• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of synthetic rutile via selective sulfation of ilmenite with(NH4)2SO4 followed by targeted removal of impurities☆

    2017-06-01 03:20:40WeizaoLiuXiaomeiWangZhenpuLuHairongYueBinLiangLiChunLi

    Weizao Liu,Xiaomei Wang,Zhenpu Lu,Hairong Yue,Bin Liang,Li Lü,Chun Li*

    College of Chemical Engineering,Sichuan University,Chengdu 610065,China

    1.Introduction

    Titanium dioxide,the mostimportant white pigment,is widely used in paints,plastics,rubber,paper,ceramic,medicine,food,cosmetic and textile industries[1].There are two commercial processes for producing TiO2,namely the sulfate and chlorination processes.In the sulfate process[2],ground ilmenite is first digested with concentrated sulfuric acid,yielding a Ti-containing solution that is later purified and hydrolyzed.The as-prepared hydrolysate is then calcined to yield TiO2.This process is lengthy,costly and produces large quantities of less marketable ferrous sulfate(3-4 tons per ton of TiO2)and~20 wt%waste sulfuric acid(8-10 tons per ton of TiO2),resulting in severe environmental problems.In the chlorination process[3],high-grade titanium slag or rutile is chlorinated in a fluidized bed reactor at high temperatures.The TiCl4thus obtained is oxidized into titanium dioxide after purification.This process can produce more superior TiO2pigment with less discharged waste.Currently,more than 60%of TiO2pigments are manufactured by the chlorination process worldwide.However,natural rutile reserves are only one-tenth ilmenite[4].The shortage of natural rutile has been encouraging research on the conversion of ilmenite into synthetic rutile.

    The traditional methods for producing synthetic rutile from ilmenite consist of the smelting,Becher and acid leaching processes.In the smelting process[5],the iron in ilmenite is reduced into metallic iron and melted at over 1600°C for separation from the titanium containing phases(the so-called titania slag).In the Becher process[6,7],the iron in ilmenite is first reduced to metallic iron at approximately 1150°C.The metallic iron is then air oxidized in an ammonium chloride solution and separated from the titanium oxides using hydrocyclone.The acid leaching processes[8]consist of HCl and H2SO4leaching of ilmenite.Because the direct leaching of ilmenite is slow,various enhancement measures are employed;these include mechanical activation[9-11],high-temperature carbonthermal reduction[3],and preoxidation followed by reduction[12]of ilmenite prior to leaching,high temperature and pressurized operation[13],and the addition of reductant[14,15]during the dissolution.Recently,Lahiri[16]proposed an alkali process in which ilmenite was first roasted with alkali followed by water leaching to remove soluble impurities;then,the residue was reductively leached in a solution of ascorbic and oxalic acids to obtain synthetic rutile.

    In metallurgy,reactions of ammonium sulfate with metal oxides are frequently applied for bene ficiation and extraction of metal oxide from various low-grade metal ores[17,18].Here,we report a route for preparing synthetic rutile in which ilmenite is firstsul fated with ammonium sulfate at low temperatures to form mixed sulfates of ammonium and various metal ions associated in ilmenite.The Ti-bearing sulfate in the sulfated ilmenite is then selectively decomposed to TiO2at medium temperature.A series of leaching units are then designed to remove the impurities from the selectively thermal decomposed slag(abbreviated hereafter as STDS),i.e.,water leaching the non-decomposed FeSO4,MgSO4and CaSO4;dilute acid leaching a small amount of the Fe2O3from partial decomposition of FeSO4and alkali leaching SiO2.

    In this study,the enrichment process parameters of the main units were systematically investigated.The intermediate and final products were characterized and the relative reaction mechanism was discussed.

    2.Experimental

    2.1.Materials

    An ilmenite from Panzhihua,Sichuan,China,provided by the Titanium Company of Pangang Group Corp.,was employed.The X-ray diffraction(XRD)analysis of the ilmenite is shown in Fig.1a.The major mineral constituent is hexagonally structured FeTiO3.No other crystal phases are detected,which is probably due to the low contents of impurity phases in the ilmenite or the formation of solid solution between the impurity phases and ilmenite[19].The chemical composition of the ilmenite listed in Table 1 indicates that the major impurities are SiO2(4.93%)and MgO(3.42%).During the experiments,the-45 μm fraction of the ore was utilized.The chemicals,including ammonium sulfate,ferric sulfate,ferrous sulfate and hydrochloric acid,were of analytical reagent grade,while titanyl sulfate was of chemical reagent grade and all were used as received without further purification.

    Fig.1.The XRD patterns of(a)the as-received ilmenite and(b)the sulfated ilmenite prepared by roasting at 360°C for 120 min with a(NH4)2SO4/ore of 14.

    Table 1Chemical composition of Panzhihua ilmenite used in this study(wt%)

    2.2.Selective sulfation of ilmenite

    In each sulfation experiment,the ilmenite sample was thoroughly mixed with ammonium sulfate at a specific mass ratio.The mixture placed in a crucible was then heated at a rate of10 °C·min-1to a required temperature,ranging from 250 to 420°C,and annealed for a certain period of time in a horizontal tube furnace(GSL-1600X,Heifei Kejing Materials Technology Co.Limited,Heifei,China)under nitrogen at a N2(99.99%) flow of 0.1 L·min-1.After the reaction,the crucible was pulled out halfway,and the sulfated ilmenite was cooled to room temperature in the presence of a flow of nitrogen.In each thermal decomposition experiment,the sulfated ilmenite was further roasted at a required temperature,ranging from 440 to 570°C for a certain period of time,under nitrogen.After the reaction,the STDS was cooled to room temperature in the presence of a flow of nitrogen.

    To evaluate the sulfation of ilmenite and thermal decomposition of the Fe and Ti-containing sulfates,the sulfated ilmenite and STDS were,respectively,subjected to 10%H2SO4and water leaching at 50°C.

    Based on the Ti and Fe leaching,the sulfation and decomposition percentages were calculated using the following formulas:

    where η (%)is the conversion of the sulfation;c1(g·L-1)andV1(ml)are,respectively,the TiO2or Fe concentration and volume in the H2SO4leaching solution;w1(wt%)is the TiO2or Fe mass percentage in ilmenite;andm1(g)is the mass of ilmenite sample used in the sulfation experiment.φ(%)is the decomposition percentage of the Fe and Ti-containing sulfates,c2(g·L-1)andV2(ml)are,respectively,the TiO2or Fe concentration and volume in the water leaching solution.

    2.3.Leaching for removal of impurities

    Leaching experiments were performed in a 100 ml,three-necked glass reactor fit with magnetic stirring,a thermometer and a re flux condenser.The reactor was heated in an oil bath with temperature fluctuation of±1 °C.

