• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental determination of solubilities and supersolubilities of 2,2′,4,4′,6,6′-hexanitrostilbene in different organic solvents

    2017-06-01 03:20:38LizhenChenLiangSongYupengGaoAipengZhuDuanlinCao

    Lizhen Chen*,Liang Song,Yupeng Gao,Aipeng Zhu,Duanlin Cao

    School of Chemical Engineering and Environment,North University of China,Taiyuan 030051,China

    1.Introduction

    2,2′,4,4′,6,6′-Hexanitrostilbene(HNS,Fig.1)is one of the prominent heat resistant explosives used in high performance explosive compositions fordemolitions,warheads,and othercharges.Itdemonstrates outstanding resistance to shock,percussion,heat,and friction.It has excellent thermal stability,making it well suitable for missile warheads or components,artillery shells,rockets,and high velocity explosive projectiles.HNS is also widely used in warheads for air-to-ground missiles,air-to-air missiles,and cruise missiles[1-3].

    Solution crystallization is the primary method to obtain the HNS crystal of high quality.For the purpose of studying the crystallization process of HNS it's necessary to measure the solubility and supersolubility of HNS in different solvents.Solubility can affect the capacity of the crystallization process,as well as the ability to reject impurities and minimize loss in the mother liquor.To optimize crystallization process and design crystallizer,itis necessary to know the solubility of HNS in common solvents.Supersolubility curve,which is an important curve for crystallization process,is a boundary line of the metastable zone and the labile zone.But,few experimental solubility data of HNS have been reported.Therefore,in this work,the solubilities and supersolubilities of HNS inN,N-dimethylformamide(DMF),dimethyl sulfoxide(DMSO),acetonitrile(ACN),N-methyl-2-pyrrolidone(NMP)and 1,4-butyrolactone(GBL)from(298.15 to 338.15)K were measured.The solubility curve,supersolubility curve and the metastable zone were obtained from this study.On the basis,the dissolution enthalpy,dissolution entropy and the Gibbs energy of HNS were calculated.

    As we know,methods of measuring the solubility of a solid in a liquid mixture can be classified as dynamic method and balancing method.Compared with the balancing method,the dynamic method is much faster and more readily.The dynamic method involves weighing or measuring the individual components to obtain a system with a known composition,determining the state in which the solid phase just disappears.The disappearance of the solid phase can be achieved either by a change in the temperature or by the addition of a known amount of solvent[4,5].In this work,the last solid disappearance method was used to determine the solubility;the disappearance of the solid phase is carried out by adding solvent at constant temperature.The disappearance of the solid phase was determined by the laser monitor technique.

    2.Experimental

    2.1.Materials

    Yellow crystals HNS(C14H6N6O12)obtained from Gansu Yinguang Chemical Industry Group Co.Ltd.China,its mass fraction purity,determined by HPLC,was better than 99.5%.It was driedin vacuoat 333.15 K for 24 h and stored in a desiccator.The melting point and fusion enthalpy of HNS were determined by differential scanning calorimetry(DSC 200F3,NETZSCH,Germany)with a heating rate of 10 K·min-1with out protection of nitrogen.From the result of DSC analysis of HNS,as shown in Fig.2,the melting pointwas317°C±0.5°Cand the enthalpy of fusion of HNS was 115.50 J·g-1.The DMF,DMSO,ACN,NMP and GBL of analytical reagent grade were purchased from local reagent factory without further purification whose mass fraction purity was no less than 0.995.The detailed information of reagents used in this experiment was listed in Table 1.

    Fig.1.Chemical structure of HNS.

    Fig.2.DSC analysis of HNS.

    2.2.Solubility measurement

    A laser monitor system was used to determine the solubility of the solute in the solvent at a preconcerted temperature.The system consisted of a laser generator,a photoelectric transformer,and a light intensity display device.The solubility measurement apparatus also involves a jacketed glass vessel with water circulated from a water bath with a thermoelectric controller(type SYP,China).The jacket temperature was controlled to be constant( fluctuating within 0.05 K).Continuous stirring was achieved with a magnetic stirring bar.A condenser was connected with the vessel to prevent the solvents from evaporating.A glass thermometer was used for measurement of the temperature(uncertainty of 0.05 K).An analytical balance(Metler Toledo AL104,Switzerland)with an accuracy of 0.0001 g was used during the measurements.

    Solvent of known mass and excess masses of HNS were placed in the jacketed vessel.The contents of the vessel were stirred continuously ata constant temperature,and the solvent was added to the vessel in batches with the interval between additions of 30 min.The additional solvent of known mass was about 50 mg for each batch.When the last portion of solute just disappeared,the intensity of the laser beam penetrating the vessel reached the maximum,and the solvent mass consumed in the measurement was recorded.

    Together with the mass of the solute,the solubility can be obtained.The saturated solution mole fraction solubility(xA)of the solute(A)in solvent(B)can be obtained as follows:

    in whichmAandmBrepresent the mass of solute and solvent,respectively.MAandMBare the molecular weight of solute and solvent,respectively.The same solubility experiments were carried out three times.The uncertainty of the experimental solubility was about 0.05.

