• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical composition and structure characterization of distillation residues of middle-temperature coal tar☆

    2017-06-01 03:20:38ZhihuiSunWeihongZhang

    Zhihui Sun*,Weihong Zhang

    School of Chemistry and Chemical Engineering,Xianyang Normal University,Xianyang 712000,China

    1.Introduction

    With the reduction of crude oil in the world,seeking for alternative source of energy is presently one of the most effective ways to solve the energy crisis[1].Coal tar,as a byproduct of coal pyrolisis,is seen as liquid fuel feedstock.Hydrogenation plays an important role in coal tar upgrading in recent years[2-7].However,compared with high-temperature coal tar,low and middle-temperature coal tar has been expected to be ideal hydrogenation processing feed stock due to its lower density and higher content of aliphatic hydrocarbons and other characteristics.

    The distillation residues of coal tar are obtained from distillation of coal tar[8].Compared with raw material,they contain higher contents of heteroatoms(such as O,N and S)and metal,and are more complex in chemical structures.Therefore it is more difficult to make distillation residues of coal tar light during the process of hydrogenation.Further research on their compositions and molecular structures is important in upgrading coal tar.Nevertheless,it is difficult to better characterize them because of their abundant compounds,complex structures and broader molecular weight distributions.

    In general,it is an effective approach to separate coal tar and their derivatives into different classes and then to analyze them individually.According to literatures[9-18],there were many methods for separating coal tar pitch,such as solvent extraction,distillation,planar chromatography and size exclusion chromatography.The main purposes of hydrogenation of coal tar are aromatics saturation,ring opening of cycloalkanes and long-chain alkanes broken and reduction in molecular weight.In other words,the distributions of saturate,aromatic,resin and asphaltene compounds of coal tar will change greatly through hydrogenation.Therefore,the conventional saturate-aromatic-resin-asphaltene(SARA)method was selected to be the preferred separation approach based on its hydrogenation mechanism.Moreover,for a deeper knowledge of how the group composition changes for coaltar under different hydrogenation conditions,it is necessary to analyze the molecular structure of individual fraction.

    According to reference materials,coaltarpitch has been characterized by using different techniques such as Fourier transform infrared spectroscopy,NMR,elemental analysis,molecular weight analysis and so on[10-11,13,15-16].Among them,as the methods for the determination of molecular weight,mass spectrometry(MS),vapor pressure osmometry(VPO)and gel permeation chromatography(GPC)have been usually applied to measure average molecular weights of coal tar fractions[13,16,19].The widely used VPO technique is simple and easy to operate.However,a higher molecular weight is always obtained by using this method because of aggregate formation.In general,each method has its own limitations.On the one hand,considering almost no association existing in the saturate fraction,VPO method was selected to determine their molecular weights.On the other hand,the molecular weights of aromatic,resin and asphaltene fractions were measured by using GPC.As a note,the molecular weights determined are not absolute values and they can be only used for comparison between different fractions.

    Above all,as different research purposes,both in sample separation method and characterization techniques are different.In this paper,the distillation residues of middle-temperature coal tar(DRMCT)were separated into four main fractions(saturate,aromatic,resin and asphaltene)using the combination of solvent extraction and column chromatography separation[19,20].In addition,the collected fractions were then investigated by means of elemental analysis,FTIR,combined with proton nuclear magnetic resonance(1H NMR)analysis and molecular weights.

    2.Experimental

    2.1.Sample

    A middle-temperature coal tar from a coking plant of Shanbei(northern Shaanxi Province),a byproduct of brown coal using Middle Temperature Pyrolysis Process,was used as raw material.DRMCT with a total yield of 43%were obtained by distillation of the coal tar to 653 K and their main properties are presented in Table 1.

    Table 1Chemical analysis of DRMCT

    2.2.Isolation of DRMCT

    DRMCT were separated into saturate,aromatic,resin,and asphaltene fractions.Fig.1 illustrates the separation process in a simplified sequence flow diagram.

    DRMCT and then-pentane solvent with a about 1:30 volume ratio were mixed.The mixture was in an ultrasonic bath at 313 K for 2 h in order to ensure the sample completely dissolving.Then,the resulting solution was cooled and filtered through a 3 μm quantitative filter for obtaining the asphaltene fraction.Next,the asphaltene fraction was further purified with hot toluene.At the same time,the toluene insoluble material was obtained.The solvent toluene was removed under vacuum condition and then the asphaltene fraction was dried in a vacuum drying oven at 353 K.

