• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NLO response of derivatives of benzene,stilbene and diphenylacetylene:MP2 and DFT calculations

    2017-06-01 03:20:32ElhorriZouaouiRabah

    A.M.Elhorri*,M.Zouaoui-Rabah

    Laboratoire de Microscopie,Microanalyse et Spectroscopie Moléculaire,Faculty of Sciences,Djillali Liabes University of Sidi-Bel-Abbes,22000 Sidi-Bel-Abbes,Algeria

    1.Introduction

    Because of their numerous applications in the areas of photonics and optoelectronic[1,2],various types of active materials in NLO have been developed over the recent years.These materials are used in technical sophistication of lasers[3].Among these materials,organic and organometallic materials[4]are acquiring more and more interest because of to their relatively easy syntheses and their interestingly cost.

    In general,Organic materials are constituted of a π-conjugated system end capped with electron donor and electron acceptor groups to facilitate the intra-molecular charge transfer(ICT)which is directly related to the magnitude of the NLO response[5-7].This later,is highly impacted by parameters such as the energetic gap(ΔE= εLUMO-εHOMO),the occupation quotients π*/π,the distance of the central bond in the chromophore,the bond length alternation(BLA),the stabilization energyE2,the electronic transition parameters,the first hyperpolarizabilty and the induced dipole moment[8-11].

    So far,many papers in this field were devoted to the comparison between experimental and calculated parameters.For example,perfect agreements;giving regression coefficients of about0.99 between experimental and calculated parameters cited here above have been highlighted by Kleinpeter and Frank[12].These authors have reported for a series of disubstituted alkynes the evolution of the theoretical occupation π*/π,the central C═C bond length and the13C chemical shiftvs.the experimental ones using as theoretical method the B3LYP/6-311G(d)level of theory.A further study[13]with the same objective and the same methodology was carried out on the azine chromophore.Linearity between experimental and theoretical has been demonstrated for occupations quotients,central distances,13C chemical shifts and also for hyperpolarizabilities.Moreover,the push-pull character of 71 azo dyes compounds was examined in order to determine their potential for NLO applications[14].Regression coefficients of about 0.8927 between experimental and calculated values were found for13C chemical shifts of the N═N bond,while between occupation π*/π and central bond length and hyper polariz abilities,these coefficients were of 0.627 and 0.756 respectively.

    On the other hand,the parameters related to the excited states provide information on the behavior of the molecule in solution,when the solvent effect is considered,as well as on the nature of the intramolecular charge transfer.In this context,comparisons between calculated and experimental maximum absorptions λmaxof oxazolones derivatives have been reported;large deviations of 10 to 66 nm have been found out,this is probably due to the fact that calculations have been performed in the gas phase using B3LYP/6-311++g(2d,2p)level of theory[15].However,in another work,on quinoline chalcone derivatives,using the PBE0 functional combined with the 6-31g(d)basis set in a PCM medium[16],regression coefficients about 0.9322 et 0.9727(after the rejection of some points)have been determined.

    The great challenge for quantum mechanical methods remains the estimation of the first hyperpolarizability coefficient β.Since two decades,a number of papers focused their objectives on finding out methods which could reproduce molecular hyperpolarizability with high accuracy.Many of these papers based their work on comparison between calculated and experimental hyperpolarizabilites.K.Y.Suponitskyet al.have addressed a thorough analysis,based on the results of experimental measurements,in the predicting capability of hybrid DFT methods of hyperplarizabilities ofp-NA derivatives[17].More recently,M.Medved and D.Jacquemin[18]obtained a deviation between calculated and experimental hyperpolarizabilities of 43×10-30esu for the azo-benzene chromophore.Another investigation[19],reported a deviation of80×10-30esu between the calculated and experimental values of the β coefficient for the stilbene molecule substituted by a nitro group and a halogen at each end.

    The second-order M?ller-Plesset correlation energy correction,truncated at second order MP2 method[20],which has been already considered among the most efficient method in calculating hyperpolarizabilities[21],has been used with the Def2-TZVPP basis set and has yielded very close first hyperpolarizabilities to the experimental ones for benzene derivatives in solvent[22].However,for derivatives of hymecyanine,deviations of 4×10-30to 24×10-30esu have been obtained when MP2/6-31g(d,p)has been employed[23],while with MP2/6-311G(d)on arylvinyldiazine derivatives,deviations from experimental data of 12×10-48to 300×10-48esu have been obtained[24].

    Thereby,in this paperthe two main objectives were; firstto establish from a range of basis sets,combined with MP2 method,which one performs better in calculating the closest static hyperpolarizabilities β(0)to experiments with a reasonable computationaltime.The second objective was still to test the reliability,relatively to experiments,ofa variety of DFT methods incorporating different XC percentages,such as B3LYP,CAMB3LYP,PBE0,M06-HF[25]and M06-2X[26],in producing the β(0)parameters.In parallel,energy gaps(ΔE),NBO(Natural Bond Orbitals)parameters and electronic transitions are also examined.For this aim,a series of eight push-pull molecules(Fig.1)for which experimental data are available in the literature are considered.

    1.1.Computational details

    All calculations were carried out using the Gaussian 09 suite of programs[27].Ground-state structures optimizations in the gas phase as well as static firststatic hyperpolarizabilities have been first computed using M?ller-Plesset methods second order MP2 using 6-31g(d),6-31g(d,p),6-31+g(d,p),6-31++g(d,p),cc-pvdz,Aug.-cc-pvdz and Cc-pvtz basis sets.

    Calculations of structures and energies were also carried out using the cc-pvdz basis set with hybrid meta DFT methods based upon the Khon-Sham et Hohenberg formalism[28]and incorporating a given percentage of exchange(XC,%).These functional are namely;the M06L[29],the most popular functional B3LYP[30],its corresponding long-range corrected using Coulomb Attenuation Method the CAMB3LYP[31],the Perdew-Burke-Ernzerhof PBE0(pbe1pbe)[32],the Minnesota functional with a full HF exchange M06-HF[24]and the M06-2X[25].Their XC percentages are respectively:0%,20%,65%,25%,100%,54%[33,34].

    Under a strong external electric field,the induced dipole moment is described by the following equation

    Eiis the electric field,is the permanent dipole moments,αijis the linear polarizability, βijkand ?ijklare the first and second order hyperpolarizabilities.

    The dipole moment[35]and the first hyperpolarizability[36,37]are calculated as follows:

    In order to determine the structure which matches best with experiment,we also performed NBO calculations as well as BLA,E2,dc═c,ΔEπ*/π as defined here above by the chosen functional which matches best with experiment.

    In the last part of this paper,ground state structures were optimized in different solvents[38]using the M06-2X functional combined with the aug-cc-pvdz basis set which has been recommended as the most suitable basis set for describing excitation energy transfer[39].The IEFPCM[40,41]model was used to simulate the implicit solvent represented by its dielectric constant ε.Preliminary calculations of Solvation Gibbs free energies ΔGsolvhave been performed for three molecules in order to determine their specific solvent.In the end,the maximum absorption wavelengths λmax,the corresponding oscillator strengths and the associated HOMO LUMO transitions have been calculated using TD-M062X.

    2.Results and Discussio n

    Fig.1.Considered molecules in this work.