    In the waterleaching experiment,the STDS was dissolved in distilled waterata liquid/solid ratio of10 ml·g-1and 50 °Cfor1 h to remove undecomposed sulfates,such as FeSO4,MgSO4and CaSO4.In the acid leaching experiment,the water leached residue was dissolved in a dilute HCl solution of 1 wt%-10 wt%at a liquid/solid ratio of 50 ml·g-1and temperature ranging from 15 to 98 °C for up to 180 min to remove a small amount of the Fe2O3,generated by the decomposition of FeSO4.In the alkali leaching experiment,the HCl leached residue was further dissolved in a 5 wt%NaOH solution at a liquid/solid ratio of 50 ml·g-1and 102 °C for 2 h to remove the SiO2impurity.The asprepared residue was thoroughly rinsed with water and calcined at 1000°C for 1 h to obtain synthetic rutile.

    The total removal efficiency of Fe and loss of TiO2after HCl leaching were calculated using Formula(3):

    whereλ(wt%)is the removal efficiency of Fe or the loss of TiO2;c3(g·L-1)andV3(ml)are,respectively,the TiO2or Fe concentration and volume in the HCl leaching solution.

    2.4.Analysis and characterization

    The concentrations of titanium and iron ions in the leachates were determined by redox titrations of ammonium ferric sulfate(NH4Fe(SO4)2)and potassium dichromate(K2Cr2O7),respectively.For determination of the chemical composition of synthetic rutile,the product sample was melted with sodium dioxide(Na2O2)and sodium hydroxide(NaOH)at 750°C and then leached with dilute hydrochloric acid.The titanium concentration in the resulting solution was analyzed by the aforementioned redox titration method,and the iron,calcium,silicon,manganese,and aluminum concentrations were analyzed via ICP-OES(Spectro ARCOS ICP,Germany).

    XRD analyses were performed using a DX-2007 X-ray diffraction spectrometer(Danton,China)operating with a CuKαradiation source that was filtered with a graphite monochromator at a frequency of λ=1.54 nm.The voltage and anode current were 40 kV and 30 mA,respectively.The continuous scanning mode with a 0.03 s interval and 0.05 s set time was used to collect the XRD patterns.

    Thermal analysis of the samples was performed using Simultaneous Thermogravimetry-Differential scanning calorimetry(TG-DSC,Netzsch,STA 449F3,Germany).

    3.Results and Discussion

    3.1.Sulfation of ilmenite

    Fig.2 shows the effect of the roasting temperature,which varied from 250 to 420°C,on the sulfation of titanium and iron.Clearly,the roasting temperature significantly affected the conversion.At 250°C,the sulfation percentages of Ti and Fe were only 26%and 37%,respectively.With increasing reaction temperature,the sulfation rapidly increased,reached a maximum at 360°C with titanium and iron conversions of 94%and 92%,respectively,and then slowly decreased.It was observed that the sulfation of titanium was remarkably lower than that of iron at 420°C.This is because ferrous sulfates have better heat stability than the titanium-containing sulfate,which started to decompose into acid-insoluble TiO2at 400°C[20].

    Fig.2.The effect of the sulfation temperature on the conversion ratio of iron and titanium at(NH4)2SO4/ore=14 and reaction time 120 min.

    Figs.3 and 4 show the effects of the roasting time and mass ratio of(NH4)2SO4to ilmenite on the sulfation at 360°C,respectively.Clearly,with increasing time,both the sulfations of iron and titanium rose monotonously and plateaued at a time beyond 120 min.Similarly,with the increasing mass ratio,both the sulfations of iron and titanium increased and leveled off at a mass ratio in excess of 14.

    Fig.3.The effect of the sulfation time on the conversion ratio ofiron and titanium at360°C and(NH4)2SO4/ore=14.

    Fig.4.The effect of the mass ratio of(NH4)2SO4 to ore on the conversion ratio of iron and titanium at 360°C and reaction time 120 min.

    Therefore,optimum parameters for sulfation were determined to be a temperature of 360°C,mass ratio of(NH4)2SO4to ilmenite of 14,and reaction time of 120 min.Under these conditions,the sulfation of ilmenite reached~95%.

    Fig.1b shows the XRD spectra of sulfated ilmenite obtained under the optimal conditions.The diffraction peaks of ilmenite were completely missing and the primary productphases were NH4Fe(SO4)2,TiOSO4,NH4HSO4and SiO2.Since the majority of the iron in Panzhihua ilmenite is in a ferrous state,we infer that NH4Fe(SO4)2was formed due to the oxidation of(NH4)2Fe(SO4)2during the cooling process in the tube furnace,even under the N2flow.(An experiment was conducted by roasting(NH4)2Fe(SO4)2·6H2O at 360 °C and then cooling to room temperature under N2flow.XRD result showed that the roasted product was NH4Fe(SO4)2).

    Studies[21,22]on the sulfation of iron oxides and TiO2by ammonium sulfate showed that these reactions could be divided into at least two steps.The first step was decomposition of(NH4)2SO4to NH3and NH4HSO4.The resulting NH4HSO4then digested the metal oxides into corresponding metal sulfates and/or mixed metal and ammonium sulfates.Therefore,the main sulfation reactions of ilmenite in the present study can be represented as:

    In addition,itis well known that the chlorination TiO2process is very sensitive to the CaO and MgO contents in rutile or titania-rich slag.The main alkaline earth impurities present in Panzhihua ilmenite exist as titanaugite(CaMgSi2O6)[23].A thermodynamic calculation using HSC Chemistry 5.0(commercial software from Outotec,Finland)shows that the following sulfation reaction of titanaugite occurs even at room temperature with an equilibrium constant of over 1020:

    3.2.Selectively thermal decomposition of sulfated ilmenite

    (NH4)2Fe(SO4)2decomposed to FeSO4at approximately 430°C[24],and FeSO4further decomposed to Fe2O3at 500°C[25,26].Both MgSO4and CaSO4have excellent thermal stability with decomposition temperatures of 1100 °C[27]and 1200 °C[28],respectively.Although the decomposition of TiOSO4is reported to start at 540°C[29],our preliminary work showed the decomposition temperature of TiOSO4would decrease dramatically to ~430 °C in this system.The reason for this will be discussed later.Therefore,selectively thermal decomposition of the(NH4)2Fe(SO4)2and TiOSO4in the sulfated ilmenite to FeSO4and TiO2,respectively,which are readily separated in subsequent leaching,is feasible by controlling the roasting temperature between 430 °C and 500 °C.The two decomposition reactions can be expressed as Eqs.(7)and(8).