    Subsequently,the pentane soluble solution was furtherseparated into saturate,aromatic,and resin fractions by using column chromatography separation method.The operation steps were as follows.A 12-mminternal-diameter and 70-cm-long glass column was used and packed with moderate active neutral alumina.After prewetting the alumina column with pentane,the concentrated pentane soluble solution(about 10 ml)was adsorbed onto the alumina.Then 80 ml of pentane and 80 ml of toluene were used to elute the saturate and aromatic fractions fromthe alumina column,respectively.Atlast,about80 mlmixture of toluene and ethanol(1:1 volume ratio)was used to elute the resin fraction.

    2.3.Analytical chemistry

    Elemental analysis(C,H,S,N)of all the samples was determined by means of a VarioEL III analyzer with a combustion method.

    FTIR spectral measurements for the asphaltene,saturate,aromatic and resin fractions from DRMCT were carried out on a Bruker Equinox-55 spectrophotometer(KBr pellets).All the fractions were scanned in the range 400-4000 cm-1.

    The molecular weight of the saturate fraction was measured by using K7000 vapor pressure osmometer(VPO)(KNAUER).Toluene was selected to be the solvent and at an operating temperature of 353 K[21].

    The molecular weights of the aromatic,resin and asphaltene fractions were determined by gel permeation chromatography(GPC,America,UltiMate3000).HPLC-grade THF was used as the mobile phase and the flow rate was 1 ml·min-1.A range of standard polystyrene samples were used to calibrate the column.

    1H NMR spectra of all the samples were recorded on a Varian-FT-80A spectrometer.The analysis was performed at a 1 H resonance frequency of 400 MHz.DMSO-d6 was used as solvent for asphaltene fraction and solvent CDCl3forsaturate,aromatic and resin fractions.Tetramethylsilane(TMS)was used as an internal standard for all samples.

    3.Results and Discussion

    The photos of saturate,aromatic,resin eluents and asphaltene fraction from DRMCT are shown in Fig.2.The DRMCT showed the following compositions:22.5%saturate,24.3%aromatic,26.5%resin,16.9%asphaltene and 1.8%toluene insoluble.From the data it can be concluded that the overall recovery of oil products is 92.0%of the total sample mass.The loss was attributed to evaporation of saturates and aromatics in the process of evaporating off the solvents such as pentane and toluene[22].Besides,there were also a small amount of strong polar materials absorbed onto the alumina which were not eluted completely.Akmazet al.[23]used the same method to separate Batiraman heavy crude oil into such four fractions(SARA),and the contents of heavier components such as resin and asphaltene fractions were 27%and 28%,respectively.Compare with the crude oil,DRMCT were lighter because they contained lower amount of the two fractions.

    Fig.1.Scheme of isolation of DRMCT.

    Fig.2.The photos of saturate,aromatic,resin eluents and asphaltene fraction from DRMCT.

    3.1.Chemical analysis

    The results of the elemental analysis and molecular weights for the asphaltene,saturate,aromatic and resin fractions from DRMCT are listed in Table 2.The number average molecular weights(Mn)were determined by using VPO method for saturate fraction and GPC method for aromatic,resin and asphaltene fractions,respectively.The results,as shown in Table 2,indicate that the asphaltene fraction contains the highest molecular weight,while the aromatic fraction has the lowest molecular weight.However,according to Akmaz study[23],the asphaltene and resin fractions from crude oil had similar molecular weight values.

    Table 2Elemental analysis and molecular weights of fractions from DRMCT

    For the saturate and aromatic fractions,the data of the elemental analysis(listed in Table 2)indicate that their main elements include carbon and hydrogen,their total content is up to 99.3%and 97.0%,respectively.The H/C ratio for the four fractions is in the following order:saturate>aromatic>resin>asphaltene,suggesting decreasing hydrogen efficiency in this sequence.Maya crude oil showed the same trend in Walteret al.[19].Nevertheless,according to Akmaz[23]study,the aromatic fraction contained lower H/C ratio than resin fraction isolated from Batiraman crude oil.The H/C ratio of the saturate fraction from DRMCT is a somewhat high 1.907.This is expected because the saturate fraction contains high amount of methylene groups with a H/C ratio of 2.0.The result of the H/C ratio analysis also indicates that the asphaltene fraction contains the most condensed aromatic ring.The aromatic,resin and asphaltene fractions from DRMCT contain lower H/C ratio than the three fractions from crude oil[23].

    It is worth noting that the saturate fraction contains barely any content of heteroatom,such as oxygen,nitrogen and sulfur.For the aromatic and resin fractions,the values of heteroatom content are 2.96%and 10.28%,respectively.However,in contrast to them,the asphaltene fraction contains the highest value(about 16.6%).It reveals that the heteroatoms(S,N and O)in DRMCT mostly exist in aromatics and rarely in par affinic chains,which is consistent with other studies[19,23].According to the data listed in Table 2,the three fractions(aromatic,resin and asphaltene)from DRMCT contain lower total content of sulfur,but higher oxygen than other fractions from Batiraman crude oils[19,23].The contents of sulfur,nitrogen and oxygen in the aromatic,resin and asphaltene three fractions from DRMCT increase with increasing the molecular weights of the three fractions,whereas the content of sulfur in the three fractions from Batiraman crude oil showed no trend.