    Table 1First hyperpolarizabilities(×10-30 esu):calculated using different basis set with MP2 method compared with the experimental ones

    On Table 1 are reported static first hyperpolarizabilities for the eight considered molecules presented on Fig.1 using the M?ller-Plesset methods MP2 combined with different basis sets.The corresponding structures were first optimized in the gas phase.Experimental hyperpolarizabilities[38,42]are also listed on Table 1.The calculated β(0)using the cc-pvdz basis set fit the best the experimental values for the four molecules 1a,2a,3a and 1b while for the remaining molecules,the 6-31g(d,p)basis set gives the best results,nonetheless those obtained with cc-pvdz are still very close to the experimental ones.On the other side,on the addition of diffuse functions enhance sharply the magnitudes of hyperpolarizabilities and therefore leads to very erroneous results.It is then notappropriate to add diffuse functions when carrying this kind of calculations on this kind of molecules.Overall,it is preferable to use the cc-pvdz basis set.

    On Table 2 are reported calculated static first hyperpolarizabilities for the same eight molecules using M06L,B3LYP,CAM-B3LYP,PBE0,M06HF and M062X functional all combined with the cc-pvdz basis set.Here also,all structures have been first optimized.As quoted above,different exchange-correlation XC amounts are incorporated in these functionals,for instance we expect to observe their effects on hyperpolarizability values(Table 2)and be able to determine among the six functionals which reproduces the most closely the experimental values.According to Table 2,the eight molecules can be classified into two groups;a group constituted by the molecules 1a,2a,3a and 1b and a group by the molecules 1c,2c,3c and 4c.The molecules of the first group are characterized by their low hyperpolarizabilities,probably due to a less important charge transfer,in comparison to those of the second group and the functionals M0-2X and CAM-B3LYP give,for this group,similar results to those achieved by MP2 and very close to those recorded experimentally.It is noted besides that B3LYP and PBE0 yield also acceptable results in this case.Therefore we suggest that increasing the XC amount contributes in an efficient way to improve the calculated values of hyperpolarizabilities when these later are relatively low.While for the second group,the three first functionals;M06-L,B3LYP and PBE0 overestimate excessively the hyperpolarizabilities and although M06-2X and CAM-B3LYPgive results in a good agreement with those obtained from MP2,they remain far from the experimental values.On the other hand,M06-HF method,sometimes overestimating and sometimes underestimating the polarizabilities,gives a good average error relatively to experiment when considering both groups.However,in the further part of this paper,we will use the M06-2X functional rather than the M06-HF because of the chaotic results of this later and the closer ones to MP2 of the former.

    On Table 3 are presented the calculated with M06-2X/cc-pvdz different components of hyperpolarizabilities and those of dipole moments as well.It is clearly observed from these results for the eightmoleculesthat the π-electrons delocalization is one dimensional along theXaxis and this is con firmed from the μxand the βxcomponents values which are significant compared to the other components of dipole moments and hyperpolarizabilities respectively.

    Table 3Total static dipole moment(μ)in Debye,mean first-order hyperpolarizabilities(β)in esu(×10-30)for all molecules with M062X/cc-pvdz

    3.NBO Analysis

    NBO analysis has been revealed to be very effective and useful for understanding intra-molecular π-electron delocalization in push-pull molecules.This,with considering donor(i)-attractor(j)interactions,the related stabilization energyE(2)which is evaluated as the secondorder perturbation,it is estimated[43-45]as:

    Whereqiis the orbital occupancy,εietεjare the diagonal elements(orbital energies)andF(i,j)are the off-diagonal elements of the NBO Fock matrix[46,47].

    NBO results are reported within Table 4 among other parameters such as the central bond lengths(C═C or C≡C)or central bond lengths occupation π*/π quotient or summation over the benzene bond occupations when there is no central bond.Attention is drawn on thefact that in Table 4 results are presented in an increasing order of studied molecules hyperpolarizabilities.

    Table 2Obtained deviations between calculated and experimental first hyperpolarizabilities(×10-30 esu)using different functional and MP2 methods

    Table 4R c═c or R c≡c(nm),BLA(nm),μtot(Debye),Gap ΔE(eV),π */π quotients,E(2)(kJ·mol-1),βexp(10-30 esu),calculated hyperpolarizability βtheo with M062X/cc-pvdz.(10-30 esu)

    We note,for molecules 1c,2c,3c and 4c,a lengthening of the central bonds due to the substitution of molecules by different groups.The more bulky groups,the longerRc═cdistance and the larger β value.

    On the other hand,although it has been reported in the literature[48-50]that the occupation π*/π quotients increase together with the bond lengths,this fact is not noticeable in our results and lead us to suggest that the central bond length is not a good indicator for the intra-molecular charge transfer(ICT).Nevertheless,we note a shortening of the central bond in molecule 1b(for which a low β value is noticed)since in this case it is a triple bond while in all other cases the central bond is a double bond.

    The most representative parameter of the lntramolecular Charge Transfer(ICT)is by far the HOMO-LUMO energy gaps ΔE[51-54]which in turn is closely related to the first hyperpolarizabilities β.To confirm this later fact,we plotted the experimental values of the eight moleculesvs.the corresponding calculatedΔEand we found outafaithfulcon firmation since the plotted graph(Fig.2)with a regression coefficient of0.9015.

    This properly suggests that weaker energy gaps give rise to better ICT.

    The BLA is the calculated average between adjacent bond lengths differences in the chromophore.So far,the relationship between this entity and the first static hyperpolarizability has been considered to predict accurately the structure/property relationship,although,N.A.Muruganet al.[55]have reported recently that this averment is limited to the no- field,vacuumcase.From Table 4,we observe for molecules 1b,1c,2c,3c and 4c a decrease in BLA values when those of first hyperpolarizabilities increase.This means that a strong electron delocalization generates a weak BLA value[11].This is correctly reproduced in Fig.3,for which a regression coefficient of 0.9826 is obtained when BLA is plottedvs.ΔE.

    On the other hand,concerning the(π*/π)occupation quotients shown on Table 4,they yielded many useful information.Particularly for molecules 1a,2a and 3a for which the occupation quotients were calculated as the average of the benzene double bonds occupations,a reasonable consistency between(π*/π)values and the electron donating/acceptor groups power was noted;the more powerful groups,the larger(π*/π)values.Analog behaviors are observed for molecules 1b,1c,2c,3c and 4c.Moreover,Fig.4 shows that(π*/π)values progress in the same way as the hyperpolarizabilities with respect to the energy gaps.The regression coefficient for the graph(π*/π)vs.ΔEis of 0.9967.

    Fig.2.Relationship between βexp and calculated with…energy gaps corresponding to the eight considered molecules with M062X/cc-pvdz.

    Fig.3.Relationship between the calculated with….BLA and the energy gaps(ΔE)for molecules 1b,1c,2c,3c and 4c with M062X/cc-pvdz.

    The last parameter to study is the delocalization energyE(2).This parameter helped us to identify precisely the delocalization mechanism in the considered molecules.We noted for all molecules that mainly four types of delocalizations occur;the first one when the donor group donates electrons to the chromophore(LP(donor)π*(chromophore)).The second one,occurs within the chromophore in the spontaneous direction(from the donor side to the acceptor one)and is identified as π(chromophore)π*(chromophore).While the third delocalization consists in the charge transfer from the chromophore towards the acceptor group:π*(chromophore)π*(attractor).Up to here,our reasoning is consistent with that of F?rster[56,57]proving that when the donor group is excited,the resulting excited charge moves towards the attractor group making the donor group positive and the attractor group negative according to the following scheme:

    Fig.4.Relationship between π*/π quotients and the calculated with… energy gaps(ΔE)for molecules 1b,1c,2c,3c and 4c with M062X/cc-pvdz.