    Fig.5 shows the effect of the reaction time on the decompositions of FeSO4and TiOSO4at480°C under nitrogen.Clearly,the decompositions of titanium and iron sulfates to their oxides increased with time.At 30 min,over 60%TiOSO4were decomposed while the FeSO4decomposition was only 5%.After 180 min,almost all TiOSO4were decomposed,while the co-decomposed FeSO4reached up to 23%.

    Fig.5.The effect of the roasting time on the decomposition of iron and titanium sulfates at 480°C under nitrogen.

    Figs.6 and 7 show the effect of temperature on the decomposition of sulfated ilmenite under nitrogen and air atmospheres,respectively.Clearly,both the decompositions of titanium and ferrous sulfates increased with increasing temperature in spite of the atmospheres.It can be observed that both TiOSO4and FeSO4in the sulfated ilmenite decomposed more rapidly in N2flow than in air flow.For example,at 500°C,the extent of decomposition of titanium and iron were 99.8%and 42.7%,respectively,under nitrogen,while the corresponding values declined to 81.2%and 2.9%under air.Clearly,to selectively achieve thermal decomposition of the sulfated ilmenite,the optimal roasting temperature is 480°C in a N2atmosphere;in those conditions,nearly all TiOSO4were decomposed with the FeSO4co-decomposition of 23%,while the optimal roasting temperature increased to 570°C in air atmosphere in which 98%of the TiOSO4was decomposed with the 12%co-decomposition of Fe2(SO4)3.

    Fig.6.The effect of the roasting temperature on the decomposition of iron and titanium sulfates under nitrogen for 180 min.

    Fig.7.The effect of the roasting temperature on the decomposition of iron and titanium sulfates under air for 180 min.

    Fig.8.The XRD patterns of(a)the decomposition product under nitrogen at 480°C and(b)the decomposition product under air at 480°C.

    To understand the effect of atmosphere on the thermal decomposition of sulfated ilmenite,XRD patterns of the decomposition products of the sulfated ilmenite under different atmospheres were detected as shown in Fig.8.The primary product phases were anatase TiO2and FeSO4under nitrogen as well as anatase TiO2and Fe2(SO4)3under air.Obviously,under air,FeSO4was oxidized to Fe2(SO4)3,which has a higher heat stability than FeSO4[26].Thus,the decomposition temperature of iron rises when exposed to air.A comparison experiment on the thermal decomposition of pure TiOSO4at 500°C under N2and air for 3 h showed that the extent of decomposition was very close(~35%).As a result,a dramatic elevation of decomposition of TiOSO4in the sulfated ilmenite under N2must be relative to the presence of FeSO4in this system.

    To justify the inference,the thermal decomposition of the pure and mixed sulfates,respectively,was investigated using TG/DSC.Fig.9a shows the TG plots of different sulfates,which were heated at a rate of 10 °C·min-1to 850 °C in nitrogen.The weight losses of different sulfates at ≤300 °C and 500-720 °C were,respectively,attributed to dewatering and desulfurization.The desulfurization of TiOSO4,FeSO4and their mixture nearly started at~550 °C,while this value increased to ~650 °C for Fe2(SO4)3.More precise temperatures could be obtained from their DSC and/or DTG curves,as shown in Fig.9b and c.The peak temperatures of DSC and DTG curves were very close to each other,and there were errors within 2°C for all sulfates.Pure TiOSO4and Fe2(SO4)3decomposed,respectively,at 627 °C and 714 °C,while the thermal decomposition of pure FeSO4proceeded via two stages with two evidentendothermic peaks at605 and 699°C.XRDanalysis indicated that the intermediate and final products for FeSO4decomposition were,respectively,Fe2(SO4)3and hematite Fe2O3.This result was in agreement with Masset[30].The decomposition of a mixture of 50 wt%TiOSO4and 50 wt%FeSO4was observed to mainly occur at 565,592 and 708°C,which corresponds to the decomposition of TiOSO4to TiO2,FeSO4to Fe2(SO4)3,and Fe2(SO4)3to Fe2O3,respectively.Clearly,compared with pure sulfates,the decomposition temperature of TiOSO4mixed with FeSO4was significantly decreased by 62°C,while the second-stage decomposition temperature of FeSO4mixed with TiOSO4was slightly increased by 9°C.The detailed reasons for these observations will be discussed hereafter.Table 2 lists the decomposition reactions of the pure and mixed sulfates that were mentioned above and their decomposition temperatures.

    Fig.9.(a)TG curves of various sulfates;(b)DSC curves of various sulfates;(c)DTG curves of various sulfates;(d)decomposition rule of mixed sulfates(TiOSO4+FeSO4,TiOSO4+Fe2(SO4)3)at 480°C for 180 min under nitrogen.

    Table 2The desulfurization reactions of different sulfates

    Fig.9d shows the effects ofthe iron sulfate ratio in mixed TiOSO4and FeSO4or Fe2(SO4)3on decomposition of the three sulfates at 480°C under N2for3 h.As seen,in the mixed TiOSO4and FeSO4system,the decomposition ofTiOSO4remarkably accelerated with an increasing FeSO4ratio.The 3 h decomposition of pure TiOSO4was only 17%,while the value dramatically increased to 90%at the 50 wt%FeSO4.Conversely,the decomposition of FeSO4decelerated with increasing TiOSO4ratio.The decomposition of pure FeSO4was 44%,while the value decreased rapidly to 8%at the 50 wt%FeSO4.In other words,FeSO4can promote the decomposition of TiOSO4,while TiOSO4can prevent FeSO4from decomposition.For the mixed TiOSO4and Fe2(SO4)3system,however,the decomposition of TiOSO4accelerated slightly with increasing Fe2(SO4)3ratio,while Fe2(SO4)3was hardly decomposed at any Fe2(SO4)3ratios.These patterns were observed because the FeSO4mixed with TiOSO4can be oxidized to a higher thermalstability Fe2(SO4)3by oxygen generated from the decomposition of TiOSO4.As a result,the decomposition of FeSO4mixed with TiOSO4was inhibited,and the decomposition reaction of TiOSO4was promoted due to the immediate in situ consumption of the oxygen from the decomposition product of TiOSO4.Therefore,the decomposition temperatures of TiOSO4in the sulfated ilmenite in nitrogen were lower than those in air(see Figs.6 and 7).

    3.3.Targeted leaching

    In the leaching experiments,the STDS obtained under optimal sulfation and selectively thermal decomposition conditions in N2was employed.As mentioned above,the main phases in the STDS are TiO2and FeSO4,and there were low levels of Fe2O3,MgSO4,CaSO4,and SiO2.Based on differences in the physicochemical properties of these products,a series oftargeted leaching stages was designed to selectively remove the impurities from TiO2.First,water leaching was employed to remove all water-soluble FeSO4and MgSO4as well as a significant fraction of CaSO4at a liquid/solid mass ratio of 10 at 50°C.The water leaching residue thus obtained was dissolved to remove Fe2O3with HCl:

    Fig.10.Effects of the temperature,HCl concentration and leaching time on iron removal and titanium dissolution loss.