    The chemical analysis reveals that the asphaltene fraction from DRMCT is the most complexity and heaviest.Moreover,in order to better understand the structure of each fraction,a series of methods were applied to further analyze them.

    3.2.FTIR structural characterization

    The functional groups present in the four fractions from DRMCT were determined by means of FTIR spectroscopy in order to obtain deeper knowledge of differences between them.Fig.3 presents the FTIR spectrum of the saturate,aromatic,resin and asphaltene fractions from DRMCT.According to Akmaz'results in research works[23],it was pointed out that all the fractions from crude oil displayed strong adsorption bands related to aliphatic C-H bonds.However,the FTIR spectrum(Fig.3)reveals that only the saturate fraction exhibits strong absorption peaks at 2919,2850 and 1463,1386 cm-1,which are due to stretching of aliphatic C-H bonds and angle deformation vibrations of C-CH3and-CH2-,respectively[24].Also,a strong absorption band at 727 cm-1related to alkyl chains-(CH2)n-(n≥4),is present in the saturate fraction.The result is in accord with its highest H/C atomic ratio(1.907).On the contrary,the aromatic,resin and asphaltene fractions displayed low absorption at such peaks.

    Fig.3.FT-IR spectrum of the four fractions from DRMCT.

    For the aromatic,resin and asphaltene fractions from DRMCT,all the spectra show the absorption bands around 1600 cm-1(corresponding to carbon-carbon double bond stretching vibrations of aromatic rings)and the bands in the region 900-700 cm-1(related to aromatic,outof-plane,C-H bending)[10]are observed.However,almost no such absorption bands are presentin the saturate fraction.The results further indicate that the saturate fraction of DRMCT is composed primarily of aliphatic hydrocarbons.

    Further analyze the substituents on the aromatic rings,it is found that three main adsorption peaks near 880,815 and 750 cm-1are present in the asphaltene,aromatic and resin fractions.The peak near 880 cm-1is related to penta-substituted aromatic rings containing isolated C-H bonds[9].The two adsorption bands at about 815 and 750 cm-1are corresponding to systems containing 1,4-subsituted and 1,2-disubstituted aromatics,respectively[25].As seen in Fig.3,the aromatic fraction is characterized by the lowest degree of substitution(the most strong adsorption bands at 879,816 and 758 cm-1).For the resin fraction,two strong adsorption bands at 817 and 752 cm-1are observed.On the contrary,the asphaltene fraction shows only one distinctpeak at820 cm-1in this region.The results suggest that the asphaltene fraction is featured by the highestdegree of substitution compared with otherfractions,which is consistent with the H/C ratio analysis.

    The absorption peaks at 1300-1100 cm-1,related to C-O bonding stretching in alcohols,phenols and ethers compounds[1,25]are observed in the spectra of aromatic,resin and asphaltene fractions.By comparing the intensity of the peaks,it seems that the asphaltene fraction contains more of the C-O groups from phenols compounds than the aromatic and resin fractions.The result is consistent with their oxygen content analysis.However,a weak band at 1705 cm-1corresponding to C═O stretching vibrations from carboxylic acids,ketones and aldehydes compounds[26]is observed in the spectrum of aromatic fraction,rather than in the spectra of the resin and asphaltene fractions.

    The strong adsorption at 3367 cm-1,which is the characteristic band for self-associated OH hydrogen bond[27]is observed in the spectrum of resin.However,compared with resin fraction,the asphaltene fraction shows a broader peak in the region 3100-3400 cm-1,it demonstrates that the asphaltene fraction contains a stronger hydrogen bond,which may be attributed to its higher oxygen content.

    3.3.1H NMR

    Fig.4 shows the1H NMR spectra of the saturate,aromatic,resin and asphaltene fractions from DRMCT.According to the literature[24],the distribution of each kind of hydrogen for the four fractions was measured as presented in Table 3.As expected,the saturate fraction contains a small amount of aromatic hydrogen.Besides,the value ofHβin saturate fraction is high up to 69.9%,showing that a high amount of hydrogen in β or further position to aromatic ring are in the form of-CH2and-CH-,or in the form of-CH-attached to methyl groups[19].The result is in accord with the IR analysis that the saturate fraction is rich long alkyl chains.The values ofHα,represent the branching degree of aromatic rings,are in the following sequence:saturate<aromatic<resin<asphaltene.The lowestHαvalue of 10.3%for the saturate fraction is possibly attributed to its lack of aromatic structure.Moreover,the saturate fraction contains the highest amount of γ-hydrogens,in the position of at least three carbons away from aromatic ring.But for the asphaltene fraction,theHγvalue of 8.10%is the lowest.Combined with the highest value ofHA37.2%,it can be inferred that methyl groups are the main alkylside chains in the asphaltene fraction.

