert ii:surface).

    Fig.3.The thickness of the ceramic hollow fibre supported GO membrane as a function of the membrane preparation time.

    The structure of the ceramic hollow fibre was also investigated.Fig.2(e)gives an optical picture of the hollow fibre and the traditional ceramic tube support.Compared with tube,the hollow fibre owns a slender shape with smaller diameter(about1.5 mm),implying a higher packing density.Fig.2(f)shows the detail features of the hollow fibre by FESEM.Its asymmetric structure(i.e.,a thin separation dense layer integrated with finger-like porous layers on both sides in Fig.2(f-i)reduces the mass transfer resistance of supports.The relatively smooth surface makes(Fig.2(f-ii))GO sheets easy to stack and reduces the formation of big holes.

    3.2.Optimizing structures of GO membranes

    In order to obtain high flux and selectivity,the micros tructures of the hollow fibre supported GO membranes were optimized systematically.By adjusting the preparation time,GO membranes with different thickness were achieved.Fig.3 shows that the thickness of the GO membranes increases with the operation time increasing.However,there is a nonlinearity between the membrane thickness and operation time.The reason is that the resistance was reinforced with increasing the membrane thickness,which inhibited more GO sheets to stack on the surface.The insert in Fig.3 presents two typical GO membranes prepared at 10 and 120 min,respectively.Obviously,the membrane colour becomes darker when the thickness increases.Additional,both of them show a continuous and uniformly layer,indicating that the vacuumsuction method is very effective to fabricate tubular GO membranes.

    Fig.4.FESEM images of the GO membrane prepared under different operation times:(a-c)the surface images;(e-f)the cross-section images.

    Fig.4 shows the microstructures of three typical GO membrane which were prepared at 5,30 and 120 min,respectively(the corresponding membranes are marked as T5,T30 and T120,respectively).When the time is too short,there are some pin holes on the surface of GO membrane(Fig.4(a)).The insert of Fig.4(a)gives a clearer and enlarged image.From Fig.4(b)and(c),continuous and complete membranes can be observed.And,the surface becomes smoother with the growth of thickness.Fig.4(d),(e)and(f)exhibit the corresponding cross-section images of T5,T30 and T120 membranes,respectively.All of them attach well with the ceramic hollow fibre,which may be attributed to the hydrogen bond between the oxygen containing functional groups of the GO membrane and the hydroxy group on the surface of the ceramic hollow fibre.

    Gas separation measurements of single H2and CH4were utilized to examine the membranes' quality.As shown in Fig.5,the gas permeances of H2and CH4decline together,when the membrane thickness increases.But the H2/CH4selectivity of T30 GO membrane gets a peak and meanwhile the membrane still has a good H2permeance.Obviously,with increasing the membrane thickness,the H2permeance declines quickly.This is why Nairet al.found that the thick GO membrane was impermeable to gases because of the higher membrane thickness[20].Considering permeance and selectivity,we selected the 30 min operation time as the most optimized condition to prepare the ceramic hollow fibre supported GO membranes.Fig.6 shows the FESEM image of T30 GO membrane after rotating 45°and the corresponding AFM image,indicating that the membrane is very intact with lots of ripples and the membrane thickness is about 300 nm.The corresponding XRD result(the inset in Fig.6(a))shows the d-spacing size of the GO membranes is~0.81 nm.

    Fig.5.The H2 and CH4 permeance and corresponding H2/CH4 selectivity of GO membrane as a function of the membrane preparation time.

    3.3.Single gas separation performance

    Single gas permeations of T30 GO membrane,including H2,CO2,O2,N2and CH4,were tested in detail.From Fig.7,the permeances of these small gas molecules decreases in the order H2>CH4>N2>O2>CO2,with increasing the molecular weight.The corresponding idealselectivity(Fig.8)of H2/CO2,H2/O2,H2/N2and H2/CH4are 15.0,7.5,7.2 and 6.4,respectively.In contrast to other gases,CO2shows a sharp down in the permeance and the highest hydrogen selectivity,which can be attributed to the chemicalnature of GO material.As we know,there are numerous carboxylic acid groups distributed at the edge of GO flakes.Strong interplay between these polar groups and C--O bonds in the nonpolar CO2molecules would happen.For CO2transfer,CO2as a Lewis acid or a Lewis base participates in hydrogen bonding,which inhibits it from transferring within the stacked GO structure[34].The similar phenomenon was also found in the porous metal-organic framework(MOF)ZIF-78 membrane[43].The two polar functional groups--NO2in ZIF-78 structure made it exhibit the highest affinity for CO2,which blocked the diffusion of CO2molecules through the ZIF-78 channels.

    Then,we investigated the influence of humidity for the gas transfer.As shown in Fig.7,most gas permeances(except CO2)decrease when the humid steam is added in the feed,because the water molecules in the GO channels limit the gas transfer.However,a slight increase of CO2is observed.Kimet al.[34]found the same trend when GO membrane was used to separate humid gas.This result further confirms that CO2molecules have special interaction with the carboxylic acid groups in GO.Because of the growth ofCO2permeance,the corresponding H2/CO2ideal selectivity declines obviously under the wet condition(Fig.8),indicating that wet gas has disadvantages for hydrogen recovery from H2/CO2mixture.