    The effects of the leaching temperature,HCl concentration and leaching time on Fe removal and TiO2dissolution loss are shown in Fig.10.With increased leaching temperature,the removal efficiency of iron monotonously increased and reached 94.5%at 98°C,while the TiO2dissolution loss increased first and then decreased with a minimum TiO2loss of less than 0.5%at 98°C.This is because the TiO2in the STDS underwent a dissolution-precipitation(hydrolysis)mechanismduring acid leaching[31].With increasing temperature,hydrolysis of the dissolved TiO2became obvious.Thus,the optimal leaching temperature was selected as 98°C.With increasing HCl concentration from 0 to 10 wt%,the Fe removal efficiency increased from 77%to 95%and the TiO2loss increased from 0.2%to 1%.To minimize the TiO2loss,an HCl concentration of 2.5 wt%was chosen as the optimal condition.With increased leaching time,the removal efficiency of iron increased and reached 94.2%at 120 min;after that time period,the iron removal was almost unchanged.On the other hand,it was observed that the maximum TiO2dissolution occurred at 30 min.Obviously,the dissolution rate of TiO2surpassed the hydrolysis rate of dissolved TiO2within 30 min,while the hydrolysis rate was in excess of the dissolution rate after 30 min.As a result,120 min was selected as the optimal leaching time.

    Fig.11a shows the XRD pattern of the leaching residue under the optimal leaching conditions(2.5 wt%HCl,98°C and 120 min).No iron-containing crystal phases,except anatase TiO2,were observed.The chemical compositions of the residue after calcination at 1000°C are presented in Table 3a.As seen,SiO2with content as high as 9.06%was confirmed to be the major impurity,which might be a by-product of the sulfation of titanaugite and could exist in the amorphous form due to the lack of diffraction peaks from SiO2containing phases being observed in Fig.11a.As a result,removal of SiO2by NaOH leaching of the acid leaching residue in 5 wt%NaOH solution was conducted at 102°C for 1 h.The residue after NaOH leaching was washed with water,dried and calcined at 1000°C for 60 min.XRD analysis indicates that this final product was in a pure rutile phase,as shown in Fig.11b.The chemical composition of the final product,listed in Table 3b,shows that the TiO2grade of the synthetic rutile reached 92.86 wt%with a total MgO+CaO that was less than 1.5 wt%.

    Fig.11.XRD patterns of(a)the 2.5 wt%HCl leaching residue at 98°C for 120 min and(b)after calcinations at 1000°C.

    Table 3Chemical composition of synthetic rutile(a)before NaOH leaching and(b)after NaOH leaching(wt%)

    The particle size analysis(Fig.12)shows that the d50 of the prepared synthetic rutile was only 1.4 μm,and all particles were less than 10 μm,which is remarkably smaller than the minimum size required for the fluidized chlorination in the chloride TiO2process.Further studies are required to coarsen the minute synthetic rutile,which can probably be achieved by pelletizing and then sintering.Alternatively,the minute synthetic rutile can be directly chloridized in a molten salt chlorinating furnace or pipe reactor.

    3.4.Flow sheet

    Fig.12.Particle size distribution of the obtained synthetic rutile.

    Based on the results obtained in the study,a concept flow sheet for preparing synthetic rutile from ilmenite is proposed,as shown in Fig.13.The ilmenite is first selectively sulfated with ammonium sulfate.The STDS thus obtained is continuously subjected to water leaching,dilute acid leaching and alkali leaching,respectively,for the removal of water-soluble sulfates,Fe2O3and SiO2.Aftercalcination,an additional grain agglomeration is needed to increase the particle size.A synthetic rutile product assaying over 92%TiO2with a sum of CaO and MgO that was less than 1.5%can be obtained after calcination of the alkalileaching residue.

    Fig.13.Schematic flow sheet for the preparation of synthetic rutile(F: filtrate and R:residue).

    The water leaching solution is neutralized to precipitate Fe(OH)2and Mg(OH)2,step by step,by controlling the solution pH value via bubbling the exhaust gas emitted during the selective sulfated roasting,which contains a high level of NH3and a small amount of SO2/SO3.The mother liquor thus produced is oxidized to transform(NH4)2SO3to(NH4)2SO4,which is evaporated and cooled to crystallize(NH4)2SO4for recycling.The acid leaching solution is recycled to increase its FeCl3concentration;then,it is evaporated and cooled to crystallize FeCl3.The alkali leaching solution is also recycled to increase its Na2SiO3concentration,which is evaporated and cooled to crystallize Na2SiO3.

    4.Conclusions

    In this paper,a novel,facile method for preparing synthetic rutile from ilmenite is proposed.Its major steps include selectively sulfating ilmenite and targeted leaching of the impurities associated with ilmenite.The process of selectively sulfating ilmenite was realized via roasting ilmenite with ammonium sulfate at low temperatures,which is followed by selective thermal decomposition of the sulfated ilmenite at elevated temperatures.The targeted leaching consisted of water,dilute acid and alkali leaching to remove the water-soluble sulfates,Fe2O3and SiO2,respectively.A synthetic rutile with TiO2content of over 92 wt%and total MgO+CaO less than 1.5 wt%was obtained after calcination of the alkali leaching residue.In the present process,the ammonium sulfate and hydrochloric acid used can be recycled and byproducts like Fe(OH)2,Mg(OH)2,and FeCl3can be obtained.Additionally,it was found that,compared with decomposition of pure sulfates,the decomposition of FeSO4mixed with TiOSO4under N2was inhibited due to its oxidation to higher thermal stability Fe2(SO4)3by oxygen from the decomposition of TiOSO4.Atthe same time,the decomposition of TiOSO4was promoted by in situ immediate consumption of the oxygen by FeSO4.The synergistic effect might be responsible for enhanced selectivity of the thermal decomposition of sulfated ilmenite.

    [1]U.Diebold,The surface science of titanium dioxide,Surf.Sci.Rep.48(2003)53-229.

    [2]B.Liang,C.Li,C.Zhang,Y.Zhang,Leaching kinetics of Panzhihua ilmenite in sulfuric acid,Hydrometallurgy76(2005)173-179.

    [3]T.S.Mackey,Acid leaching of ilmenite into synthetic rutile,Ind.Eng.Chem.Prod.Res.Dev.13(1974)9-18.