    NBO calculations(Table 2)show,for molecules 1a,2a and 3a,more importantE(2)energies from D A than those corresponding to the reverse direction(A D).In fact,for molecule 1a,2a and 3a the delocalization energies are of 172.8,174.9 and 178.2 kJ·mol-1in the forward direction respectively while values of 91.21,88.3 and 86.6 kJ·mol-1are registered for the opposite direction.This in turn leads us to assume that the donor is intrinsically stronger than the attractor in the case of this chromophore.In the same way,for these three molecules,more importantE(2)values are observed for LP(donor)π*(chromophore)compared to those observed for π (chromophore)π*(attractor).Values of250.6,143.93 and 256.5 kJ·mol-1are calculated for the former and of 90.37,118.4 and 136.4 kJ·mol-1for the later.Regarding,the five other molecules;theE(2)in one direction or in the other are slightly different.

    Finally,it is noteworthy that an agreement is recorded between βexpand βtheo(Fig.5),the regression coefficient for the graph βexpvs.βtheois of0.8434 suggesting that some further parameters have to be improved,either in the method itself or in surrounding middle of the considered molecules.

    Fig.5.Relationship between βexp and βtheo corresponding to the eight considered molecules with M062X/cc-pvdz.

    4.Molecular Electrostatic Potential Surface Analysis(MEPS)

    The Molecular Electrostatic Potential Surfaces of the eight molecules have been calculated for the ground and the excited states.The results are shown in Fig.6.The method is helpful when determining the polarity of a given molecule[58]and it also provides information about the reactivity taking into account the electrophile and nucleophile sites[59].The MEPS have been calculated using a value of0.02 u.a for the isodensity.On the figure,the red color is representative for a negative charge,while blue refers to a positive charge and green to neutral charge[60].According to Fig.6,the positive charge is concentrated on the donor group and the negative charge on the acceptor group,the chromophore and the hydrogen atoms are neutral.This means that the electron delocalization causes a depletion of the donor group and an enrichment of the acceptor group in negative charge.Nevertheless,for molecules 1b and 1c we have seen an apparent negative charge on the donor group,this can be explained by the fact that only one anti-bonding doublet belonging to the oxygen atom is involved in the delocalization process.This is consistent with the aforementioned F?rster's affirmation.

    5.Electronic Transitions and Solvent Effect

    Fig.6.MEPS of the eight molecules with M062X/cc-pvdz.

    Table 5Maximum absorption wavelengths;experimental λmax exp.(nm)and calculated using TD-M062X/aug-cc-pvdz with IEF-PCM λmax(nm),the corresponding oscillator strengths ? and excitations contributions(%)

    All results concerning vertical transitions such as their maximal wavelength λmax,oscillator strength as well as their excitation percentage in different solvents for seven molecules are gathered on Table 5.Calculations corresponding to this section are carried out using TD-DFT method[61,62]combining the M06-2X functional with the aug-cc-pvdz basis set with convergence criteria equal to 6.Structures have been all first optimized in different solvents;those used in experiments[38],using the IEF-PCM model.From Table 5,deviations bet weenλmax(exp)andλmax(theo)from4 to 54 nm are observed.In the same way,the plotofthe experimentalλmax(exp)vs.those calculatedλmax(theo)(Fig.7)and gives a regression coefficientof0.82.Here also,a low failure of calculating methods is raised suggesting that additional parameters should be taken into account.

    Fig.7.Relationship between experimental and calculated λmax with TD-M062X/aug-ccpvdz(IEFPCM).

    Nevertheless,the role of the solvent is often very important in determining some physical properties of molecules and when experimental data are lacking,it is useful to have available a way which solvent is appropriate for a molecule.Therefore,the second part of this section is devoted to find an explanation and confirm the reason that led the authors of ref.[38],to choose specifically a given solvent for a given molecule.For this purpose,we computed the ΔGsolv(solvation Gibbs Energy),the λmaxand the oscillator strength in different solvents using the SMD solvation model[63],in the cases of molecules 2a,2c and 4c.The corresponding results are reported in Table 6.Actually,results demonstrate a good consistency between the choice of specific solvents in ref.[46]and the calculated values of ΔGsolv.As a matter of fact,ΔGsolvhas been calculated for each molecule in different solvents and the lowest values have been found to correspond to the solvent considered in experiment.For example,in the case of molecule 2a,acetone yielded a ΔGsolv=-54.40 kJ·mol-1,which the lowest among those calculated for all other solvents.In experiment acetone has been chosen as a specific solvent for this molecule.Similarly,the lowestΔGsolvvalues compared to other solvents have been registered in acetone for molecules 2c and 4c;-74.68 and-72.59 kJ·mol-1respectively.We conclude that the thermodynamic parameter ΔGsolvgives a quite accurate picture on the choice of the specific solvent over the frequently used settings which involve solvent dielectric constants[64],solvent polarity[65,66],bathochromic shifts[67]or oscillator strengths[68].The ΔGsolvvalue is evidently directly related to the solubility of a given molecule in a given solvent.

    6.Conclusions

    This paper deals with computing the static first hyperpolarizability β(0)for eight push-pull molecules.The first results are related to the most suitable basis set with MP2 method in determining the magnitude of this parameter.Considering the computing time and the reliability in producing the closer values to experiments,the cc-pvdz basis set has been definitely selected as the most appropriate.Then,the goal was to constrict the number of reliable functionals yielding the most accurate results in this field.For that purpose,M06-L,B3LYP,PBE0,M06-2X,CAM-B3LYP and M06-HF have been used.Owing to the different XC amounts these functional incorporate,significant deviations from one method to the other were obtained.It was demonstrated that as long as the value of the hyperpolarizability is low,CAM-B3LYP,M06-2X and even B3LYP give satisfactory results compared to experiments.However,for larger NLO responses,the M06-HF performs better but the magnitudes of the deviations remain unpredictable.While M06-2X and CAM-B3LYP give acceptable deviations consistent with those obtained with MP2 and closer to experiments.The M06-2X was used for further purposes in the paper.

    On the other hand,calculations of BLA as well as of NBO parameters such as π*/π quotients andE(2)revealed that these parameters are closely related and evolve exponentially over the HOMO-LUMO energy gaps.In addition,a very useful information con firming F?ster's affirmation could be obtained fromE(2)values;it comes down to the fact that the conjugation moves from the donor group towards the attractor then in the reverse direction.This fact was confirmed by MEPS calculations.

    Incidentally,TD-DFT calculations were performed in order to calculate the λmaxfor the height molecules in a concern to compare them with the experimental ones.When the M062X combined with aug-cc-pvdz basis set is used,relatively appreciable results are achieved.

    Table 6ΔG solv(kJ·mol-1),λmax(nm)and the corresponding oscillator strength ? calculated withTD-M062X/aug-cc-pvdz with IEF-PCM in different solvents for molecules 2a,2c and 4c

    [1]N.-.N.Ma,G.-.C.Yang,S.-.L.Sun,C.-.G.Liu,Y.-.Q.Qiu,Computational study on second-order nonlinear optical(NLO)properties of a novel class of two-dimensional Λ-and W-shaped sandwich metallocarborane-containing chromophores,J.Organomet.Chem.696(2011)2380-2387.

    [2]R.M.El-Shishtawy,F.Borbone,Z.M.Al-amshany,A.Tuzi,A.Barsella,A.M.Asiri,A.Roviello,Thiazole azo dyes with lateral donor branch:Synthesis,structure and second order NLO properties,Dyes Pigments96(2013)45-51.