    2.3.Super solubility measurement

    The super solubility curve is a cluster of curves which are influenced by the operating conditions such as cooling rate,stirring rate and impurities.Thus it's necessary to make sure that the operation conditions are the same when measuring the super solubility.In this study,the volume of solvent maintains a constant 50 ml changing the mass of the HNS under different temperatures to ensure that the condition of the solution was the same when measuring the super solubility.

    The HNS solution of known concentration was prepared in the dissolution cell.And then the solution was cooled under 0.2 °C·min-1cooling rate and 300 r·min-1stirring rate.Since the solubility of HNS decreases with the temperature decreasing,when the temperature decreasing to an appropriate value the HNS would crystallize from the solution.With the appearance of the HNS particles which could reflectand scatter the laser beam,so the intensity of the laser reached the photoelectric switch is weaked,result in the value of the digital display is low.When the display of the digital display decreased,record the temperature which is the super solubility temperature.

    3.Results and Discussion

    3.1.Solubility and super solubility data of HNS

    The solubility and super solubility data of HNS in solvent DMF,DMSO,ACN,NMP and GBL are listed in Table 2.

    3.2.Metastable zone width

    The solubility and super solubility curves together with corresponding metastable zone of HNS in different solvents are depicted in Fig.3.Combining the data in Table 2 and Fig.3,it could be found that the solubility and super solubility of HNS increased as the temperature increased.The solubility order of HNS is NMP>DMSO>DMF>GBL>ACN.In order toobtain high quality crystal crystallization operation should be carried in the metastable zone.Thus,the metastable zone width is primary for the crystallization process.The metastable zone width of HNS in DMF,ACN,GBL and NMP decreases with the increasing temperature,while,in DMSO it increases with the increasing temperature.The solubilities of HNS in DMF didn't appear to be much different from that of DMSO,however,the super solubility shows large difference between them.The metastable zone width of HNS in NMP is much wider than in other solvents,which makes the crystallization condition much easier to maintain in the metastable zone.

    Table 1Provenance and mass fraction purity of materials studied

    Table 2Experimental mole fraction solubility values xi and super solubility values x s i of HNS in different solvents at temperature T and pressure p=0.1 MPa①

    Fig.3.Solubility,super solubility curves and metastable zones of HNS in different solvents:■,DMF;●,DMSO;▲,ACN;▼,NMP;?,GBL,where the symbols of solid represent the solubility and the hollow symbols stand for the super solubility.

    3.3.Correlation of the experimental solubility data

    In order to estimate the solubility in pure and binary solvent mixtures,various cosolvency models were used.These models enable us to predict and calculate the suitable solvent composition needed to make an acceptable formulation of the solute.Some of these models are theoretical,excess free energy(EFE)[6],CNIBS/R-K[7],and general single model(GSM)[8,9],while others are semi-empirical,the extended Hildebrand approach(EHA)[8],or empirical,mixture response surface(MR-S)[10],linear double log-log(LDL-L)[11],λhequation[12]and double log-log(DL-L)[7].Among these,the van't Hoff model,modified Apelblat equation[13,14]and λhequation were mainly available in pure solvent.

    Root-mean-square deviation(RMSD)[15,16]of every solvent is used to evaluate the fitting results of each correlation equation.The RMSD is defined as:

    wherenis the totalnumber of experimentalpoints,xiis the experimental data,andxciis the calculated values.

    3.3.1.Correlation with theλh equation

    The λhequation which is derived firstly by Buchowskiet al.is another empirical formula describing the solution behavior.It can be used to fit the experimental solubility data for many systems with only two parameters(λ andh).And the equation is given as follows:

    whereTmis the normal melting temperature,λ andhare the model parameters obtained from the experimental solubility data in the systems and listed in Table 3.The fitting curves of λhequation are depicted in Fig.4.

    3.3.2.Correlation with the NRTL model

    Considering the solid-liquid equilibrium for the system solid HNS/pure solvent,the solubility(x1)of HNS at different temperatures can be expressed by the following equation[17]:

    Table 3Model parameters,R2 and RMSD of λh equation

    Fig.4.The mole fraction solubility of HNS in different solvents correlated by the λh equation:■,DMF;●,DMSO;▲,ACN;▼,NMP;?,GBL.

    where γ1is the activity coefficient of HNS,x1is the mole fraction solubility,Tmrepresents the melting temperature,ΔHmrefers to the fusion enthalpy at the melting temperature,andΔCpis the heatcapacity difference.Generally,the second term of Eq.(5)can be neglected due to its very small value.Thus,Eq.(5)can be transformed as:

    where the values of ΔHmandTmof HNS have been determined before the correlation,which were shown in Fig.2.After that a well established activity coefficient model was employed to calculate the activity coefficient of solute in this work:NRTL model[18,19],which was described in detail for the first time by Renon and Prausnitz who showed its application to a wide variety of mixtures for calculation of(vapor+liquid)and(liquid+liquid)equilibrium.This model is based on the molecular local composition concept which is expressed as follows:

    where τ12,τ21,G12andG21can be calculated as follows:

    where Δg12=g12-g22and Δg21=g21-g11represent the cross interaction energy,and α is the parameter that reflects the non randomness in the mixture.All the adjustable parameters can be regressed from the experimental solubility data.The Δg12,Δg21,α,R2together with RMSD are given in Table 4 and the fitting curves of NRTL model are depicted in Fig.5.