    Fig.7.Single gas permeance(H2,CO2,O2,N2 and CH4)with dry feed or hydrated feed as a function of the molecular kinetic diameter.

    Fig.6.(a)FESEM image and(b)AFM image of T30 GO membrane.The inset of(a)is the XRD result.

    Fig.8.Selectivity of H2/CH4,H2/N2,H2/O2 and H2/CO2 with dry feed or hydrated feed.

    3.4.Binary gas separation performance

    Single gas measurements only can give the ideal selectivity,because the gas molecular transfer in this process is relatively independent.However,interplays between different gases are generally not negligible,which may result in a prominent deviation of the mixture separation factor from the ideal selectivity.Table 1 lists all the single gases and binary mixtures separation performances.Like single gas test,the ceramic hollow fibre supported GO membrane shows a same regular for mixtures.But the corresponding permeance and separation factor have a bit of decrease because of the competitive adsorption and diffusion between different gas molecules.This phenomenon was often observed in zeolite membranes.For example,a CVD modified ZSM-5 membrane exhibited a higher H2/CO2ideal selectivity(17.5)than the mixture separation factor(10.8)[44].Another AlPO4membrane also showed a lower separation factor(9.7)in H2/CO2binary system than the ideal selectivity of 23.9[45].Generally speaking,although the H2/CO2separation factor drops,it still reveals a useful separation ability(10.2)for practical hydrogen recovery application.The Robeson plot for H2-CO2selectivities versus CO2permeabilities ofpolymer membranes has been widely used to compare the performance of membranes[46].As shown in Fig.9,our GO hollow fibre membranes exhibit superior properties.

    Table 1Single gases and binary mixtures separation performances under dry state

    Fig.9.Comparison of H2/CO2 gas separation performances of GO hollow fibre membranes with Robeson upper bound[46].

    3.5.Effect of the H2 concentration in the feed for H2/CO2 mixture

    In general,the H2/CO2rate in the realmixture is very complicated and cannot be one to one.In order to assess the influence of the feed composition on the hydrogen recovery,the separation of H2/CO2binary mixture was explored under different H2concentrations in the feed.As shown in Fig.10,with increasing the H2concentration,the H2permeance has a slight growth because of the enhanced driving force.In contrast,an imperceptible downtrend exists in the CO2permeance line.As a result,the H2/CO2separation factor is almost unchanged and almost keeps a constant(about 10),which is independent of H2fraction in the feed.

    Fig.10.Effect of the H2 concentration in the feed for H2/CO2 mixture separation performance.

    Fig.11 presents the corresponding H2and CO2fraction in the permeate as a function of H2concentration in the feed.Obviously,a high H2concentration mixture over 90%in volume will be obtained,when the feed is equimolar.According to Fig.11,for 20%H2concentration of H2/CO2mixture,the final H2concentration mixture will be more than 95%only after twice purification in theory.

    Fig.11.H2 and CO2 fraction in the permeate as a function of H2 concentration in the feed.

    3.6.Effect of temperature on H2/CO2 separation

    Fig.12 represents the variation of the H2and CO2permeances and the ircorres ponding separation factors from their equimolar binary mixture in the temperature of 50-200°C.Both the permeances of H2and CO2increase quickly with increasing operation temperature because of an activated diffusion process.The corresponding separation factor shows a down trend,indicating that some inevitable pores were formed in the GO laminates by heating.On the other hand,these pores would also contribute to improving the permeance.X-ray photoelectron spectroscopy(Fig.13)shows that most of the oxygen containing functional groups have disappeared after heating treatment,implying that this process is irreversible.Therefore,low temperature(room temperature)is very suitable for GO membrane used in gas separation industry field.

    Fig.12.Effect of temperature on H2/CO2 separation.

    3.7.Repeatability and stability of GO hollow fibre membranes

    As shown in Table 2,the ceramic hollow fibre supported T30 GO membranes exhibit very good repeatability on the separation of equal molar H2/CO2binary mixture at room temperature.All the membranes were prepared under the same conditions.The single permeances of H2and CO2are around 1.3 × 10-7and 0.09 × 10-7mol·m-2·s-1·Pa-1,respectively,and the corresponding ideal selectivity is around 15.For binary mixture,the as-prepared GO membranes show similar results as listed in Table 2.This well reproducibility will benefit to the practical application.What's more,we also summarize the H2-CO2separation performance of one of the as-prepared GO hollow fibre membranes during the whole test process.As shown in Fig.14,the GO hollow fibre membrane showed a very good stability under different test conditions.

    Fig.13.X-ray photoelectron spectroscopy result of the GO membrane after heating treatment.

    Table 2Repeatability of GO membranes

    Fig.14.The long term stability of GO hollow fibre membrane under different test conditions.