    [3]E.Yalc?n,S.Achelle,Y.Bayrak,N.Seferoglu,A.Barsella,Z.Seferoglu,Styryl-based NLO chromophores:synthesis,spectroscopic properties,and theoretical calculations,Tetrahedron Lett.56(2015)2586-2589.

    [4](a)K.Hatua,P.K.Nandi,Theoretical study of electronic structure and third-order optical properties of beryllium-hydrocarbon complexes,Comput.Theor.Chem.996(2012)82-90;(b)S.N.Derrar,M.Sekkal-Rahal,P.Derreumaux,M.Springborg,Theoreticalstudy of the NLO responses of some natural and unnatural amino acids used as probe molecules,J.Mol.Model.20(2014)2388;(c)S.Derrar,M.Sekkal-Rahal,K.Guemra,P.Derreumaux,Theoreticalstudy on a series ofpush-pullmolecules grafted on methacrylate copolymers serving for nonlinear optics,Int.J.Quantum Chem.112(2012)2735-2742.

    [5]J.Kulhanek,F.Bures,O.Pytela,T.Mikysek,J.Ludv?k,A.Ruzicka,Push-pull molecules with a systematically extendedπ-conjugated system featuring 4,5-dicyanoimidazole,Dyes Pigments85(57-65)(2010).

    [6]N.S.Labidia,A.Djebaili,Enhancement of molecular polarizabilities by the push-pull mechanism:A DFT study of substituted hexatriene,Mater.Sci.Eng.B169(2010)28-32.

    [7]A.J.Garza,N.A.Wazzan,A.M.Asiri,G.E.Scuseria,Can short-and middle-range hybrids describe the hyperpolarizabilities of long-range charge-transfer compounds?J.Phys.Chem.A118(50)(2014)11787-11796.

    [8]E.Marcano,E.Squitieri,J.Murgich,H.Soscún,Theoretical investigation of the static(dynamic)polarizability and second hyperpolarizability of DAAD quadrupolar push-pull molecules.A comparison among HF(TD-HF),DFT(TD-B3LYP),and MP2(TD-MP2)methods,Comput.Theor.Chem.985(2012)72-79.

    [9]C.-.R.Zhang,L.-.H.Han,J.-.W.Zhe,N.-.Z.Jin,Y.-.L.Shen,J.-.J.Gong,H.-.M.Zhang,Y.-.H.Chen,Z.-.J.Liu,The role ofterminal groups in electronic structures and related properties:The case of push-pull porphyrin dye sensitizers for solar cells,Comput.Theor.Chem.1039(2014)62-70.

    [10]K.Sayin,D.Karakas,N.Karakus,T.Alagoz Sayin,Z.Zaim,S.E.Kariper,Spectroscopic investigation,FMOs and NLO analyses of Zn(II)and Ni(II)phenanthroline complexes:A DFT approach,Polyhedron90(2015)139-146.

    [11]E.Kleinpeter,U.Klaumünzer,Quantification of the push-pull Effect in disubstituted alkynes-Application of occupation quotients π*/π and13C chemical shift differences ΔδC-C,J.Mol.Struct.1074(2014)193-195.

    [12]E.Kleinpeter,A.Frank,Distinction of push-pull effect and steric hindrance in disubstitued alkynes,Tetrahedron65(2009)4418-4421.

    [13]E.Kleinpeter,B.A.Stamboliyska,Hyperpolarizability of donor-acceptor azines subject to push-pull character and steric hindrance,Tetrahedron65(2009)9211-9217.

    [14]E.Kleinpeter,U.B?lke,Jana Kreicberga,Quantification of the push-pull character of azo dyes and a basis for their evaluation as potential nonlinear optical materials,Tetrahedron66(2010)4503-4509.

    [15]C.A.B.Rodrigues,I.F.A.Mariz,E.M.S.Ma??as,C.A.M.Afonso,J.M.G.Martinho,Twophoton absorption properties of push-pull oxazolones derivatives,Dyes Pigments95(2012)713-722.

    [16]Y.Xue,Y.Liu,L.An,L.Zhang,Y.Yuan,J.Mou,L.Liu,Y.Zheng,Electronic structures and spectra of quinoline chalcones:DFT and TDDFT-PCM investigation,Comput.Theor.Chem.965(2011)146-153.

    [17]K.Y.Suponitsky,S.Tafur,A.Masunov,Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability,J.Chem.Phys.129(2008),044109.

    [18]M.Medved,D.Jacquemin,Tuning the NLO properties of polymethineimine chains by chemical substitution,Chem.Phys.415(2013)196-206.

    [19]A.Capobianco,R.Centore,C.Noce,A.Peluso,Molecular hyperpolarizabilities of push-pull chromophores:A comparison between theoretical and experimental results,Chem.Phys.411(2013)11-16.

    [20]M.Head-Gordon,J.A.Pople,M.J.Frisch,MP2 energy evaluation by direct methods,Chem.Phys.Lett.153(1988)503-506.

    [21]B.Skwara,W.Bartkowiak,A.Zawada,R.W.Gora,J.Leszczynski,On the cooperativity of the interaction-induced(hyper)polarizabilities of the selected hydrogen-bonded trimers,Chem.Phys.Lett.436(2007)116-123.

    [22]M.M.Islam,M.D.H.Bhuiyan,T.Bredow,A.C.Try,Theoretical investigation of the nonlinear optical properties of substituted anilines and N,N-dimethylanilines,Comput.Theor.Chem.967(2011)165-170.

    [23]K.Han,H.Li,X.Shen,G.Tang,Y.Chen,Z.Zhang,Quantum chemistry study on nonlinear optical properties of hemicyanine dye derivatives with different electron donor groups,Comput.Theor.Chem.1044(2014)24-28.

    [24]F.Castet,A.Pic,B.Champagne,Linear and nonlinear optical properties of arylvinyldiazine dyes:A theoretical investigation,Dyes Pigments110(2014)256-260.

    [25]Y.Zhao,R.Peverati,D.G.Truhlar,Density Functional for Spectroscopy:No Long-Range Self-Interaction Error,Good Performance for Rydberg and Charge-Transfer States,and Better Performance on Average than B3LYP for Ground States,J.Phys.Chem.A110(2006)13126-13130.

    [26]Y.Zhao,D.G.Truhlar,The M06 suite of density functionals for main group thermochemistry,thermochemical kinetics,noncovalent interactions,excited states,and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functionals,Theor.Chem.Acc.120(2008)215-241.

    [27]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,D.J.Fox,Gaussian 10,Gaussian,Inc.,Wallingford,CT,2010.

    [28]C.Lee,W.Yang,R.G.Parr,Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,Phys.Rev.B37(2)(1988)785-789.

    [29]Y.Zhao,D.G.Truhlar,A new local density functional for main-group thermochemistry,transition metal bonding,thermochemical kinetics,and noncovalent interactions,J.Chem.Phys.125(19)(2006)194101.

    [30]A.D.Becke,Density-functional thermochemistry.III.The role of exact exchange,J.Chem.Phys.98(1993)5648-5652.

    [31]T.Yanai,D.P.Tew,N.C.Handy,A new hybrid exchange-correlation functional using the Coulomb-attenuating method(CAM-B3LYP),Chem.Phys.Lett.393(2004)51-57.

    [32]C.Adamo,M.Cossi,V.Barone,An accurate density functional method for the study of magnetic properties:the PBE0 model,Theor.Chem.493(1999)145-157.