    Fig.5.The mole fraction solubility of HNS in different solvents correlated by the NRTL model:■,DMF;●,DMSO;▲,ACN;▼,NMP;?,GBL.

    3.3.3.Correlation with the modified Apelblat equation

    The modified Apelblat equation deduced from the Clausius-Clapeyron equation is a semiempirical equation,which can describe the solid-liquid equilibrium precisely.The equation can be expressed as:

    whereA,B,andCare the model parameters.The values ofA,B,C,R2and RMSD are listed in Table 5.The relationship between lnxand 1/T,lnTis graphically illustrated in Fig.6,which is drawn according to the values got by the experiment.From Fig.6 we can conclude that the lnxis a linear relationship with 1/Tand lnT.

    Table 5Model parameters,R2 and RMSD of modified Apelblat equation

    3.3.4.Evaluation of thermodynamic models

    As depicted above,four models were used to fit the experimental data.But it is hard to tell which one is the best just fromR2and RMSDvalues.Forthisreason,the Akaike's Information Criterion(AIC)[20]was introduced to evaluate the relative quality of these models.Generally,the best model is considered as the one with minimum AIC value which is defined as follows:

    Table 4Adjustable parameters(Δg12,Δg21,α)of the NRTL model together their R2 and RMSD

    Fig.6.The mole fraction solubility of HNS in different solvents correlated by the modified Apelblat equation:■,DMF;●,DMSO;▲,ACN;▼,NMP;?,GBL.

    where κ stands for the number of model parameters andLis the maximized value of the likelihood function.Provided that the variance of model errors is unknown but equal for all models,Eq.(12)becomes:

    wherenrefers to the number of experimental points,and RSS is the estimated residual of correlated models which is defined as follows:

    In this study,when the constantnandnln(2π)are left out Eq.(13)can be simplified as:

    The calculated results of AIC values for all models are listed in Table 6.As shown in Table 6,the values of AIC of the Apelblat equation in DMF,NMP is much lower than the other three models which means that the Apelblat equation would be the best model to correlate the experimental solubility data in the DMF and NMP.And the NRTL model would be the best model to correlate the experimental solubility datain DMSO,ACN and GBL,in that,the values of AIC of the NRTL model in DMSO,ACN and GBL are lowest of the four correlation equations.

    Table 6The calculated values of AIC values for all models

    3.4.Thermodynamic properties of solutions

    When the solubility of HNS in different solvents is confirmed,some thermodynamic properties such as the dissolution enthalpy,dissolution entropy and the Gibbs energy can be calculated.According to van't Hoff analysis,the apparent enthalpy change of solution could be related to the temperature and the solubility as the following equation[21]:

    Over a limited temperature interval(298.15-338.15 K)the heat capacity change of solution may be assumed to be constant.Hence,the values ofHs would be valid for the mean temperature(318.15 K).Thus,combined with the Apelblat model the ΔdisH,ΔdisS,and ΔdisGcan be calculated by the following equation,respectively[22]

    The ξHand ξS,which represent the comparison of the relative contribution to the standard Gibbs energy by enthalpy and entropy in the solution process respectively[22],are defined by the following two equations[15,23]:

    The calculated dissolution enthalpy,entropy,and Gibbs energy change together with ξHand ξScalculated by the experimental values are shown in Table 7.It can be seen that the values of ΔdisH°are positive in all selected solvents,indicating that the dissolution of HNS is an endothermic process.What's more,the ξHis greater than ξSin every solvent,illustrating that the main contributor to the standard molar Gibbs energy of dissolution is the enthalpy rather than entropy.

    Table 7The calculated values of dissolution enthalpy,entropy,and Gibbs energy at mean temperature(318.15 K)

    4.Conclusions

    The solubility,super solubility and metastable zone of HNS in solvent DMF,DMSO,ACN,NMP and GBL were determined by the dynamic method.The metastable zone width of HNS in DMF,ACN,GBL and NMP decreases with the increasing temperature,while,in DMSO it increases with the increasing temperature.Four correlation equations all can be used to fit the solubility values of HNS in different solvents,while the modified Apelblat equation is the best model to correlate the experimental solubility data in the DMF and NMP,and the NRTL model is the best model to correlate the experimental solubility data in DMSO,ACN and GBL.The dissolution enthalpy,dissolution entropy and the Gibbs energy were calculated by the experimental solubility data,and from the dissolution enthalpy calculated from this experiment we conclude that the dissolution of HNS is an endothermic process.

    [1]J.Y.Wang,H.Huang,W.Z.Xu,Pre filming twin- fluid nozzle assisted precipitation method for preparing nanocrystalline HNS and its characterization,J.Hazard.Mater.162(2009)842-847.