    4.Conclusions

    The ceramic hollow fibre supported GO membranes were studied systematically in the present work.The optimized GO membranes possess a good balance between H2permeance and selectivity.Considering the uncomplicated fabrication process and high packing density,the gas separation ability of ceramic hollow fibre supported GO membranes will create a great amount of brilliance in the gas separation field.The high specific surface area of GO material also makes GO membranes very attractive,due to the resource saving and cost-effective.In addition,because of their special oxygen containing functional groups,it may further handle the chemical nature of GO membranes by modifying surface or channels,the gas separation ability of GO membranes could become adjustable and various.

    [1]P.Bernardo,E.Drioli,G.Golemme,Membrane gas separation:A review/state of the art,Ind.Eng.Chem.Res.48(2009)4638-4663.

    [2]R.W.Baker,Future directions of membrane gas separation technology,Ind.Eng.Chem.Res.41(2002)1393-1411.

    [3]X.L.Li,S.Tao,K.D.Li,Y.S.Wang,P.Wang,Z.J.Tian,In situ synthesis of ZIF-8 membranes with gas separation performance in a deep eutectic solvent,Acta Phys.-Chim.Sin.32(2016)1495-1500.

    [4]A.J.Brown,N.A.Brunelli,K.Eum,F.Rashidi,J.R.Johnson,W.J.Koros,C.W.Jones,S.Nair,Interfacial micro fluidic processing of metal-organic framework hollow fiber membranes,Science345(2014)72-75.

    [5]Y.Hu,J.Wei,Y.Liang,H.Zhang,X.Zhang,W.Shen,H.Wang,Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes,Angew.Chem.Int.Ed.55(2016)2048-2052.

    [6]J.Shen,G.Liu,K.Huang,Z.Chu,W.Jin,N.Xu,Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving,ACS Nano10(2016)3398-3409.

    [7]K.Huang,Z.Dong,Q.Li,W.Jin,Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors,Chem.Commun.49(2013)10326-10328.

    [8]B.Radisavljevic,A.Radenovic,J.Brivio,V.Giacometti,A.Kis,Single-layer MoS2transistors,Nat.Nanotechnol.6(2011)147-150.

    [9]K.G.Zhou,N.N.Mao,H.X.Wang,Y.Peng,H.L.Zhang,A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues,Angew.Chem.Int.Ed.50(2011)10839-10842.

    [10]H.Liu,A.T.Neal,Z.Zhu,Z.Luo,X.Xu,D.Tománek,P.D.Ye,Phosphorene:An unexplored 2D semiconductor with a high hole mobility,ACS Nano8(2014)4033-4041.

    [11]Y.Peng,Y.Li,Y.Ban,H.Jin,W.Jiao,X.Liu,W.Yang,Metal-organic framework nanosheets as building blocks for molecular sieving membranes,Science346(2014)1356-1359.

    [12]A.K.Geim,Graphene:Status and prospects,Science324(2009)1530-1534.

    [13]Z.Zheng,R.Grunker,X.Feng,Synthetic two-dimensional materials:A new paradigm of membranes for ultimate separation,Adv.Mater.(2016).

    [14]Z.P.Smith,B.D.Freeman,Graphene oxide:a new platform for high-performance gas-and liquid-separation membranes,Angew.Chem.Int.Ed.53(2014)10286-10288.

    [15]T.S.Chung,L.Y.Jiang,Y.Li,S.Kulprathipanja,Mixed matrix membranes(MMMs)comprising organic polymers with dispersed inorganic fillers for gas separation,Prog.Polym.Sci.32(2007)483-507.

    [16]C.Sun,B.Wen,B.Bai,Recent advances in nanoporous graphene membrane for gas separation and water purification,Sci.Bull.60(2015)1807-1823.

    [17]J.Kim,L.J.Cote,J.Huang,Two dimensional soft material:New faces of graphene oxide,Acc.Chem.Res.45(2012)1356-1364.

    [18]G.Liu,W.Jin,N.Xu,Two-dimensional-material membranes:A new family of highperformance separation membranes,Angew.Chem.Int.Ed.5(2016)2-16.

    [19]X.Yang,X.Yang,S.Liu,Molecular dynamics simulation of water transport through graphene-based nanopores:Flow behavior and structure characteristics,Chin.J.Chem.Eng.23(2015)1587-1592.

    [20]R.R.Nair,H.A.Wu,P.N.Jayaram,I.V.Grigorieva,A.K.Geim,Unimpeded permeation of water through helium-leak-tight graphene-based membranes,Science335(2012)442-444.

    [21]Y.Han,Z.Xu,C.Gao,Ultrathin graphene nano filtration membrane for water purification,Adv.Funct.Mater.23(2013)3693-3700.

    [22]M.Hu,B.Mi,Enabling graphene oxide nanosheets as water separation membranes,Environ.Sci.Technol.47(2013)3715-3723.

    [23]K.Xu,B.Feng,C.Zhou,A.Huang,Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination,Chem.Eng.Sci.146(2016)159-165.

    [24]N.F.D.Aba,J.Y.Chong,B.Wang,C.Mattevi,K.Li,Graphene oxide membranes on ceramic hollow fibers—Microstructural stability and nano filtration performance,J.Membr.Sci.484(2015)87-94.