    [4]S.Itoh,S.Sato,J.Ono,H.Okada,T.Nagasaka,Feasibility study of the new rutile extraction process from natural ilmenite ore based on the oxidation reaction,Metall.Mater.Trans.B Process Metall.Mater.Process.Sci.37(2006)979-985.

    [5]R.H.Nafziger,G.W.Elger,Preparation of titanium feedstock from Minnesota ilmenite by smelting and sulfation-leaching,Report of Investigations,Bureau of Mines,United States 1987,p.9065.

    [6]R.Becher,Improved process for the beneficiation of ores containing contaminating iron,Australian Patent,247110(1963).

    [7]J.B.Farrow,I.M.Ritchie,P.Mangano,The reaction between reduced ilmenite and oxygen in ammonium chloride solutions,Hydrometallurgy18(1987)21-38.

    [8]M.Imahashi,N.Takamatsu,The dissolution of titanium minerals in hydrochloric and sulfuric acids,Bull.Chem.Soc.Jpn.49(1976)1549-1553.

    [9]C.Li,B.Liang,L.h.Guo,Dissolution of mechanically activated Panzhihua ilmenites in dilute solutions of sulphuric acid,Hydrometallurgy89(2007)1-10.

    [10]C.Li,B.Liang,H.Song,J.Q.Xu,X.Q.Wang,Preparation of porous rutile titania from ilmenite by mechanical activation and subsequent sulfuric acid leaching,Microporous Mesoporous Mater.115(2008)293-300.

    [11]B.N.Akhgar,M.Pazouki,M.Ranjbar,A.Hosseinnia,M.Keyanpour-Rad,Preparation of nanosized synthetic rutile from ilmenite concentrate,Miner.Eng.23(2010)587-589.

    [12]J.Zhang,Q.S.Zhu,Z.Xie,et al.,Influence of redox pretreatment on the pulverization of Panzhihua ilmenite during hydrochloric acid leaching,Hydrometallurgy157(2015)226-233.

    [13]L.Jia,B.Liang,L.Lü,S.Yuan,L.Zheng,X.Wang,C.Li,Beneficiation of titania by sulfuric acid pressure leaching of Panzhihua ilmenite,Hydrometallurgy150(2014)92-98.

    [14]T.Lasheen,Chemical bene ficiation of Rosetta ilmenite by direct reduction leaching,Hydrometallurgy76(2005)123-129.

    [15]M.Mahmoud,A.A fi fi,I.Ibrahim,Reductive leaching of ilmenite ore in hydrochloric acid for preparation of synthetic rutile,Hydrometallurgy73(2004)99-109.

    [16]A.Lahiri,Influence of ascorbate and oxalic acid for the removal of iron and alkali from alkali roasted ilmenite to produce synthetic rutile,Ind.Eng.Chem.Res.49(2010)8847-8851.

    [17]T.Nagaishi,S.Ishiyama,M.Matsumoto,S.Yoshinaga,Reactions between ammonium sulphate and metal oxides(metal=Cr,Mn and Fe)and thermal decomposition of the products,J.Therm.Anal.29(1984)121-129.

    [18]P.K.Sahoo,S.K.Bose,S.C.Sircar,Sulfation of CuO,Fe2O3,MnO2,and NiO with(NH4)2SO4,Thermochim.Acta31(1979)303-314.

    [19]C.Li,B.Liang,L.H.Guo,Z.B.Wu,Effect of mechanical activation on the dissolution of Panzhihua ilmenite,Miner.Eng.19(2006)1430-1438.

    [20]Y.Zhang,H.Yang,L.Wang,X.X.Xue,Synthesis of fertilizer from titanium-bearing blast furnace slag,J.Northeast.Univ.31(2010)1161-1169.

    [21]W.B.Kim,Y.S.Park,C.T.Lee,Y.H.Ryoo,Sulfidization of titaniferous magnetite with elemental sulfur,J.Korean Inst.Chem.Eng.23(1985)425-430.

    [22]S.W.Hong,J.Y.Kim,C.T.Lee,Y.H.Yu,Reaction of titanium dioxide with ammonium sulfate,J.Korean Inst.Chem.Eng.27(1989)176-182.

    [23]L.Zhang,H.Hu,L.Wei,Q.Chen,J.Tan,Effects of mechanical activation on the HCl leaching behavior of titanaugite,ilmenite,and their mixtures,Metall.Mater.Trans.B Process Metall.Mater.Process.Sci.41(2010)1158-1165.

    [24]E.Frank,M.C.Varriale,A.Bristoti,M?ssbauer studies of the thermal decomposition of iron(II)ammonium sulphate hexahydrate,J.Therm.Anal.17(1979)141-150.

    [25]P.K.Gallagher,D.W.Johnson,F.Schrey,Thermal decomposition of iron(II)sulfates,J.Am.Ceram.Soc.53(1970)666-670.

    [26]R.V.Siriwardane,J.A.P Jr.,E.P.Fisher,M.S.Shen,A.L.Miltz,Decomposition of the sulfates of copper,iron(II),iron(III),nickel,and zinc:XPS,SEM,DRIFTS,XRD,and TGA study,Appl.Surf.Sci.152(1999)219-236.

    [27]M.N.Scheidema,P.Taskinen,Decomposition thermodynamics of magnesium sulfate,Ind.Eng.Chem.Res.50(2011)9550-9556.

    [28]Z.Yan,Z.Wang,H.Liu,Y.Tu,W.Yang,H.Zeng,J.Qiu,Decomposition and solid reactions of calcium sulfate doped with SiO2,Fe2O3and Al2O3,J.Anal.Appl.Pyrolysis113(2015)491-498.

    [29]M.Johnsson,P.Pettersson,M.Nygren,Thermal decomposition of fibrous TiOSO4·2H2O to TiO2,Thermochim.Acta298(1997)47-54.

    [30]P.Masset,J.Y.Poinso,J.C.Poignet,TG/DTA/MS study of the thermal decomposition of FeSO4·6H2O,J.Therm.Anal.Calorim.83(2006)457-462.

    [31]C.Li,B.Liang,H.Wang,Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite,Hydrometallurgy91(2008)121-129.