    [33]Y.Zhao,D.G.Truhlar,Subroutines for evaluating the M05,M05-2X,M06-L,M06-HF,M06,M06-2X,M08-HX,M08-SO,M11,M11-L,SOGGA,SOGGA11,SOGGA11-X,N12 Functionals,Acc.Chem.Res.41(2008)157.

    [34]Y.Zhao,D.G.Truhlar,The Minnesota Density Functionals and their Applications to Problems in Mineralogy and Geochemistry,Rev.Mineral.Geochem.71(2010)19-37.

    [35]S.-.J.Wang,Y.-.F.Wang,C.Cai,Multidecker Sandwich Cluster VnBenn+1(n=1,2,3,4)as a Polarizable Bridge for Designing 1D Second-Order NLO Chromophore:Metal-π Sandwich Multilayer Structure as a Particular Charge-Transfer Axis for Constructing Multidimensional NLO Molecules,J.Phys.Chem.C119(2015)16256-16262.

    [36]J.Lin,R.Sa,M.Zhang,W.Kechen,Exploring Second-Order Nonlinear Optical Properties and Switching Ability of a Series of Dithienylethene-Containing,Cyclometalated Platinum Complexes:A Theoretical Investigation,J.Phys.Chem.A119(29)(2015)8174-8181.

    [37]H.Song,M.Zhang,H.Yu,C.Wang,H.Zou,N.Ma,Y.Qiu,The Li-substituted effect on the geometries and second-order nonlinear optical properties of indeno[1,2-b] fluorene,Comput.Theor.Chem.1031(2014)7-12.

    [38]R.F.Fink,J.P fister,H.M.Zhao,B.Engels,Assessment of quantum chemical methods and basis sets for excitation energy transfer,Chem.Phys.346(2008)275-285.

    [39]S.Miertu?,E.Scrocco,J.Tomasi,Electrostatic interaction of a solute with a continuum.A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects,Chem.Phys.55(1981)117-129.

    [40]J.L.Pascual-Ahuir,E.Silla,I.Tu?ón,An Improved Description of Molecular Surfaces III.A New Algorithm for the Computation of the Solvent-Excluding Surface,J.Comput.Chem.15(1994)1127-1138.

    [41]L.-T.Cheng,W.Tam,G.R.Meridith,Nonresonant EFISH and THG studies of nonlinear optical property and molecular structure of Benzene,Stilbene,and other arene derivatives,NLO.Prop.Orga.Mate.II,1147,1989 61-72.

    [42]K.S.Suslick,C.-.T.Chen,G.R.Meredith,L.-.T.Cheng,Push-Pull Porphyrins as Nonlinear Optical Materials,J.Am.Chem.Soc.114(1992)6928-6930.

    [43]J.Jayabharathi,V.Thanikachalam,N.Srinivasan,M.V.Perumal,K.Jayamoorthy,Physicochemical studies of molecular hyperpolarizability of imidazole derivatives,Spectrochim.Acta A79(2011)137-147.

    [44]A.A.Prasad,K.Muthu,V.Meenatchi,M.Rajasekar,R.Agilandeshwari,K.Meena,J.V.Manonmoni,S.P.Meenakshisundaram,Optical,vibrational,NBO, first-order molecular hyperpolarizability and Hirshfeld surface analysis of a nonlinear optical chalcone,Spectrochim.Acta A140(2015)311-327.

    [45]C.J.John,M.Amalanathan,D.Sajan,K.U.Lakshmi,I.H.Joe,Intramolecular charge delocalization and nonlinear optical properties of push-pull chromophore 1-(4-N,N-dimethylaminopyridinium)acetic acid bromide monohydrate from vibrational spectra,Spectrochim.Acta A78(2011)264-272.

    [46]L.Sinha,M.Karabacak,V.Narayan,M.Cinar,O.Prasad,Molecular structure,electronic properties,NLO,NBO analysis and spectroscopic characterization of Gabapentin with experimental(FT-IR and FT-Raman)techniques and quantum chemical calculations,Spectrochim.Acta A109(2013)298-307.

    [47]Z.Demircioglu,C.A.Kastas,O.Buyukgungor,The spectroscopic(FT-IR,UV-vis),Fukui function,NLO,NBO,NPA and tautomerism effect analysis of(E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile,Spectrochim.Acta A139(2015)539-548.

    [48]M.Baranac-Stojanovic,U.Klaumünzer,R.Markovic,E.Kleinpeter,Structure,configuration,conformation and quantification of the pushepull effect of 2-alkylidene-4-thiazolidinones and 2-alkylidene-4,5-fused bicyclic thiazolidine derivatives,Tetrahedron66(2010)8958-8967.

    [49]E.Kleinpeter,P.Werner,A.Koch,Push-pull allenes-conjugation,(anti)aromaticity and quantification of the pushepull character,Tetrahedron69(2013)2436-2445.

    [50]E.Kleinpeter,A.Schulenburg,Quantification of the push-pull effect in substituted alkenes,Tetrahedron Lett.46(2005)5995-5997.

    [51]J.Huang,L.Du,D.Hu,Z.Lan,Theoretical Analysis of Excited States and Energy Transfer Mechanism in Conjugated Dendrimers,J.Comput.Chem.36(2015)151-163.

    [52]N.Choudhary,S.Bee,A.Gupta,P.Tandon,Comparative vibrational spectroscopic studies,HOMO-LUMO and NBO analysis of N-(phenyl)-2,2-dichloroacetamide,N-(2-chloro phenyl)-2,2-dichloroacetamide and N-(4-chloro phenyl)-2,2-dichloroacetamide based on density functional theory,Comput.Theor.Chem.1016(2013)8-21.

    [53]A.Sethi,R.Prakash,Novel synthetic ester of Brassicasterol,DFT investigation including NBO,NLO response,reactivity descriptor and its intramolecular interactions analyzed by AIM theory,J.Mol.Struct.1083(2015)72-81.

    [54]L.Wang,Y.Shi,Y.Zhao,H.Liu,X.Li,M.Bai,“Push-pull”1,8-naphthalic anhydride with multiple triphenylamine groups as electron donor,J.Mol.Struct.1056(2014)339-346.

    [55]N.A.Murugan,J.Kongsted,Z.Rinkevicius,H.Agren,Breakdown of the first hyperpolarizability/bond-length alternation parameter relationship,PNAS107(38)(2010)16453-16458.

    [56]T.F?rster,Zwischenmolekulare Energiewanderung und Fluoreszenz,Ann.Phys.2(1948)55-75.

    [57]T.F?rster,Modern Quantum Chemistry,Istanbul Lectures.Part III,Academic Press,New York 1965,pp.93-137.

    [58]N.Prabavathi,A.Nilufer,Vibrational spectroscopic(FT-IR and FT-Raman)studies,natural bond orbital analysis and molecular electrostatic potential surface of Isoxanthopterin,Spectrochim.Acta A114(2013)101-113.

    [59]M.Karnan,V.Balachandran,M.Murugan,M.K.Murali,A.Nataraj,Vibrational(FT-IR and FT-Raman)spectra,NBO,HOMO-LUMO,Molecular electrostatic potential surface and computational analysis of 4-(tri fluoromethyl)benzylbromide,Spectrochim.Acta A116(2013)84-95.

    [60]L.Michielan,M.Bacilieri,C.Kaseda,S.Moro,Prediction of the aqueous solvation free energy of organic compounds by using autocorrelation of molecular electrostatic potential surface properties combined with response surface analysis,Bioorg.Med.Chem.16(2008)5733-5742.

    [61]R.Bauernschmitt,R.Ahlrichs,Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory,Chem.Phys.Lett.256(1996)454-464.