    [25]X.Chen,G.Liu,H.Zhang,Y.Fan,Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol,Chin.J.Chem.Eng.23(2015)1102-1109.

    [26]H.Huang,Z.Song,N.Wei,L.Shi,Y.Mao,Y.Ying,L.Sun,Z.Xu,X.Peng,Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes,Nat.Commun.4(2013)2979.

    [27]K.Huang,G.Liu,Y.Lou,Z.Dong,J.Shen,W.Jin,A graphene oxide membrane with highly selective molecular separation of aqueous organic solution,Angew.Chem.Int.Ed.53(2014)6929-6932.

    [28]Y.P.Tang,D.R.Paul,T.S.Chung,Free-standing graphene oxide thin films assembled by a pressurized ultra filtration method for dehydration of ethanol,J.Membr.Sci.458(2014)199-208.

    [29]G.Li,L.Shi,G.Zeng,Y.Zhang,Y.Sun,Efficient dehydration of the organic solvents through graphene oxide(GO)/ceramic composite membranes,RSC Adv.4(2014)52012-52015.

    [30]W.S.Hung,Q.F.An,M.De Guzman,H.Y.Lin,S.H.Huang,W.R.Liu,C.C.Hu,K.R.Lee,J.Y.Lai,Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide,Carbon68(2014)670-677.

    [31]R.K.Joshi,P.Carbone,F.C.Wang,V.G.Kravets,Y.Su,I.V.Grigorieva,H.A.Wu,A.K.Geim,R.R.Nair,Precise and ultrafast molecular sieving through graphene oxide membranes,Science343(2014)752-754.

    [32]S.C.O'Hern,M.S.Boutilier,J.C.Idrobo,Y.Song,J.Kong,T.Laoui,M.Atieh,R.Karnik,Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes,Nano Lett.14(2014)1234-1241.

    [33]H.Li,Z.Song,X.Zhang,Y.Huang,S.Li,Y.Mao,H.J.Ploehn,Y.Bao,M.Yu,Ultrathin,molecular-sieving graphene oxide membranes for selective hydrogen separation,Science342(2013)95-98.

    [34]H.W.Kim,H.W.Yoon,S.-M.Yoon,B.M.Yoo,B.K.Ahn,Y.H.Cho,H.J.Shin,H.Yang,U.Paik,S.Kwon,Selective gas transport through few-layered graphene and graphene oxide membranes,Science342(2013)91-95.

    [35]S.P.Koenig,L.Wang,J.Pellegrino,J.S.Bunch,Selective molecular sieving through porous graphene,Nat.Nanotechnol.7(2012)728-732.

    [36]H.Kaur,V.K.Bulasara,R.K.Gupta,Preparation of kaolin-based low-cost porous ceramic supports using different amounts of carbonates,Desalin.Water Treat.57(2016)15154-15163.

    [37]A.Kaiser,S.P.Foghmoes,G.Pe?anac,J.Malzbender,C.Chatzichristodoulou,J.A.Glasscock,D.Ramachandran,D.W.Ni,V.Esposito,M.S?gaard,P.V.Hendriksen,Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes,J.Membr.Sci.513(2016)85-94.

    [38]R.Faiz,M.Fallanza,I.Ortiz,K.Li,Separation of olefin/paraffin gas mixtures using ceramic hollow fiber membrane contactors,Ind.Eng.Chem.Res.52(2013)7918-7929.

    [39]Y.Xu,H.Bai,G.Lu,C.Li,G.Shi,Flexible graphene films via the filtration of water soluble noncovalent functionalized graphene sheets,J.Am.Chem.Soc.130(2008)5856-5857.

    [40]S.Pei,H.-M.Cheng,The reduction of graphene oxide,Carbon50(2012)3210-3228.

    [41]A.Lerf,H.He,M.Forster,J.Klinowski,Structure of graphite oxide revisited,J.Phys.Chem.B102(1998)4477-4482.

    [42]H.He,J.Klinowski,M.Forster,A.Lerf,A new structural model for graphite oxide,Chem.Phys.Lett.287(1998)53-56.

    [43]X.Dong,K.Huang,S.Liu,R.Ren,W.Jin,Y.S.Lin,Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane:Defect formation and elimination,J.Mater.Chem.22(2012)19222.

    [44]X.Gu,Z.Tang,J.Dong,On-stream modification of MFI zeolite membranes for enhancing hydrogen separation at high temperature,Microporous Mesoporous Mater.111(2008)441-448.

    [45]G.Guan,T.Tanaka,K.Kusakabe,K.I.Sotowa,S.Morooka,Characterization of AlPO 4-type molecular sieving membranes formed on a porous α-alumina tube,J.Membr.Sci.214(2003)191-198.

    [46]L.M.Robeson,The upper bound revisited,J.Membr.Sci.320(2008)390-400.