    [2]Y.S.Qiu,G.B.Wang,Review on the synthesis of HNS in abroad,Chin.J.Explos.Propell.04(1984)31-37.

    [3]M.L.Zhou,R.J.Cai,D.X.Han,T.Xu,Study on the performance of ignition and combustion of HNS explosive,Initiators Pyrotechnics01(2003)4-7.

    [4]D.Q.Li,Y.J.Lin,D.G.Evans,X.Duan,Solid-liquid equilibria for benzoic acid+p-toluic acid+chloroform,benzoic acid+p-toluic acid+acetic acid,and terephthalic acid+isophthalic acid+N,N-dimethylformamide,J.Chem.Eng.Data50(2005)119-121.

    [5]H.X.Hao,J.K.Wang,Y.L.Wang,Solubility of dexamethasone sodium phosphate in different solvents,J.Chem.Eng.Data49(2004)1697-1698.

    [6]N.A.Williams,L.Amidon,Excess free energy approach to the estimation of solubility in mixed solvent systems II:Ethanol-water mixtures,J.Pharm.Sci.73(1984)14-18.

    [7]W.E.Acree Jr.,A.I.Zvaigzne,Thermodynamic properties of non-electrolyte solutions:Part 4.Estimation and mathematical representation of solute activity coefficients and solubilities in binary solvents using the NIBS and Modified Wilson equations,Thermochim.Acta178(1991)151-167.

    [8]M.B.Jalali,A.J.Gharamaleki,A general model from theoretical cosolvency models,Int.J.Pharm.152(1997)247-250.

    [9]A.Martin,P.L.Wu,A.Adjei,R.E.Lindstrom,P.H.Elworthy,Extended Hildebrand solubility approach and the log linear solubility equation,J.Pharm.Sci.71(1982)849-856.

    [10]A.B.Ochner,R.J.Belloto,T.D.Sokoloski,Prediction of xanthine solubilities using statistical techniques,J.Pharm.Sci.74(1985)132-135.

    [11]M.B.Jalali,A.J.Gharamaleki,Models for calculating solubility in binary solvent systems,Int.J.Pharm.140(1996)237-246.

    [12]H.Buchowski,A.Ksiazczak,S.Pietrzyk,Solvent activity along a saturation line and solubility of hydrogen-bonding solids,J.Phys.Chem.84(1980)975-979.

    [13]W.E.Acree Jr.,Comments concerning‘Model for solubility estimation in mixed solvent systems’,Int.J.Pharm.127(1996)27-30.

    [14]C.Y.Zhang,S.H.Jin,S.S.Chen,Y.Zhang,L.Qin,X.C.Wei,Q.H.Shu,Solubilities of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate in various pure solvents at temperatures between 293.15 and 323.15 K,J.Chem.Eng.Data61(2016)1873-1975.

    [15]C.Zhang,J.Wang,Y.Wang,Solubility of ceftriaxone disodium in acetone,methanol,ethanol,N,N-dimethylformamide,and formamide between 278 and 318 K,J.Chem.Eng.Data50(2005)1757-1760.

    [16]G.C.Lan,J.L.Wang,L.Z.Chen,H.Hou,J.Li,Y.P.Gao,Measurement and correlation of the solubility of 3,4-bis(3-nitrofurazan-4-yl)furoxan(DNTF)in different solvents,J.Chem.Thermodyn.89(2015)264-269.

    [17]Y.Zhao,Y.L.Wang,Measurement and correlation of solubility of tetracycline hydrochloride in six organic solvents,J.Chem.Thermodyn.57(2013)9-13.

    [18]J.P.Fan,X.K.Xu,G.L.Shen,X.H.Zhang,Measurement and correlation of the solubility of genistin in eleven organic solvents fromT=(283.2 to 323.2)K,J.Chem.Thermodyn.89(2015)142-147.

    [19]X.Z.Shao,H.G.Ge,L.Z.Z,C.Q.Ren,J.H.Wang,Solubility of methylphosphonic acid in selected organic solvents,Fluid Phase Equilib.390(2015)7-13.

    [20]G.Wang,Y.L.Wang,Y.G.Ma,H.X.Hao,Q.H.Luan,H.H.Wang,Determination and correlation of cefuroxime acid solubility in(acetonitrile+water)mixtures,J.Chem.Thermodyn.77(2014)144-150.

    [21]J.Yu,T.L.Ma,A.Li,X.C.Chen,Y.Chen,J.J.Xie,J.L.Wu,H.J.Ying,Solubility of disodium cytidine 5′-monophosphate in different binary mixtures from 288.15 K to 313.15 K,Thermochim.Acta565(2013)1-7.

    [22]H.Zhang,Q.X.Yin,Z.K.Liu,J.B.Gong,Y.Bao,M.J.Zhang,H.X.Hao,B.H.Hou,C.Xie,Measurement and correlation of solubility of dodecanedioic acid in different pure solvents fromT=(288.15 to 323.15)K,J.Chem.Thermodyn.68(2014)270-274.