    [62]M.E.Casida,C.Jamorski,K.C.Casida,D.R.Salahub,Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:characterization and correction of the time-dependent local density approximation ionization threshold,J.Chem.Phys.108(1998)4439-4449.

    [63]A.V.Marenich,C.J.Cramer,D.G.Truhlar,Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent defined by the Bulk Dielectric Constantand Atomic Surface Tensions,J.Phys.Chem.B113(2009)6378-6396.

    [64]A.M.Asiri,K.A.Alamry,M.Pannipara,A.G.Al-Sehemi,S.A.El-Daly,Spectroscopic investigation,photophysical parameters and DFT calculations of 4,4’-(1E,1’E)-2,2’-(pyrazine-2,5-diyl)bis(ethene-2,1-diyl)bis(N,N-dimethylaniline)(PENDA)in different solvents,Spectrochim.Acta A149(2015)722-730.

    [65]M.A.Rauf,S.Hisaindee,J.P.Graham,M.Nawaz,Solvent effects on the absorption and fluorescence spectra of Cu(II)-phthalocyanine and DFT calculations,J.Mol.Liq.168(2012)102-109.

    [66]M.Dulski,M.Kempa,P.Kozub,J.Wojcik,M.Rojkiewicz,P.Ku?,A.Szurko,A.Ratuszna,DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application,Spectrochim.Acta A104(2013)315-327.

    [67]M.C.Almandoz,M.I.Sancho,S.E.Blanco,Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures,Spectrochim.Acta A118(2014)112-119.

    [68]M.E.Elshakre,H.M.Huwaida,M.E.Hassaneen,A.Z.Moussa,Electronic spectra and DFT calculations of some pyrimido[1,2-a]benzimidazole derivatives,Spectrochim.Acta.A145(1-14)(2015).