    久久精品综合一区二区三区| 午夜视频国产福利| 国内精品美女久久久久久| 久久精品国产自在天天线| 国产一区二区三区在线臀色熟女| 三级毛片av免费| 怎么达到女性高潮| 午夜福利高清视频| 国产国拍精品亚洲av在线观看| 日韩欧美精品免费久久 | 精品国产亚洲在线| 久久中文看片网| 中亚洲国语对白在线视频| 久久精品国产99精品国产亚洲性色| 亚洲午夜理论影院| 亚洲真实伦在线观看| АⅤ资源中文在线天堂| 亚洲成人久久爱视频| 亚洲av成人精品一区久久| 在线a可以看的网站| 亚洲成人中文字幕在线播放| 欧美激情在线99| 女人被狂操c到高潮| 国产精品不卡视频一区二区 | 中出人妻视频一区二区| 少妇熟女aⅴ在线视频| 自拍偷自拍亚洲精品老妇| 丰满乱子伦码专区| 国产日本99.免费观看| 丁香六月欧美| 久久久久亚洲av毛片大全| 国产一区二区激情短视频| 久9热在线精品视频| av在线老鸭窝| 国产三级中文精品| 久久久久久久午夜电影| 99热这里只有是精品在线观看 | 色播亚洲综合网| 99久国产av精品| 国产成+人综合+亚洲专区| 欧美又色又爽又黄视频| 国产伦人伦偷精品视频| 中文字幕免费在线视频6| 两性午夜刺激爽爽歪歪视频在线观看| 一级a爱片免费观看的视频| 免费看美女性在线毛片视频| 亚洲第一欧美日韩一区二区三区| 国产精品国产高清国产av| 日韩成人在线观看一区二区三区| 性插视频无遮挡在线免费观看| 欧美色欧美亚洲另类二区| 免费av观看视频| 日韩欧美国产一区二区入口| 一夜夜www| 蜜桃亚洲精品一区二区三区| 国产乱人伦免费视频| 最新中文字幕久久久久| 桃红色精品国产亚洲av| 免费在线观看日本一区| 久久热精品热| 亚洲av一区综合| 欧美丝袜亚洲另类 | 最好的美女福利视频网| 亚洲七黄色美女视频| 亚洲欧美精品综合久久99| 免费看光身美女| 五月伊人婷婷丁香| 最后的刺客免费高清国语| 中文字幕人妻熟人妻熟丝袜美| 久久香蕉精品热| 国产私拍福利视频在线观看| 亚洲五月婷婷丁香| 欧美成人一区二区免费高清观看| 国产色婷婷99| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 亚洲男人的天堂狠狠| 亚洲色图av天堂| 草草在线视频免费看| 免费搜索国产男女视频| 欧美一级a爱片免费观看看| 国产免费一级a男人的天堂| 免费高清视频大片| xxxwww97欧美| 人妻制服诱惑在线中文字幕| 亚洲自拍偷在线| 最近视频中文字幕2019在线8| 久久久久性生活片| 久久久久国产精品人妻aⅴ院| 最新中文字幕久久久久| 麻豆国产av国片精品| 免费人成在线观看视频色| 日韩免费av在线播放| 亚洲av日韩精品久久久久久密| 亚洲人成伊人成综合网2020| 免费无遮挡裸体视频| 黄色女人牲交| 国产人妻一区二区三区在| 午夜日韩欧美国产| 一区福利在线观看| 真人一进一出gif抽搐免费| 美女被艹到高潮喷水动态| 日本免费一区二区三区高清不卡| 天美传媒精品一区二区| 午夜久久久久精精品| 国内精品美女久久久久久| 国产一区二区在线av高清观看| bbb黄色大片| 亚洲成av人片在线播放无| 久久国产乱子伦精品免费另类| 两个人视频免费观看高清| 亚洲第一电影网av| 动漫黄色视频在线观看| 国产亚洲欧美在线一区二区| 午夜福利成人在线免费观看| 欧美最新免费一区二区三区 | 亚洲精品乱码久久久v下载方式| 国产精品亚洲一级av第二区| 亚洲无线在线观看| 国产成人啪精品午夜网站| 又紧又爽又黄一区二区| 国产精品日韩av在线免费观看| 欧美色欧美亚洲另类二区| 成人高潮视频无遮挡免费网站| 精品一区二区免费观看| 欧美xxxx性猛交bbbb| 国产熟女xx| 久久精品久久久久久噜噜老黄 | 亚洲在线自拍视频| 亚洲欧美日韩无卡精品| 亚洲精品影视一区二区三区av| 老女人水多毛片| 成人毛片a级毛片在线播放| 亚洲狠狠婷婷综合久久图片| 欧美国产日韩亚洲一区| 97碰自拍视频| 日日干狠狠操夜夜爽| 级片在线观看| 人人妻,人人澡人人爽秒播| 搡老妇女老女人老熟妇| 高清在线国产一区| 日韩欧美 国产精品| 国产一区二区三区在线臀色熟女| 精品人妻一区二区三区麻豆 | 日日夜夜操网爽| 亚洲真实伦在线观看| 色播亚洲综合网| 久久久精品大字幕| 国产真实伦视频高清在线观看 | 天堂影院成人在线观看| 2021天堂中文幕一二区在线观| 69av精品久久久久久| 乱码一卡2卡4卡精品| 悠悠久久av| 我要搜黄色片| 免费在线观看日本一区| 国内揄拍国产精品人妻在线| 熟女人妻精品中文字幕| 亚洲经典国产精华液单 | 欧美日韩国产亚洲二区| 