    [23]T.Prapasawat,M.Hronec,M.?tolcová,A.W.Lothongkum,U.Pancharoenc,S.Phatanasri,Thermodynamic models for determination of the solubility of 2,5-bis(2-furylmethylidene)cyclopentan-1-one in different solvents at temperatures ranging from 308.15 to 403.15 K,Fluid Phase Equilib.367(2014)57-62.

    久久精品人人爽人人爽视色| 99国产精品免费福利视频| 国产精品自产拍在线观看55亚洲| 国产欧美日韩一区二区精品| 成人影院久久| 日日爽夜夜爽网站| 亚洲国产欧美日韩在线播放| 亚洲久久久国产精品| 1024视频免费在线观看| 老司机午夜福利在线观看视频| 看黄色毛片网站| 一级a爱视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美一区二区三区黑人| 很黄的视频免费| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品合色在线| 亚洲第一av免费看| 亚洲av日韩精品久久久久久密| 国产精华一区二区三区| 免费久久久久久久精品成人欧美视频| 岛国在线观看网站| 午夜精品国产一区二区电影| 在线免费观看的www视频| 日韩人妻精品一区2区三区| 91麻豆av在线| 老熟妇乱子伦视频在线观看| 国产亚洲精品第一综合不卡| 中文字幕人妻丝袜制服| 99久久精品国产亚洲精品| 真人做人爱边吃奶动态| 日韩精品青青久久久久久| 日韩三级视频一区二区三区| bbb黄色大片| 怎么达到女性高潮| 亚洲全国av大片| 日本黄色日本黄色录像| 99精品久久久久人妻精品| 看免费av毛片| 好男人电影高清在线观看| 国产精品一区二区三区四区久久 | 久热这里只有精品99| 亚洲七黄色美女视频| 可以免费在线观看a视频的电影网站| 脱女人内裤的视频| 国产深夜福利视频在线观看| 久久中文字幕人妻熟女| 亚洲第一欧美日韩一区二区三区| 欧美日韩av久久| 国产不卡一卡二| 狠狠狠狠99中文字幕| 老司机午夜福利在线观看视频| 欧美乱色亚洲激情| 一a级毛片在线观看| 国产成人精品无人区| 校园春色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一区福利在线观看| 91国产中文字幕| 最近最新中文字幕大全电影3 | 老司机福利观看| 成人永久免费在线观看视频| 亚洲国产看品久久| 18禁裸乳无遮挡免费网站照片 | 午夜免费激情av| e午夜精品久久久久久久| 亚洲av成人一区二区三| 亚洲国产精品999在线| 日本黄色日本黄色录像| 亚洲人成伊人成综合网2020| 日韩国内少妇激情av| 亚洲自拍偷在线| 91av网站免费观看| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 国产不卡一卡二| 国产精品 国内视频| 首页视频小说图片口味搜索| 超碰成人久久| 91字幕亚洲| 88av欧美| 一边摸一边抽搐一进一小说| 一二三四在线观看免费中文在| 久久香蕉精品热| 成人特级黄色片久久久久久久| 免费看a级黄色片| 99在线人妻在线中文字幕| 一夜夜www| 一级,二级,三级黄色视频| 人人妻人人澡人人看| 制服人妻中文乱码| 亚洲欧美一区二区三区久久| 在线十欧美十亚洲十日本专区| 变态另类成人亚洲欧美熟女 | 精品高清国产在线一区| 搡老熟女国产l中国老女人| 一级黄色大片毛片| 午夜精品国产一区二区电影| av欧美777| 琪琪午夜伦伦电影理论片6080| 久久久久久久久久久久大奶| 欧美精品一区二区免费开放| 亚洲一区高清亚洲精品| 久久影院123| 欧美性长视频在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美在线黄色| 久久天堂一区二区三区四区| 丝袜美腿诱惑在线| 国产欧美日韩一区二区精品| av天堂久久9| 国产精品99久久99久久久不卡| 欧美午夜高清在线| 久久这里只有精品19| 咕卡用的链子| 国产精品香港三级国产av潘金莲| 制服诱惑二区| 一级毛片精品| 午夜a级毛片| 国产成人影院久久av| 黄色a级毛片大全视频| 91字幕亚洲| 免费观看人在逋| 一级片'在线观看视频| 亚洲一区中文字幕在线| 国产成年人精品一区二区 | 精品一区二区三卡| 欧美日韩视频精品一区| 午夜福利影视在线免费观看| 在线免费观看的www视频| av福利片在线| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 91麻豆av在线| 国产高清视频在线播放一区| 