    久久人妻福利社区极品人妻图片| 91大片在线观看| 成在线人永久免费视频| 99久久人妻综合| 亚洲欧洲精品一区二区精品久久久| 汤姆久久久久久久影院中文字幕| 丁香六月天网| 精品少妇久久久久久888优播| 欧美日韩一级在线毛片| 国产伦理片在线播放av一区| 国产精品99久久99久久久不卡| 国产99久久九九免费精品| 美女扒开内裤让男人捅视频| 满18在线观看网站| 欧美激情 高清一区二区三区| 国产精品国产高清国产av | 亚洲国产看品久久| 精品少妇一区二区三区视频日本电影| 欧美日韩亚洲综合一区二区三区_| 国产视频一区二区在线看| 国产国语露脸激情在线看| 免费少妇av软件| 99九九在线精品视频| 午夜老司机福利片| 久久精品国产a三级三级三级| 看免费av毛片| av超薄肉色丝袜交足视频| 啦啦啦免费观看视频1| 伦理电影免费视频| 成人免费观看视频高清| av电影中文网址| 中文字幕人妻丝袜制服| 超碰成人久久| av又黄又爽大尺度在线免费看| 国产黄色免费在线视频| 成人亚洲精品一区在线观看| 国产精品香港三级国产av潘金莲| 午夜两性在线视频| 青青草视频在线视频观看| 精品国产乱码久久久久久小说| 日韩熟女老妇一区二区性免费视频| 韩国精品一区二区三区| 国产1区2区3区精品| 首页视频小说图片口味搜索| 一级,二级,三级黄色视频| 久久中文看片网| 国产深夜福利视频在线观看| 国产成+人综合+亚洲专区| 精品久久蜜臀av无| 欧美在线一区亚洲| 欧美变态另类bdsm刘玥| 精品一区二区三区视频在线观看免费 | 欧美日韩av久久| 在线播放国产精品三级| 亚洲人成电影免费在线| 波多野结衣一区麻豆| 最新的欧美精品一区二区| 狠狠婷婷综合久久久久久88av| 人人妻人人澡人人爽人人夜夜| 人妻一区二区av| 久久久欧美国产精品| 精品视频人人做人人爽| 国产xxxxx性猛交| 在线观看免费视频网站a站| 少妇粗大呻吟视频| 精品一区二区三卡| 脱女人内裤的视频| 少妇的丰满在线观看| 一进一出抽搐动态| 99国产综合亚洲精品| 欧美在线黄色| 在线观看66精品国产| 久久精品亚洲熟妇少妇任你| 亚洲精品久久午夜乱码| 日韩中文字幕视频在线看片| 国内毛片毛片毛片毛片毛片| 久久中文看片网| 亚洲国产看品久久| 乱人伦中国视频| 欧美人与性动交α欧美软件| 中文字幕最新亚洲高清| 18禁美女被吸乳视频| av在线播放免费不卡| 日日夜夜操网爽| 亚洲九九香蕉| 久久精品亚洲熟妇少妇任你| 久久久久久久精品吃奶| 激情视频va一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产精品.久久久| 麻豆乱淫一区二区| 最近最新中文字幕大全电影3 | 欧美一级毛片孕妇| 午夜精品久久久久久毛片777| 啪啪无遮挡十八禁网站| 天天操日日干夜夜撸| 日韩视频一区二区在线观看| 中文字幕人妻丝袜一区二区| 91麻豆av在线| av网站在线播放免费| 久久久精品国产亚洲av高清涩受| 夜夜夜夜夜久久久久| 制服诱惑二区| 中国美女看黄片| 亚洲精品自拍成人| 日韩人妻精品一区2区三区| 国产一区二区三区在线臀色熟女 | 男女高潮啪啪啪动态图| 久久精品国产99精品国产亚洲性色 | 精品少妇久久久久久888优播| 亚洲第一欧美日韩一区二区三区 | 美女主播在线视频| 亚洲av日韩在线播放| 久久精品aⅴ一区二区三区四区| 久久精品aⅴ一区二区三区四区| 日韩 欧美 亚洲 中文字幕| 久久精品熟女亚洲av麻豆精品| 国产亚洲精品第一综合不卡| 欧美在线黄色| 亚洲五月色婷婷综合| 欧美乱码精品一区二区三区| 怎么达到女性高潮| 人人妻人人添人人爽欧美一区卜| 欧美国产精品一级二级三级| 久久久久久亚洲精品国产蜜桃av| 欧美精品一区二区大全| 天天影视国产精品| 中文亚洲av片在线观看爽 | 肉色欧美久久久久久久蜜桃| 女性被躁到高潮视频| 高潮久久久久久久久久久不卡| www.熟女人妻精品国产| 久久精品亚洲av国产电影网| 久久中文字幕人妻熟女| 最近最新中文字幕大全免费视频| 午夜福利免费观看在线| 视频区欧美日本亚洲| 久久中文字幕人妻熟女| 亚洲av第一区精品v没综合| av超薄肉色丝袜交足视频| 18在线观看网站| 国产精品成人在线| 成在线人永久免费视频| 国产成人精品久久二区二区91| 免费人妻精品一区二区三区视频| 日本撒尿小便嘘嘘汇集6| 狂野欧美激情性xxxx| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美在线观看 | 久久久精品免费免费高清| 亚洲欧美色中文字幕在线| 日韩欧美国产一区二区入口| 丰满饥渴人妻一区二区三| 国产一区二区三区视频了| 国产深夜福利视频在线观看| 精品人妻1区二区| 国产一区有黄有色的免费视频| 啦啦啦免费观看视频1| 国产欧美日韩一区二区三| 国产精品香港三级国产av潘金莲| 日韩制服丝袜自拍偷拍| 亚洲伊人色综图| 妹子高潮喷水视频| 国产日韩欧美视频二区| 超碰成人久久| 9热在线视频观看99| 亚洲三区欧美一区| 欧美日韩亚洲高清精品| 国产深夜福利视频在线观看| 午夜福利欧美成人| 一进一出好大好爽视频| av欧美777| 99精品欧美一区二区三区四区| 亚洲国产毛片av蜜桃av| 精品少妇黑人巨大在线播放| 欧美乱妇无乱码| 两个人看的免费小视频| 亚洲成人手机| 亚洲av成人一区二区三| 欧美日韩精品网址| 精品国产超薄肉色丝袜足j| 天天躁夜夜躁狠狠躁躁| 日本欧美视频一区| 一二三四社区在线视频社区8| 99国产精品免费福利视频| 亚洲成av片中文字幕在线观看| 19禁男女啪啪无遮挡网站| 五月开心婷婷网| 亚洲九九香蕉| 日韩欧美免费精品| 亚洲欧美一区二区三区黑人| 亚洲黑人精品在线| 超色免费av| 99久久国产精品久久久| 菩萨蛮人人尽说江南好唐韦庄| 欧美一级毛片孕妇| 欧美中文综合在线视频| 日本vs欧美在线观看视频| 欧美黄色淫秽网站| 首页视频小说图片口味搜索| 国产高清videossex| 黄色怎么调成土黄色| 99九九在线精品视频| 九色亚洲精品在线播放| 亚洲欧美激情在线| 亚洲成人免费av在线播放| 涩涩av久久男人的天堂| 久久国产精品男人的天堂亚洲| 免费少妇av软件| 日韩欧美三级三区| 在线观看人妻少妇| 人妻一区二区av| 日韩视频一区二区在线观看| av网站免费在线观看视频| 国产av又大| 一本—道久久a久久精品蜜桃钙片| 91大片在线观看| 九色亚洲精品在线播放| 少妇被粗大的猛进出69影院| 69av精品久久久久久 | 亚洲精品国产一区二区精华液| 精品第一国产精品| 国产1区2区3区精品| 国产精品一区二区精品视频观看| 在线观看www视频免费| 国产日韩欧美亚洲二区| 人妻 亚洲 视频| 欧美日韩中文字幕国产精品一区二区三区 | 大陆偷拍与自拍| a在线观看视频网站| av片东京热男人的天堂| 欧美久久黑人一区二区| 老司机亚洲免费影院| 日韩中文字幕欧美一区二区| 日韩免费av在线播放| 国产不卡一卡二| 欧美激情极品国产一区二区三区| 国产高清激情床上av| 人人妻人人澡人人爽人人夜夜| 视频区图区小说| 国产日韩一区二区三区精品不卡| 一区二区三区激情视频| 久久久久精品人妻al黑| 9191精品国产免费久久| 欧美 亚洲 国产 日韩一| www日本在线高清视频| 成人av一区二区三区在线看| 日韩精品免费视频一区二区三区| 亚洲久久久国产精品| 国产成人精品久久二区二区91| 免费在线观看黄色视频的| 国产激情久久老熟女| 亚洲专区字幕在线| 国产精品一区二区精品视频观看| 男人舔女人的私密视频| 国产在线免费精品| 国产福利在线免费观看视频| 99久久精品国产亚洲精品| 中文字幕高清在线视频| 午夜激情av网站| 国产男靠女视频免费网站| 一进一出好大好爽视频| 丝袜美腿诱惑在线| 久9热在线精品视频| 女人精品久久久久毛片| 国产免费视频播放在线视频| 一区二区三区乱码不卡18| 欧美精品亚洲一区二区| 黑人巨大精品欧美一区二区蜜桃| 国产不卡av网站在线观看| 纵有疾风起免费观看全集完整版| 精品午夜福利视频在线观看一区 | 亚洲成人免费电影在线观看| 国产又色又爽无遮挡免费看| 国产伦人伦偷精品视频| 精品国产一区二区久久| 久久影院123| 色老头精品视频在线观看| av线在线观看网站| 日韩三级视频一区二区三区| 一区二区三区精品91| 久久久久国产一级毛片高清牌| 成人精品一区二区免费| 亚洲精品在线美女| 精品视频人人做人人爽| 一夜夜www| 国产成人影院久久av| 亚洲avbb在线观看| 国产亚洲精品一区二区www | 国产精品1区2区在线观看. | 精品少妇内射三级| 中文亚洲av片在线观看爽 | 在线观看www视频免费| 波多野结衣av一区二区av| 99在线人妻在线中文字幕 | 满18在线观看网站| 日本wwww免费看| 精品少妇久久久久久888优播| 女同久久另类99精品国产91| 日韩视频在线欧美| 天天添夜夜摸| 国产欧美日韩综合在线一区二区| 脱女人内裤的视频| 国产精品99久久99久久久不卡| 亚洲av成人不卡在线观看播放网| 国产91精品成人一区二区三区 | 免费一级毛片在线播放高清视频 | 搡老熟女国产l中国老女人| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区三| 性高湖久久久久久久久免费观看| 一级,二级,三级黄色视频| 精品午夜福利视频在线观看一区 | 国产精品一区二区精品视频观看| 丁香六月天网| 色94色欧美一区二区| 欧美日韩视频精品一区| 国产精品免费大片| 国产成人精品久久二区二区免费| 国产精品影院久久| 亚洲成av片中文字幕在线观看| 少妇裸体淫交视频免费看高清 | 午夜视频精品福利| 久久精品熟女亚洲av麻豆精品| 国产男女超爽视频在线观看| 黄色片一级片一级黄色片| 欧美久久黑人一区二区| 国产精品98久久久久久宅男小说| 欧美精品高潮呻吟av久久| 亚洲人成77777在线视频| 一区二区av电影网| 咕卡用的链子| 亚洲av成人不卡在线观看播放网| 久久精品aⅴ一区二区三区四区| 精品人妻在线不人妻| 国产成人精品在线电影| 亚洲国产av新网站| 亚洲国产中文字幕在线视频| 国产人伦9x9x在线观看| 色婷婷久久久亚洲欧美| 欧美亚洲日本最大视频资源| 国产91精品成人一区二区三区 | 一级毛片精品| 狠狠精品人妻久久久久久综合| 亚洲,欧美精品.