国内揄拍国产精品人妻在线| 美女 人体艺术 gogo| 伊人久久精品亚洲午夜| 久久精品影院6| 首页视频小说图片口味搜索| 国产精品一区二区性色av| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av天美| 每晚都被弄得嗷嗷叫到高潮| 99国产精品一区二区蜜桃av| 午夜免费男女啪啪视频观看 | 日韩欧美精品v在线| 久久天躁狠狠躁夜夜2o2o| av专区在线播放| 亚洲欧美日韩无卡精品| 国产人妻一区二区三区在| 一个人看视频在线观看www免费| 国产蜜桃级精品一区二区三区| 久久久国产成人免费| 亚洲无线观看免费| 免费高清视频大片| 亚洲不卡免费看| 老熟妇仑乱视频hdxx| 日本a在线网址| 国产高清三级在线| 最新中文字幕久久久久| 老司机午夜十八禁免费视频| 亚洲成人免费电影在线观看| 制服丝袜大香蕉在线| 精品久久久久久久久久久久久| 在线观看av片永久免费下载| 久久亚洲真实| 真人做人爱边吃奶动态| 亚洲综合色惰| 夜夜夜夜夜久久久久| 亚洲精品一卡2卡三卡4卡5卡| 有码 亚洲区| 极品教师在线视频| 亚洲欧美日韩东京热| 美女大奶头视频| 日韩欧美免费精品| 亚洲人与动物交配视频| 观看免费一级毛片| 亚洲 欧美 日韩 在线 免费| 免费av毛片视频| 久久久久国内视频| 国产在视频线在精品| 国产亚洲精品久久久久久毛片| 他把我摸到了高潮在线观看| 欧美xxxx黑人xx丫x性爽| 麻豆国产97在线/欧美| 十八禁网站免费在线| 国产一区二区亚洲精品在线观看| 高清毛片免费观看视频网站| 精品人妻一区二区三区麻豆 | 宅男免费午夜| 一级作爱视频免费观看| 内射极品少妇av片p| www.色视频.com| 欧美激情在线99| 观看免费一级毛片| 国语自产精品视频在线第100页| 国产不卡一卡二| 午夜福利免费观看在线| 亚洲人成电影免费在线| 窝窝影院91人妻| 成人国产一区最新在线观看| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区视频在线| 成人一区二区视频在线观看| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 国产亚洲欧美98| 99国产精品一区二区三区| 国产一区二区在线观看日韩| 久久久久久久精品吃奶| 日韩欧美在线二视频| 亚洲中文字幕日韩| 床上黄色一级片| 一进一出抽搐动态| 熟女电影av网| 丝袜美腿在线中文| 成人永久免费在线观看视频| 亚洲内射少妇av| 久久精品国产亚洲av天美| 神马国产精品三级电影在线观看| 欧美色视频一区免费| 国产精品国产高清国产av| 成人特级av手机在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精华一区二区三区| 日韩国内少妇激情av| 女生性感内裤真人,穿戴方法视频| 色尼玛亚洲综合影院| 午夜福利在线在线| 成人性生交大片免费视频hd| 国产视频一区二区在线看| 免费观看人在逋| 免费观看精品视频网站| 久久久久久久久久黄片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 狂野欧美白嫩少妇大欣赏| 在线观看免费视频日本深夜| 亚洲黑人精品在线| 熟妇人妻久久中文字幕3abv| 国产精品爽爽va在线观看网站| 十八禁国产超污无遮挡网站| 久久久久久久久大av| 极品教师在线视频| 深夜a级毛片| 一本一本综合久久| 久久精品91蜜桃| 亚洲aⅴ乱码一区二区在线播放| 少妇的逼水好多| 深夜精品福利| 中文在线观看免费www的网站| 深夜a级毛片| 美女 人体艺术 gogo| 成年女人看的毛片在线观看| 亚洲精华国产精华精| 一个人看视频在线观看www免费| 欧美一区二区国产精品久久精品| 欧美潮喷喷水| 亚洲18禁久久av| 日韩欧美在线二视频| 久久人人精品亚洲av| 久9热在线精品视频| 女同久久另类99精品国产91| 中国美女看黄片| 亚洲欧美日韩东京热| 舔av片在线| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 搡老岳熟女国产| 老司机午夜十八禁免费视频| 欧美又色又爽又黄视频| 99热6这里只有精品| 12—13女人毛片做爰片一| 高清毛片免费观看视频网站| 九九在线视频观看精品| 精品久久久久久久末码| 精品福利观看| 亚洲精品影视一区二区三区av| 老司机深夜福利视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 成人欧美大片| 