    搡老熟女国产l中国老女人| 国产av麻豆久久久久久久| 成年人黄色毛片网站| 午夜亚洲福利在线播放| 精品国产乱码久久久久久男人| 国产精品,欧美在线| 亚洲片人在线观看| 一区福利在线观看| av国产免费在线观看| 亚洲自拍偷在线| 久久精品人妻少妇| 国产午夜福利久久久久久| 亚洲色图av天堂| 国产熟女xx| 亚洲欧美日韩高清在线视频| 国产人伦9x9x在线观看| 亚洲国产中文字幕在线视频| 免费看日本二区| 久久亚洲真实| 色综合站精品国产| 国产欧美日韩一区二区三| 男人舔奶头视频| 国产黄片美女视频| 国产黄片美女视频| 国产乱人伦免费视频| 日韩大码丰满熟妇| 午夜福利免费观看在线| 九色成人免费人妻av| 黄色视频,在线免费观看| 一个人免费在线观看的高清视频| 亚洲精品国产精品久久久不卡| 日韩三级视频一区二区三区| 久久久水蜜桃国产精品网| 欧美黄色片欧美黄色片| 日韩欧美三级三区| 亚洲男人天堂网一区| 中文字幕人妻丝袜一区二区| 久久精品综合一区二区三区| 国产精品九九99| 黄片小视频在线播放| 97人妻精品一区二区三区麻豆| 日本五十路高清| 悠悠久久av| 成人18禁在线播放| 久久久精品国产亚洲av高清涩受| 色精品久久人妻99蜜桃| 欧美成人一区二区免费高清观看 | 国产欧美日韩精品亚洲av| 色综合亚洲欧美另类图片| 国产精品av视频在线免费观看| 大型黄色视频在线免费观看| 国产精品久久久久久亚洲av鲁大| 黄色 视频免费看| av福利片在线观看| 无限看片的www在线观看| 看片在线看免费视频| 日本三级黄在线观看| 亚洲国产精品久久男人天堂| 亚洲在线自拍视频| 成人亚洲精品av一区二区| 国产成人欧美在线观看| 亚洲欧美日韩高清专用| 18美女黄网站色大片免费观看| 夜夜爽天天搞| 久久久久久久精品吃奶| 制服诱惑二区| 亚洲色图 男人天堂 中文字幕| 国模一区二区三区四区视频 | 91麻豆精品激情在线观看国产| 国内揄拍国产精品人妻在线| 18禁黄网站禁片免费观看直播| 精品少妇一区二区三区视频日本电影| 久久久久免费精品人妻一区二区| 99热这里只有是精品50| 日本三级黄在线观看| 又爽又黄无遮挡网站| 亚洲成人久久爱视频| 又大又爽又粗| 亚洲精品中文字幕一二三四区| 国产精品一区二区三区四区久久| 久久精品国产亚洲av香蕉五月| 亚洲美女黄片视频| 黄色 视频免费看| 亚洲人成网站在线播放欧美日韩| 欧美精品亚洲一区二区| 天天一区二区日本电影三级| 9191精品国产免费久久| 99热这里只有是精品50| 国产av一区在线观看免费| www.熟女人妻精品国产| 成熟少妇高潮喷水视频| 国产av一区在线观看免费| 老司机福利观看| 蜜桃久久精品国产亚洲av| 久久久精品大字幕| 国产精品野战在线观看| 色综合婷婷激情| 看黄色毛片网站| 波多野结衣巨乳人妻| 国产精品电影一区二区三区| 精品久久久久久久人妻蜜臀av| 精品国产乱子伦一区二区三区| 国产精品一区二区免费欧美| 真人做人爱边吃奶动态| 无限看片的www在线观看| 一二三四在线观看免费中文在| av免费在线观看网站| 国产亚洲av高清不卡| 国产视频一区二区在线看| 免费无遮挡裸体视频| 小说图片视频综合网站| 黄色 视频免费看| 国产在线观看jvid| 久久人人精品亚洲av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品999在线| 久久人人精品亚洲av| 99国产极品粉嫩在线观看| 欧美+亚洲+日韩+国产| 少妇粗大呻吟视频| av国产免费在线观看| 日韩欧美 国产精品| 全区人妻精品视频| 精品不卡国产一区二区三区| 亚洲av五月六月丁香网| 天天一区二区日本电影三级| 一本综合久久免费| 欧美高清成人免费视频www| 一级毛片高清免费大全| 丁香六月欧美| 脱女人内裤的视频| 午夜精品一区二区三区免费看| 国产aⅴ精品一区二区三区波| 欧美日本视频| 欧美精品亚洲一区二区| 亚洲精品一卡2卡三卡4卡5卡| 超碰成人久久| 成人国产综合亚洲| 精品国产超薄肉色丝袜足j| 精品一区二区三区视频在线观看免费| 99久久久亚洲精品蜜臀av| 在线视频色国产色| 美女免费视频网站| 久久精品国产亚洲av香蕉五月| 久久天堂一区二区三区四区| 婷婷六月久久综合丁香| 国产高清激情床上av| 99久久精品热视频| 欧美日韩中文字幕国产精品一区二区三区| 欧美一区二区国产精品久久精品 | 国产精品自产拍在线观看55亚洲| 制服丝袜大香蕉在线| 大型av网站在线播放| 欧美人与性动交α欧美精品济南到| x7x7x7水蜜桃| 人妻久久中文字幕网| 亚洲精品国产一区二区精华液| 50天的宝宝边吃奶边哭怎么回事| 麻豆一二三区av精品| 特级一级黄色大片| 日韩国内少妇激情av| 女同久久另类99精品国产91| 精品一区二区三区视频在线观看免费| 午夜福利高清视频| 免费看a级黄色片| 亚洲国产看品久久| 一进一出好大好爽视频| 波多野结衣高清作品| 国产一区二区在线av高清观看| 国内毛片毛片毛片毛片毛片| 老鸭窝网址在线观看| 麻豆国产av国片精品| 一卡2卡三卡四卡精品乱码亚洲| 久久久精品大字幕| 日韩国内少妇激情av| 在线观看www视频免费| 国产三级在线视频| 精品乱码久久久久久99久播| 久久人妻福利社区极品人妻图片| 欧美黑人巨大hd| 麻豆国产av国片精品| 首页视频小说图片口味搜索| 国产高清videossex| 日日爽夜夜爽网站| 亚洲国产精品合色在线| 亚洲成人久久性| 啦啦啦免费观看视频1| 老汉色av国产亚洲站长工具| videosex国产| 人成视频在线观看免费观看| 久9热在线精品视频| 欧洲精品卡2卡3卡4卡5卡区| 淫妇啪啪啪对白视频| 日韩国内少妇激情av| 国产高清视频在线播放一区| 色噜噜av男人的天堂激情| 中文字幕人妻丝袜一区二区| 日韩欧美免费精品| 午夜福利在线观看吧| 久久久国产成人精品二区| 亚洲av成人精品一区久久| 99国产精品一区二区三区| 一进一出抽搐gif免费好疼| 日韩精品免费视频一区二区三区| 九色成人免费人妻av| 69av精品久久久久久| 狂野欧美白嫩少妇大欣赏| 人妻久久中文字幕网| 免费观看精品视频网站| 欧美绝顶高潮抽搐喷水| 