| 汤姆久久久久久久影院中文字幕| 久久久久精品国产欧美久久久| 岛国在线观看网站| 成人特级黄色片久久久久久久 | 91成年电影在线观看| 菩萨蛮人人尽说江南好唐韦庄| av国产精品久久久久影院| 亚洲精品国产区一区二| 精品少妇黑人巨大在线播放| 这个男人来自地球电影免费观看| 精品久久蜜臀av无| netflix在线观看网站| 999精品在线视频| 国产精品二区激情视频| 久久性视频一级片| 亚洲精品国产色婷婷电影| 国产精品98久久久久久宅男小说| 热99久久久久精品小说推荐| av超薄肉色丝袜交足视频| 成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 考比视频在线观看| 18在线观看网站| 久久ye,这里只有精品| 免费在线观看影片大全网站| 日本黄色日本黄色录像| 亚洲人成电影免费在线| 亚洲av成人一区二区三| 日韩视频在线欧美| av网站免费在线观看视频| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影小说| 国产高清激情床上av| 汤姆久久久久久久影院中文字幕| 黄色丝袜av网址大全| av免费在线观看网站| 午夜福利一区二区在线看| 男女边摸边吃奶| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产区一区二| 成人亚洲精品一区在线观看| 女人精品久久久久毛片| 激情在线观看视频在线高清 | 亚洲欧美激情在线| 十八禁网站免费在线| 欧美乱妇无乱码| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 精品一品国产午夜福利视频| 丝袜人妻中文字幕| 脱女人内裤的视频| 欧美+亚洲+日韩+国产| 久久国产精品大桥未久av| 少妇的丰满在线观看| 亚洲色图av天堂| 欧美日本中文国产一区发布| 两性夫妻黄色片| 亚洲精品久久午夜乱码| 丝袜在线中文字幕| 十八禁网站网址无遮挡| 99精品久久久久人妻精品| 91精品国产国语对白视频| 国产在线一区二区三区精| 极品教师在线免费播放| av网站在线播放免费| 老司机在亚洲福利影院| 国产免费av片在线观看野外av| 欧美乱妇无乱码| 97人妻天天添夜夜摸| 少妇裸体淫交视频免费看高清 | 人妻一区二区av| av福利片在线| 欧美 亚洲 国产 日韩一| 午夜福利,免费看| 国产麻豆69| 99国产精品一区二区三区| 日韩欧美一区视频在线观看| 最新的欧美精品一区二区| 免费在线观看日本一区| 日韩制服丝袜自拍偷拍| 久久人妻福利社区极品人妻图片| 精品午夜福利视频在线观看一区 | 老熟妇乱子伦视频在线观看| 老司机深夜福利视频在线观看| 国产主播在线观看一区二区| 亚洲人成电影免费在线| 热99国产精品久久久久久7| 日韩精品免费视频一区二区三区| 亚洲人成电影观看| 大片免费播放器 马上看| 极品少妇高潮喷水抽搐| 欧美精品一区二区大全| 淫妇啪啪啪对白视频| 国产精品久久久久久精品古装| 丝袜美腿诱惑在线| 在线播放国产精品三级| 国产高清视频在线播放一区| 久久中文字幕一级| 国产高清国产精品国产三级| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 午夜成年电影在线免费观看| 精品国产亚洲在线| 国产欧美亚洲国产| av片东京热男人的天堂| 欧美激情久久久久久爽电影 | 成人国产一区最新在线观看| 成人免费观看视频高清| 久久久精品国产亚洲av高清涩受| 在线 av 中文字幕| 免费人妻精品一区二区三区视频| netflix在线观看网站| 精品亚洲成国产av| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 久久久久久久精品吃奶| 亚洲专区字幕在线| 成人免费观看视频高清| 色综合欧美亚洲国产小说| 999久久久精品免费观看国产| 免费观看人在逋| 黑人欧美特级aaaaaa片| 国产日韩欧美亚洲二区| 久久免费观看电影| 91精品国产国语对白视频| 99re6热这里在线精品视频| 欧美日韩亚洲国产一区二区在线观看 | 大型黄色视频在线免费观看| 黄频高清免费视频| 精品国产乱子伦一区二区三区| 免费黄频网站在线观看国产| 亚洲精品自拍成人| 国产免费视频播放在线视频| 亚洲精品久久成人aⅴ小说| 欧美乱妇无乱码| 无限看片的www在线观看| 男女床上黄色一级片免费看| 可以免费在线观看a视频的电影网站| 国产成人欧美| 交换朋友夫妻互换小说| 国产1区2区3区精品| 久久精品国产亚洲av香蕉五月 | 国产黄色免费在线视频| 午夜91福利影院| 国产精品免费一区二区三区在线 | 99精品欧美一区二区三区四区| 成人国产av品久久久| 国产无遮挡羞羞视频在线观看| 狠狠婷婷综合久久久久久88av| 精品少妇久久久久久888优播| 美女午夜性视频免费| 99热国产这里只有精品6| 女性被躁到高潮视频| 久久久水蜜桃国产精品网| 国产亚洲午夜精品一区二区久久| 亚洲伊人色综图| a在线观看视频网站| 一区二区三区乱码不卡18| 欧美老熟妇乱子伦牲交| 99热网站在线观看| 老熟妇仑乱视频hdxx| 1024视频免费在线观看| 无限看片的www在线观看| 女性生殖器流出的白浆| 一级毛片电影观看| 男女午夜视频在线观看| 黄片大片在线免费观看| 免费日韩欧美在线观看| 人人妻人人澡人人爽人人夜夜| 久久午夜综合久久蜜桃| 少妇精品久久久久久久| 美女主播在线视频| 在线观看66精品国产| 免费观看人在逋| 美女福利国产在线| 人人妻人人爽人人添夜夜欢视频| 午夜激情久久久久久久| 日韩制服丝袜自拍偷拍| 嫁个100分男人电影在线观看| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 午夜久久久在线观看| 亚洲精品在线观看二区| 亚洲色图 男人天堂 中文字幕| 老司机靠b影院| 高清毛片免费观看视频网站 | 欧美黑人精品巨大| 18禁裸乳无遮挡动漫免费视频| 午夜福利视频在线观看免费| 777米奇影视久久| 黑人巨大精品欧美一区二区蜜桃| 汤姆久久久久久久影院中文字幕| 欧美激情久久久久久爽电影 | 大香蕉久久成人网| 丰满饥渴人妻一区二区三| 麻豆av在线久日| 少妇 在线观看| 天天操日日干夜夜撸| www日本在线高清视频| 亚洲一码二码三码区别大吗| 热99国产精品久久久久久7| 69av精品久久久久久 | cao死你这个sao货| 一级黄色大片毛片| 国产精品成人在线| 久久久久久久国产电影| 久久这里只有精品19| 亚洲欧美色中文字幕在线| 欧美另类亚洲清纯唯美| 久热这里只有精品99| 国产aⅴ精品一区二区三区波| 蜜桃在线观看..| 欧美大码av| 欧美黑人欧美精品刺激| 怎么达到女性高潮| 十八禁网站免费在线| 国产99久久九九免费精品| 国产在线视频一区二区| 久久 成人 亚洲| 国产成人精品在线电影| 午夜91福利影院| 国产三级黄色录像| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 黄色丝袜av网址大全| 欧美黄色片欧美黄色片| 国产一区二区 视频在线| 精品国产一区二区三区四区第35| 亚洲成a人片在线一区二区| 嫩草影视91久久| 别揉我奶头~嗯~啊~动态视频| 激情视频va一区二区三区| 久久久久国内视频| 九色亚洲精品在线播放| 国产精品久久久久久人妻精品电影 | 91精品国产国语对白视频| 国产在线免费精品| 国产精品电影一区二区三区 | 久久久精品免费免费高清| 777米奇影视久久| 在线观看一区二区三区激情| 日本vs欧美在线观看视频| 丝瓜视频免费看黄片| 一进一出抽搐动态| 日韩制服丝袜自拍偷拍| 久久这里只有精品19| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久小说| 久久久久久久国产电影| bbb黄色大片| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 女人高潮潮喷娇喘18禁视频| 色婷婷av一区二区三区视频| 免费看a级黄色片| 女人精品久久久久毛片| 亚洲欧美色中文字幕在线| 欧美变态另类bdsm刘玥| 欧美大码av| 久久av网站| 丰满迷人的少妇在线观看| 人人妻人人爽人人添夜夜欢视频| 成人18禁高潮啪啪吃奶动态图| av视频免费观看在线观看| 搡老乐熟女国产| 人妻久久中文字幕网| 日韩视频在线欧美| 亚洲精品国产色婷婷电影| 他把我摸到了高潮在线观看 | 国产日韩欧美亚洲二区|