亚洲七黄色美女视频| svipshipincom国产片| 不卡一级毛片| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 一级黄色大片毛片| 国产一区二区激情短视频| 免费不卡黄色视频| 一边摸一边做爽爽视频免费| 黄色视频,在线免费观看| 欧美另类亚洲清纯唯美| 亚洲三区欧美一区| 久久人妻福利社区极品人妻图片| 成人18禁高潮啪啪吃奶动态图| 精品电影一区二区在线| 亚洲黑人精品在线| 亚洲精品av麻豆狂野| 亚洲成人精品中文字幕电影 | 午夜福利影视在线免费观看| 精品人妻在线不人妻| 国产精华一区二区三区| 日韩国内少妇激情av| 一进一出好大好爽视频| 久久久久久亚洲精品国产蜜桃av| 成人特级黄色片久久久久久久| 色综合站精品国产| 国产高清videossex| 免费在线观看影片大全网站| 亚洲国产欧美一区二区综合| 男男h啪啪无遮挡| 国产在线观看jvid| 午夜精品久久久久久毛片777| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产亚洲av香蕉五月| 成人黄色视频免费在线看| 在线观看舔阴道视频| 午夜a级毛片| 麻豆国产av国片精品| 亚洲欧美一区二区三区久久| 99精品欧美一区二区三区四区| 国产精品秋霞免费鲁丝片| 国产精品乱码一区二三区的特点 | 国产精华一区二区三区| 欧美日韩瑟瑟在线播放| 国产一区二区激情短视频| 精品日产1卡2卡| 成人特级黄色片久久久久久久| 国产成人精品在线电影| svipshipincom国产片| 精品电影一区二区在线| 十八禁人妻一区二区| 热re99久久国产66热| 美女午夜性视频免费| tocl精华| 一本综合久久免费| 欧美日本中文国产一区发布| 欧美中文综合在线视频| 亚洲专区中文字幕在线| 丝袜人妻中文字幕| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 久久久久久亚洲精品国产蜜桃av| 一进一出抽搐gif免费好疼 | 国产成人欧美| 俄罗斯特黄特色一大片| 一级毛片女人18水好多| 午夜福利一区二区在线看| 免费在线观看黄色视频的| 亚洲av五月六月丁香网| 久久人妻福利社区极品人妻图片| 一级毛片精品| 午夜福利,免费看| 99久久精品国产亚洲精品| 黑人巨大精品欧美一区二区mp4| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产精品一区二区三区在线| 黄色怎么调成土黄色| 亚洲国产精品sss在线观看 | 动漫黄色视频在线观看| 大型av网站在线播放| 午夜福利在线免费观看网站| 丰满人妻熟妇乱又伦精品不卡| 日韩免费av在线播放| 亚洲一码二码三码区别大吗| 看黄色毛片网站| 丰满的人妻完整版| 成年女人毛片免费观看观看9| 激情视频va一区二区三区| 精品久久久久久久毛片微露脸| 夫妻午夜视频| 最好的美女福利视频网| 一级作爱视频免费观看| 一本大道久久a久久精品| 另类亚洲欧美激情| 大码成人一级视频| 亚洲全国av大片| 黄频高清免费视频| 一区二区三区国产精品乱码| 精品一品国产午夜福利视频| 久久香蕉激情| 侵犯人妻中文字幕一二三四区| 久久久久久大精品| 淫妇啪啪啪对白视频| 男女午夜视频在线观看| tocl精华| 九色亚洲精品在线播放| 午夜福利,免费看| 亚洲成a人片在线一区二区| 欧美日韩瑟瑟在线播放| 露出奶头的视频| 黑人猛操日本美女一级片| 大型黄色视频在线免费观看| 又大又爽又粗| www日本在线高清视频| 天堂√8在线中文| 婷婷丁香在线五月| 波多野结衣高清无吗| 国产成人精品无人区| 人人妻人人添人人爽欧美一区卜| 美女大奶头视频| 后天国语完整版免费观看| 老司机亚洲免费影院| 在线免费观看的www视频| 中出人妻视频一区二区| 纯流量卡能插随身wifi吗| 交换朋友夫妻互换小说| 人妻丰满熟妇av一区二区三区| av在线播放免费不卡| 日本wwww免费看| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| 国产1区2区3区精品| 91麻豆精品激情在线观看国产 | 免费av毛片视频| 最新在线观看一区二区三区| 99久久人妻综合| 欧美成狂野欧美在线观看| 欧美国产精品va在线观看不卡| 十八禁网站免费在线| 久久久国产一区二区| 女人高潮潮喷娇喘18禁视频| 女警被强在线播放| 悠悠久久av| 一级片免费观看大全| 国产伦一二天堂av在线观看| 国产av精品麻豆| 看免费av毛片| 亚洲av成人av| 午夜免费鲁丝| 亚洲,欧美精品.