精品久久久久久久久av| 日日夜夜操网爽| 男女床上黄色一级片免费看| av在线老鸭窝| 精品午夜福利在线看| 精品人妻一区二区三区麻豆 | 欧美日韩综合久久久久久 | 精品熟女少妇八av免费久了| 国产高清视频在线播放一区| 国产欧美日韩一区二区精品| 悠悠久久av| 欧美成狂野欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 岛国在线免费视频观看| 99久久九九国产精品国产免费| 国产黄色小视频在线观看| 18+在线观看网站| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| a级毛片a级免费在线| 99精品在免费线老司机午夜| 少妇的逼好多水| 国内精品久久久久精免费| 我的女老师完整版在线观看| 国产色爽女视频免费观看| 亚洲综合色惰| 国产色爽女视频免费观看| 香蕉av资源在线| 蜜桃久久精品国产亚洲av| 午夜福利欧美成人| 免费黄网站久久成人精品 | 淫妇啪啪啪对白视频| 久久中文看片网| 中文字幕人妻熟人妻熟丝袜美| 黄色女人牲交| 久久人妻av系列| 亚洲激情在线av| 久久伊人香网站| 搡女人真爽免费视频火全软件 | 日本a在线网址| 搞女人的毛片| 狠狠狠狠99中文字幕| 国产探花极品一区二区| 最近中文字幕高清免费大全6 | 精品国产亚洲在线| 麻豆国产av国片精品| 身体一侧抽搐| 亚洲人与动物交配视频| 婷婷精品国产亚洲av在线| 国产美女午夜福利| 亚洲真实伦在线观看| 在线看三级毛片| 亚洲真实伦在线观看| 国产视频内射| 97人妻精品一区二区三区麻豆| 欧美黄色淫秽网站| 色噜噜av男人的天堂激情| 亚洲av不卡在线观看| 精品久久久久久久久亚洲 | 亚洲精品一卡2卡三卡4卡5卡| 两个人视频免费观看高清| 国内精品一区二区在线观看| 一个人观看的视频www高清免费观看| 黄色配什么色好看| 中国美女看黄片| 九九在线视频观看精品| 欧美最黄视频在线播放免费| 成人特级av手机在线观看| 真人做人爱边吃奶动态| 亚洲无线在线观看| 欧美乱色亚洲激情| 成人午夜高清在线视频| 波野结衣二区三区在线| 日韩欧美精品免费久久 | 亚洲人成伊人成综合网2020| 日本与韩国留学比较| 无人区码免费观看不卡| 久久欧美精品欧美久久欧美| 成人鲁丝片一二三区免费| 丁香欧美五月| 国产精品永久免费网站| 精品乱码久久久久久99久播| 窝窝影院91人妻| 丰满乱子伦码专区| 搞女人的毛片| 久久6这里有精品| h日本视频在线播放| 欧美成人一区二区免费高清观看| 亚洲中文字幕一区二区三区有码在线看| 1024手机看黄色片| 亚洲av成人不卡在线观看播放网| 成人鲁丝片一二三区免费| 亚洲成人中文字幕在线播放| 国内久久婷婷六月综合欲色啪| 亚洲av.av天堂| 老女人水多毛片| www.999成人在线观看| 国内精品久久久久精免费| 精品久久国产蜜桃| 国产熟女xx| 91在线精品国自产拍蜜月| 国产精品国产高清国产av| 色精品久久人妻99蜜桃| 成人国产综合亚洲| 日韩欧美精品免费久久 | 亚洲一区高清亚洲精品| 色噜噜av男人的天堂激情| 国产精品永久免费网站| 波多野结衣高清作品| 免费人成在线观看视频色| a级毛片a级免费在线| 国产伦一二天堂av在线观看| 亚洲国产精品成人综合色| 波野结衣二区三区在线| 亚洲欧美日韩高清专用| 久久久久亚洲av毛片大全| 国产精品亚洲av一区麻豆| 精品久久久久久久久亚洲 | 日本黄色视频三级网站网址| bbb黄色大片| 午夜福利18| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲精品不卡| 最近最新中文字幕大全电影3| 国产高清视频在线观看网站| 亚洲成av人片在线播放无| 亚洲av第一区精品v没综合| 国产精品1区2区在线观看.| www.www免费av| 国产高潮美女av| 国内精品久久久久久久电影| 色噜噜av男人的天堂激情| 午夜久久久久精精品| 99在线人妻在线中文字幕| 波多野结衣巨乳人妻| 日本免费a在线| 亚洲欧美日韩东京热| 中国美女看黄片| 国产免费一级a男人的天堂| 老司机午夜十八禁免费视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美中文日本在线观看视频| 亚洲精品在线观看二区| 女同久久另类99精品国产91| 日韩av在线大香蕉| 中文在线观看免费www的网站| 国内揄拍国产精品人妻在线| 亚洲五月婷婷丁香| 搡老熟女国产l中国老女人| 亚洲自偷自拍三级| av在线老鸭窝| 9191精品国产免费久久| 久久久精品欧美日韩精品| 