大型黄色视频在线免费观看| 在线永久观看黄色视频| 香蕉丝袜av| 免费在线观看黄色视频的| 精品日产1卡2卡| 丁香六月欧美| 全区人妻精品视频| av中文乱码字幕在线| 国产欧美日韩一区二区三| 叶爱在线成人免费视频播放| 久久九九热精品免费| 亚洲国产中文字幕在线视频| 一级毛片高清免费大全| 又紧又爽又黄一区二区| 免费看a级黄色片| 免费电影在线观看免费观看| 91av网站免费观看| 国产免费av片在线观看野外av| 久久久国产精品麻豆| av福利片在线| 精品第一国产精品| 国产精品亚洲美女久久久| 12—13女人毛片做爰片一| 中文字幕人成人乱码亚洲影| 变态另类丝袜制服| 在线观看午夜福利视频| 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添小说| 国产亚洲精品久久久久久毛片| 国产精品香港三级国产av潘金莲| 亚洲人成77777在线视频| 国产真实乱freesex| 99热这里只有是精品50| 黑人巨大精品欧美一区二区mp4| 美女大奶头视频| 久久久久久国产a免费观看| 成人手机av| xxx96com| 国产精品99久久99久久久不卡| avwww免费| av在线天堂中文字幕| 国产成人av教育| 精品国内亚洲2022精品成人| 我的老师免费观看完整版| 在线永久观看黄色视频| 国产黄色小视频在线观看| 久久久久国产一级毛片高清牌| 一本综合久久免费| 日韩免费av在线播放| 欧美黑人欧美精品刺激| 日韩大码丰满熟妇| 亚洲国产中文字幕在线视频| 国产午夜精品论理片| 日韩精品青青久久久久久| 国产午夜精品久久久久久| 高清毛片免费观看视频网站| 国产av一区在线观看免费| 色老头精品视频在线观看| 2021天堂中文幕一二区在线观| 国产av不卡久久| 麻豆国产av国片精品| 日本一本二区三区精品| 亚洲国产高清在线一区二区三| 国产精品av视频在线免费观看| 午夜亚洲福利在线播放| 成年女人毛片免费观看观看9| 久久久久久久久中文| 久久久久久人人人人人| 长腿黑丝高跟| 成年人黄色毛片网站| 一本精品99久久精品77| 欧美不卡视频在线免费观看 | 这个男人来自地球电影免费观看| 成人亚洲精品av一区二区| 亚洲欧美日韩东京热| 国产精品香港三级国产av潘金莲| 性色av乱码一区二区三区2| 精品午夜福利视频在线观看一区| 国产午夜精品论理片| 亚洲av成人不卡在线观看播放网| 欧美日韩中文字幕国产精品一区二区三区| 国产成人一区二区三区免费视频网站| 中文字幕久久专区| 18禁观看日本| 琪琪午夜伦伦电影理论片6080| xxxwww97欧美| 好看av亚洲va欧美ⅴa在| 国产精品影院久久| 18禁美女被吸乳视频| 色综合欧美亚洲国产小说| 成人永久免费在线观看视频| 亚洲欧美日韩无卡精品| 国产亚洲精品久久久久5区| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 免费av毛片视频| 久久性视频一级片| 黄色丝袜av网址大全| 757午夜福利合集在线观看| 国产在线观看jvid| 一夜夜www| 久久精品国产99精品国产亚洲性色| 欧美日韩国产亚洲二区| 国产野战对白在线观看| av在线天堂中文字幕| 亚洲第一欧美日韩一区二区三区| 国产视频一区二区在线看| 日韩欧美三级三区| 18美女黄网站色大片免费观看| 欧美一级毛片孕妇| 亚洲va日本ⅴa欧美va伊人久久| 久久国产乱子伦精品免费另类| 亚洲av日韩精品久久久久久密| 久久久久九九精品影院| 久久精品国产99精品国产亚洲性色| 国产99久久九九免费精品| 一边摸一边做爽爽视频免费| av在线播放免费不卡| 国产黄色小视频在线观看| 久久久久性生活片| 欧美大码av| 国产精品98久久久久久宅男小说| 亚洲国产精品sss在线观看| 一个人免费在线观看的高清视频| 最近在线观看免费完整版| 两个人看的免费小视频| 亚洲精品一卡2卡三卡4卡5卡| www日本黄色视频网| 香蕉丝袜av| xxxwww97欧美| 亚洲国产欧美网| 日本免费一区二区三区高清不卡| 国产精品一区二区三区四区久久| a在线观看视频网站| 黄色丝袜av网址大全| 人妻夜夜爽99麻豆av| 九色成人免费人妻av| 免费在线观看黄色视频的| 亚洲va日本ⅴa欧美va伊人久久| 国产又色又爽无遮挡免费看| 免费搜索国产男女视频| 日本在线视频免费播放| 老汉色∧v一级毛片| 亚洲狠狠婷婷综合久久图片| 欧美极品一区二区三区四区| 激情在线观看视频在线高清| 久久久久久久精品吃奶| 国产精品永久免费网站| 亚洲成人免费电影在线观看| 亚洲九九香蕉| 午夜成年电影在线免费观看| 精品不卡国产一区二区三区| 久久精品影院6| 精品熟女少妇八av免费久了| 麻豆一二三区av精品| 999精品在线视频| 精品乱码久久久久久99久播| 99在线视频只有这里精品首页| 欧美不卡视频在线免费观看 | 成人欧美大片| 久久中文看片网| 久久草成人影院| 又黄又爽又免费观看的视频| 美女黄网站色视频| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽| 天堂√8在线中文| 欧美丝袜亚洲另类 | 亚洲国产欧美人成| 午夜精品久久久久久毛片777| 麻豆一二三区av精品| 国产三级在线视频| 国产黄色小视频在线观看| 精品久久久久久成人av| 黄色 视频免费看| 成在线人永久免费视频| 亚洲第一欧美日韩一区二区三区| 777久久人妻少妇嫩草av网站| 免费电影在线观看免费观看| 三级毛片av免费| 熟妇人妻久久中文字幕3abv| 亚洲片人在线观看| 亚洲成av人片免费观看| 好看av亚洲va欧美ⅴa在| 无遮挡黄片免费观看| 免费看十八禁软件| 熟女少妇亚洲综合色aaa.| 一级毛片高清免费大全| 国产一区二区在线观看日韩 | e午夜精品久久久久久久| 一本综合久久免费| 国产免费av片在线观看野外av| 亚洲欧美日韩高清专用| 欧美日本视频| 国产一区二区在线观看日韩 | 级片在线观看| 老熟妇仑乱视频hdxx| 亚洲av第一区精品v没综合| www.熟女人妻精品国产| 不卡一级毛片| 叶爱在线成人免费视频播放| 亚洲国产精品久久男人天堂| 不卡一级毛片| 最近视频中文字幕2019在线8| 亚洲av电影不卡..