| 精品午夜福利视频在线观看一区| ponron亚洲| 亚洲人成电影观看| 久久久久国产精品人妻aⅴ院| 国产一区二区在线av高清观看| 国产成人啪精品午夜网站| 亚洲成人免费av在线播放| 久久午夜亚洲精品久久| 久久国产精品影院| 免费搜索国产男女视频| 亚洲午夜精品一区,二区,三区| 日韩视频一区二区在线观看| 91精品国产国语对白视频| 欧美激情 高清一区二区三区| 精品久久久久久成人av| av欧美777| 国产成人欧美在线观看| 久久人人精品亚洲av| 18禁黄网站禁片午夜丰满| 国产无遮挡羞羞视频在线观看| 国产精品 国内视频| 热99国产精品久久久久久7| 黑丝袜美女国产一区| 日日摸夜夜添夜夜添小说| 亚洲第一青青草原| 国产精品一区二区在线不卡| 91麻豆精品激情在线观看国产 | 99在线人妻在线中文字幕| 制服人妻中文乱码| 欧美激情 高清一区二区三区| 久久伊人香网站| 丁香欧美五月| 自拍欧美九色日韩亚洲蝌蚪91| 午夜影院日韩av| bbb黄色大片| 每晚都被弄得嗷嗷叫到高潮| tocl精华| 女人被躁到高潮嗷嗷叫费观| 在线观看日韩欧美| 欧美一区二区精品小视频在线| 一区二区三区精品91| 一级黄色大片毛片| www.www免费av| 精品福利观看| av超薄肉色丝袜交足视频| 欧美国产精品va在线观看不卡| 99国产综合亚洲精品| 久久久久久久久中文| 国产三级黄色录像| 看片在线看免费视频| www.999成人在线观看| 天堂影院成人在线观看| 黄片小视频在线播放| 国内久久婷婷六月综合欲色啪| 美女午夜性视频免费| 中文字幕色久视频| 亚洲国产看品久久| svipshipincom国产片| 久久狼人影院| 午夜成年电影在线免费观看| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 人人妻人人爽人人添夜夜欢视频| 高潮久久久久久久久久久不卡| 欧美激情 高清一区二区三区| 久久久久精品国产欧美久久久| 80岁老熟妇乱子伦牲交| 国产精品一区二区在线不卡| 欧美黑人欧美精品刺激| 日日夜夜操网爽| 啦啦啦 在线观看视频| 欧美最黄视频在线播放免费 | 级片在线观看| 人人妻人人爽人人添夜夜欢视频| 免费在线观看日本一区| 国产一区二区激情短视频| 亚洲色图综合在线观看| 琪琪午夜伦伦电影理论片6080| 久久 成人 亚洲| 女性生殖器流出的白浆| 99久久99久久久精品蜜桃| 久久久精品欧美日韩精品| 国产亚洲精品综合一区在线观看 | 欧美日韩av久久| 亚洲aⅴ乱码一区二区在线播放 | 操出白浆在线播放| 99久久人妻综合| 精品无人区乱码1区二区| 神马国产精品三级电影在线观看 | 国产蜜桃级精品一区二区三区| 日韩欧美在线二视频| avwww免费| 欧美中文综合在线视频| 亚洲精品一二三| 两个人看的免费小视频| 十八禁网站免费在线| 欧美最黄视频在线播放免费 | 9色porny在线观看| 99国产精品免费福利视频| 亚洲精品久久午夜乱码| 淫秽高清视频在线观看| 久久精品亚洲精品国产色婷小说| 久久99一区二区三区| 夜夜看夜夜爽夜夜摸 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产99久久九九免费精品| 欧美日本中文国产一区发布| 在线国产一区二区在线| 性色av乱码一区二区三区2| 亚洲国产精品合色在线| 亚洲一区二区三区欧美精品| 妹子高潮喷水视频| 久99久视频精品免费| 日韩免费av在线播放| 日韩三级视频一区二区三区| 国产99久久九九免费精品| 美女高潮到喷水免费观看| 麻豆一二三区av精品| 久久久精品欧美日韩精品| 一本综合久久免费| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 视频在线观看一区二区三区| 欧美日韩黄片免| 99在线视频只有这里精品首页| 久久婷婷成人综合色麻豆| 久99久视频精品免费| 99久久人妻综合| 国产精品亚洲av一区麻豆| 搡老岳熟女国产| 日韩欧美在线二视频| 18禁国产床啪视频网站| 免费在线观看日本一区| 大陆偷拍与自拍| 久久精品亚洲熟妇少妇任你| 视频在线观看一区二区三区| 老司机靠b影院| 国产成人一区二区三区免费视频网站| 欧美av亚洲av综合av国产av| 免费久久久久久久精品成人欧美视频| 精品乱码久久久久久99久播| 在线观看免费高清a一片| 国产av精品麻豆| 在线十欧美十亚洲十日本专区| 日韩人妻精品一区2区三区| 夜夜看夜夜爽夜夜摸 | 一边摸一边做爽爽视频免费| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲在线自拍视频| 久久久久久久午夜电影 | 亚洲精华国产精华精| 午夜两性在线视频| bbb黄色大片| 色在线成人网| 黄色丝袜av网址大全| 91精品三级在线观看| 麻豆一二三区av精品| 中文字幕另类日韩欧美亚洲嫩草| 欧美乱色亚洲激情| 亚洲人成77777在线视频| 欧美 亚洲 国产 日韩一| 免费女性裸体啪啪无遮挡网站| 色老头精品视频在线观看| www.www免费av| 亚洲成人久久性| 操出白浆在线播放| 波多野结衣av一区二区av| 国产成人啪精品午夜网站| 日韩欧美三级三区| 丁香六月欧美| 久久中文字幕一级| 