亚洲国产日韩欧美精品在线观看| 我要看日韩黄色一级片| 夜夜躁狠狠躁天天躁| 国产精品免费一区二区三区在线| 欧美成人免费av一区二区三区| 12—13女人毛片做爰片一| 可以在线观看的亚洲视频| 欧美三级亚洲精品| 久久性视频一级片| 1000部很黄的大片| 日韩有码中文字幕| 91字幕亚洲| 在线看三级毛片| 婷婷精品国产亚洲av在线| 国产精品美女特级片免费视频播放器| 国产精品98久久久久久宅男小说| 嫩草影院新地址| 免费看光身美女| 国产黄色小视频在线观看| 在线观看舔阴道视频| 久久久久久久午夜电影| 日日夜夜操网爽| 国产亚洲欧美在线一区二区| 少妇的逼水好多| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 最新中文字幕久久久久| 久久伊人香网站| 久久精品国产亚洲av香蕉五月| 精品午夜福利视频在线观看一区| 日韩欧美精品v在线| 成年免费大片在线观看| 熟女电影av网| 一区二区三区免费毛片| 国产精品乱码一区二三区的特点| 国产精品女同一区二区软件 | 色综合欧美亚洲国产小说| 久久国产乱子伦精品免费另类| 麻豆国产av国片精品| ponron亚洲| 亚洲人成伊人成综合网2020| 深夜a级毛片| 亚洲久久久久久中文字幕| 美女免费视频网站| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av在线| 老司机午夜十八禁免费视频| ponron亚洲| av女优亚洲男人天堂| 午夜两性在线视频| 性色avwww在线观看| 国产老妇女一区| 午夜老司机福利剧场| 欧美日韩综合久久久久久 | 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 国产黄a三级三级三级人| 丁香六月欧美| 亚洲无线在线观看| 91在线观看av| 免费看美女性在线毛片视频| 欧美乱色亚洲激情| 嫩草影院新地址| 国产精品国产高清国产av| 日本 欧美在线| 麻豆成人av在线观看| 精品熟女少妇八av免费久了| 一区福利在线观看| 小蜜桃在线观看免费完整版高清| 日韩av在线大香蕉| 精品人妻偷拍中文字幕| 国产精品伦人一区二区| 亚洲国产欧洲综合997久久,| 国内精品一区二区在线观看| 简卡轻食公司| 久久精品国产自在天天线| 成人欧美大片| 色精品久久人妻99蜜桃| 人人妻,人人澡人人爽秒播| 日韩欧美国产在线观看| 国产精品女同一区二区软件 | 欧美精品国产亚洲| 日韩精品中文字幕看吧| bbb黄色大片| www.色视频.com| 国产亚洲精品综合一区在线观看| 欧美xxxx黑人xx丫x性爽| 99国产极品粉嫩在线观看| 一本精品99久久精品77| 少妇裸体淫交视频免费看高清| 欧美日韩综合久久久久久 | 亚洲欧美清纯卡通| 久久国产乱子免费精品| 国产精品电影一区二区三区| 国产精品久久久久久人妻精品电影| 久久久久久九九精品二区国产| 精品99又大又爽又粗少妇毛片 | 一级黄片播放器| 亚洲激情在线av| 欧美+日韩+精品| 一本一本综合久久| avwww免费| 亚洲中文日韩欧美视频| 高清毛片免费观看视频网站| 亚洲国产精品999在线| 欧美最黄视频在线播放免费| 天天躁日日操中文字幕| 波多野结衣高清无吗| 亚洲天堂国产精品一区在线| 美女xxoo啪啪120秒动态图 | 女人被狂操c到高潮| 久久精品影院6| h日本视频在线播放| 99久久精品国产亚洲精品| 88av欧美| 国内精品一区二区在线观看| 国产成人av教育| 色吧在线观看| 成人高潮视频无遮挡免费网站| 国产成人aa在线观看| 亚洲av.av天堂| 日本熟妇午夜| 国产淫片久久久久久久久 | 欧美中文日本在线观看视频| 少妇的逼好多水| 三级男女做爰猛烈吃奶摸视频| 欧美色欧美亚洲另类二区| 国产高清视频在线观看网站| 亚洲色图av天堂| 国产亚洲欧美98| 国产av不卡久久| 麻豆成人av在线观看| 久久精品国产99精品国产亚洲性色| 国产成人福利小说| 欧美区成人在线视频| 蜜桃亚洲精品一区二区三区| 久久久久久久午夜电影| 成人特级黄色片久久久久久久| 色综合欧美亚洲国产小说| 露出奶头的视频| 亚洲 欧美 日韩 在线 免费| 中文字幕免费在线视频6| 乱人视频在线观看| 1000部很黄的大片| 又爽又黄a免费视频| 最近中文字幕高清免费大全6 | 国产精品av视频在线免费观看| 99久久99久久久精品蜜桃| 国产亚洲av嫩草精品影院| 少妇被粗大猛烈的视频| 99久久99久久久精品蜜桃| 1024手机看黄色片| 一进一出好大好爽视频| 成人高潮视频无遮挡免费网站| 精品无人区乱码1区二区|