在线观看| 熟女电影av网| 亚洲人成77777在线视频| 国产精品久久电影中文字幕| 麻豆久久精品国产亚洲av| 天天添夜夜摸| 久久久久精品国产欧美久久久| 国产一区二区三区视频了| 嫩草影院精品99| 丰满人妻熟妇乱又伦精品不卡| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 日韩欧美国产在线观看| www.自偷自拍.com| 人成视频在线观看免费观看| 脱女人内裤的视频| 亚洲欧美日韩无卡精品| 午夜免费激情av| 亚洲成av人片在线播放无| 国产精品久久久久久精品电影| 听说在线观看完整版免费高清| aaaaa片日本免费| 熟女电影av网| 欧美在线一区亚洲| 看免费av毛片| 国产真人三级小视频在线观看| 真人一进一出gif抽搐免费| 国产伦一二天堂av在线观看| 国产午夜精品久久久久久| www.熟女人妻精品国产| 国产精品久久久久久亚洲av鲁大| 老鸭窝网址在线观看| 一级毛片高清免费大全| 日韩 欧美 亚洲 中文字幕| 亚洲人成电影免费在线| 亚洲国产精品合色在线| 中文字幕人妻丝袜一区二区| 成年女人毛片免费观看观看9| 久久精品91蜜桃| 免费看美女性在线毛片视频| 99热这里只有是精品50| 村上凉子中文字幕在线| 两性夫妻黄色片| 日本成人三级电影网站| 久久久久久久精品吃奶| 欧美高清成人免费视频www| 丰满人妻一区二区三区视频av | 亚洲专区字幕在线| www.999成人在线观看| 色尼玛亚洲综合影院| 又粗又爽又猛毛片免费看| 国模一区二区三区四区视频 | 欧美高清成人免费视频www| 国产欧美日韩一区二区三| 精品午夜福利视频在线观看一区| 亚洲av成人不卡在线观看播放网| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 亚洲性夜色夜夜综合| 亚洲欧美日韩高清在线视频| 欧美在线黄色| 三级毛片av免费| 黄色 视频免费看| 国产成人影院久久av| 一本大道久久a久久精品| 五月玫瑰六月丁香| 欧美中文综合在线视频| 国产三级在线视频| cao死你这个sao货| 成人一区二区视频在线观看| 男女床上黄色一级片免费看| www.精华液| 97碰自拍视频| 99riav亚洲国产免费| 亚洲一区二区三区不卡视频| 欧美黄色片欧美黄色片| 中出人妻视频一区二区| 老汉色∧v一级毛片| 男女视频在线观看网站免费 | 99久久精品热视频| 三级毛片av免费| 一边摸一边做爽爽视频免费| 叶爱在线成人免费视频播放| 精品第一国产精品| 少妇人妻一区二区三区视频| 欧美色视频一区免费| 天天一区二区日本电影三级| 国产精品免费一区二区三区在线| 亚洲一区高清亚洲精品| 日本免费一区二区三区高清不卡| 午夜免费激情av| 女同久久另类99精品国产91| 男女之事视频高清在线观看| 一级毛片女人18水好多| 国产精品香港三级国产av潘金莲| 欧美日韩一级在线毛片| 在线a可以看的网站| 少妇裸体淫交视频免费看高清 | 在线国产一区二区在线| 亚洲国产看品久久| aaaaa片日本免费| 国产一区二区三区视频了| 国产成人精品无人区| 看黄色毛片网站| 88av欧美| 蜜桃久久精品国产亚洲av| 欧美又色又爽又黄视频| 久久九九热精品免费| 欧美日韩瑟瑟在线播放| 视频区欧美日本亚洲| 久久人妻av系列| av在线播放免费不卡| xxxwww97欧美| 久久久久久九九精品二区国产 | 熟妇人妻久久中文字幕3abv| 久久久久久国产a免费观看| 国产又黄又爽又无遮挡在线| 国产精品久久久av美女十八| 狂野欧美白嫩少妇大欣赏| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 国产爱豆传媒在线观看 | 欧美+亚洲+日韩+国产| 午夜精品在线福利| 在线观看免费视频日本深夜| 国产成人精品无人区| 国产黄片美女视频| 国模一区二区三区四区视频 | 两性午夜刺激爽爽歪歪视频在线观看 | 露出奶头的视频| 欧美一级a爱片免费观看看 | 色综合欧美亚洲国产小说| 婷婷精品国产亚洲av在线| 成人手机av| 在线观看www视频免费| 禁无遮挡网站| 国产一级毛片七仙女欲春2| 国产亚洲av嫩草精品影院| 欧美三级亚洲精品| 久久精品成人免费网站| 一级黄色大片毛片| 最近最新免费中文字幕在线| 天天一区二区日本电影三级| 香蕉丝袜av| 香蕉久久夜色| 久久中文字幕人妻熟女| 亚洲国产欧美网| 欧美性猛交黑人性爽| 男男h啪啪无遮挡| 国产亚洲欧美在线一区二区| 日日爽夜夜爽网站| 日韩三级视频一区二区三区| 啦啦啦观看免费观看视频高清| 中文字幕人妻丝袜一区二区| 欧美久久黑人一区二区| 丰满人妻一区二区三区视频av | 精品福利观看| 99国产精品一区二区蜜桃av| 在线十欧美十亚洲十日本专区| 黄频高清免费视频| 熟妇人妻久久中文字幕3abv| 少妇裸体淫交视频免费看高清 | 国产三级中文精品| 黄色片一级片一级黄色片| 成人av一区二区三区在线看| 精品熟女少妇八av免费久了| 91字幕亚洲| 国产亚洲欧美98| 国产真人三级小视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产一区在线观看成人免费| 亚洲国产中文字幕在线视频| 少妇被粗大的猛进出69影院| 国产片内射在线| 99精品欧美一区二区三区四区| 免费在线观看日本一区| 国产一区二区激情短视频| 看黄色毛片网站| 亚洲性夜色夜夜综合| 中文资源天堂在线| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久| 国产成人精品久久二区二区91| 757午夜福利合集在线观看| 母亲3免费完整高清在线观看| 国产精品98久久久久久宅男小说| 亚洲五月天丁香| 小说图片视频综合网站| 欧美乱妇无乱码| 久久久久久九九精品二区国产 | 我的老师免费观看完整版| 免费在线观看成人毛片| 美女免费视频网站| 国产久久久一区二区三区| 亚洲激情在线av| 国产精品电影一区二区三区| 成在线人永久免费视频| 日韩国内少妇激情av| 国产精品久久久久久人妻精品电影| 欧美精品亚洲一区二区| 久久精品成人免费网站|