少妇 在线观看| 69精品国产乱码久久久| 国产三级在线视频| 午夜久久久在线观看| 亚洲精品一二三| 久久 成人 亚洲| 免费观看人在逋| 曰老女人黄片| 久久午夜亚洲精品久久| 男女午夜视频在线观看| 色尼玛亚洲综合影院| 一二三四社区在线视频社区8| 精品卡一卡二卡四卡免费| 高清黄色对白视频在线免费看| 午夜两性在线视频| x7x7x7水蜜桃| 日韩精品免费视频一区二区三区| xxx96com| 午夜福利在线免费观看网站| 国产乱人伦免费视频| 在线观看免费日韩欧美大片| 伊人久久大香线蕉亚洲五| 中出人妻视频一区二区| 国产91精品成人一区二区三区| 国产精品电影一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产视频一区二区在线看| 99香蕉大伊视频| 亚洲精品一区av在线观看| 国产精品 欧美亚洲| 老汉色av国产亚洲站长工具| 国产成+人综合+亚洲专区| 久久久久久久久久久久大奶| 女人被躁到高潮嗷嗷叫费观| 大码成人一级视频| 男女床上黄色一级片免费看| 亚洲一区二区三区不卡视频| 午夜福利在线观看吧| 中文亚洲av片在线观看爽| 操出白浆在线播放| 国产又爽黄色视频| 午夜免费鲁丝| 午夜亚洲福利在线播放| 激情视频va一区二区三区| 免费不卡黄色视频| 午夜免费观看网址| 99久久99久久久精品蜜桃| 久久久久久久久久久久大奶| 日韩免费av在线播放| 色综合欧美亚洲国产小说| 亚洲成人国产一区在线观看| 欧美日韩国产mv在线观看视频| 一个人观看的视频www高清免费观看 | 亚洲一区中文字幕在线| 久9热在线精品视频| 成人三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 国产精品爽爽va在线观看网站 | 成人18禁在线播放| 成人亚洲精品一区在线观看| 美女国产高潮福利片在线看| 中文字幕人妻熟女乱码| 男女下面进入的视频免费午夜 | 99热国产这里只有精品6| 在线观看一区二区三区激情| 丰满迷人的少妇在线观看| 免费高清在线观看日韩| 色老头精品视频在线观看| 99在线视频只有这里精品首页| 在线观看一区二区三区激情| 高潮久久久久久久久久久不卡| 国产伦人伦偷精品视频| 妹子高潮喷水视频| 亚洲成国产人片在线观看| 亚洲,欧美精品.| 亚洲一区二区三区不卡视频| 青草久久国产| 搡老岳熟女国产| 黄色怎么调成土黄色| а√天堂www在线а√下载| 色哟哟哟哟哟哟| 狂野欧美激情性xxxx| 88av欧美| 老司机亚洲免费影院| 亚洲一卡2卡3卡4卡5卡精品中文| 男人舔女人的私密视频| 欧美一级毛片孕妇| 亚洲精品美女久久av网站| 色老头精品视频在线观看| 在线观看日韩欧美| 日韩精品免费视频一区二区三区| 真人做人爱边吃奶动态| 中亚洲国语对白在线视频| 99久久人妻综合| 成人影院久久| 精品国产乱码久久久久久男人| 动漫黄色视频在线观看| 可以免费在线观看a视频的电影网站| 亚洲成av片中文字幕在线观看| 欧美性长视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| av欧美777| 在线国产一区二区在线| 18禁裸乳无遮挡免费网站照片 | 99国产精品一区二区三区| 一区在线观看完整版| 啦啦啦免费观看视频1| 久久国产亚洲av麻豆专区| 久久久久久久久久久久大奶| 国产精品影院久久| 成人18禁高潮啪啪吃奶动态图| 国内毛片毛片毛片毛片毛片| 亚洲精品中文字幕在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲熟妇中文字幕五十中出 | 99在线视频只有这里精品首页| 久久狼人影院| 国产成人精品久久二区二区免费| 在线观看午夜福利视频| 日韩免费高清中文字幕av| 成人手机av| 国产精品久久久av美女十八| 欧美最黄视频在线播放免费 | 欧美 亚洲 国产 日韩一| 69精品国产乱码久久久| 一区二区日韩欧美中文字幕| 欧美乱码精品一区二区三区| 欧美日韩视频精品一区| av欧美777| 午夜91福利影院| 如日韩欧美国产精品一区二区三区| 午夜福利欧美成人| 色综合婷婷激情| 男人的好看免费观看在线视频 | av天堂久久9| 天堂中文最新版在线下载| 国产欧美日韩一区二区三区在线| 在线播放国产精品三级| 欧美日韩乱码在线| 老司机靠b影院| 成人18禁在线播放| 少妇裸体淫交视频免费看高清 | 日韩高清综合在线| 搡老岳熟女国产| 一区二区三区国产精品乱码| 黄片大片在线免费观看| 99re在线观看精品视频| 色播在线永久视频| 成年人黄色毛片网站| 亚洲片人在线观看| 91九色精品人成在线观看| 麻豆国产av国片精品| 日韩欧美一区二区三区在线观看| 欧美乱码精品一区二区三区| 欧美人与性动交α欧美精品济南到| av欧美777| 成人永久免费在线观看视频| 精品熟女少妇八av免费久了| 18禁国产床啪视频网站|