    Fig.4.1H NMR spectra of the four fractions from DRMCT.(A.Saturate,B.Aromatic,C.Resin,D.Asphaltene).

    Table 3Contents of each type of hydrogen in the fractions from DRMCT(wt%)

    3.4.Average structural parameter(ASP)calculations

    The concept of“average structuralparameter(ASP)”has been widely used to characterize the structures of some complexity of coal,petroleum and their derived materials.The average structural parameters of the four fractions from DRMCT have been calculated by using the improved Brown-Ladner(B-L)method[21],basing on the data of1H NMR,elemental analysis,FTIR combined with number average molecular weight(Mn).The data are listed in Table 4.

    Table 4Results of ASP of fractions from DRMCT①

    Aromaticity factor(fA)is defined as the atomic ratio of aromatic carbons to total carbons and the value offAis to some extent a measure of the degree of condensation of a molecule.ThefAvalues of the asphaltene,aromatic and resin fractions are much higher and the data are 0.75,0.68 and 0.70,respectively,while the saturate fraction contains significantly lower value 0.13.The results show that the asphaltene fraction is more condensed than other three fractions,according with the elemental analysis result that it has the lowest ratio of H/C.As for the aromaticity factor,compared with the fractions from crude oils[23,29,30],the saturate fraction from DRMCT has similar value,whereas the aromatic,resin and asphaltene fractions all have higher values.The comparison results are consistent with H/C ratio analyses as mentioned above.

    As for the values ofHau/Car,which represent the H/C ratio of the hypothetical unsubstituted aromatic ring system,the four fractions are listed in order of value:resin<asphaltene<aromatic<saturate.The saturate fraction possesses the highest value ofHau/Car(1.12),showing that for the saturate fraction the number of unsubstituted aromatic rings is more than the numbers for the other three fractions.For the value of σ,represents the degree of the substitution of aromatic rings[13],the saturate fraction possesses the highest value(0.69),followed by resin(0.37),asphaltene(0.33)and aromatic(0.29).

    The numbers of paraffinic carbons permolecule for the four fractions vary from 0.33 to 25.00.The lowest value ofCpfor the asphaltene fraction is 0.33,showing thatmethylis the mostsubstituent group in aromatic rings.But for the saturate fraction,this value is up to 25.00,indicating that most amount of carbons are mainly in long-chain alkanes.For the aromatic and resin fractions,the values ofCpare similar.

    In order to further understand the structures of the four fractions,the distributions of two types of rings(aromatic(RAr)and naphthenic rings(Rn))are analyzed.For each of the aromatic,resin and asphaltene fractions,RAris more thanRn.Furthermore,for the resin and asphaltene fractions,it seems that they have a similar aromatic ring structure(number of aromatic rings 6.21 and 6.04,respectively).However,the resin fraction seems to have a less naphthenic structure than the asphaltene fraction(number of naphthenic rings 1.63versus3.14).The result suggests that the asphaltene fraction from DRMCT with higher molecular weight contains more heterocyclic and cycloparaffinic rings rather than condensed aromatic rings.

    3.5.Hypothetical molecular structure model

    The hypothetical molecular structure models for the four fractions from DRMCT were constructed on the basis of the average structure parameters combined with FTIR analysis.However,the saturate fraction can't be constructed based simply on such analysis results.In general,saturates are composed of paraffin and cycloparaffin.Therefore,the model of saturate fraction was obtained assuming it was formed from one naphthenic ring and a few alkyl side chains.Fig.5 presents the hypothetical average molecular structural models for the asphaltene,saturate,aromatic and resin fractions,respectively.Besides,the molecular formulas of the fractions were also obtained based on the hypothetical molecularstructure models.The models give a visual representation of the compositions and structures of the four fractions.

    Fig.5.Hypothetical average structures for the four fractions from DRMCT.

    4.Conclusions

    It was an effective way to separate DRMCT into asphaltene,saturate,aromatic and resin fractions by using solvent extraction combined with column chromatography separation.The yields for the four fractions were as follows:saturate 22.5%,aromatic 24.3%,resin 26.5%and asphaltene fraction 16.9%.The compositions and structures of the different fractions have been further characterized by making use of elemental analysis,FTIR,1H NMR and molecular weights.

    In the present work it was found that the saturate fraction from DRMCT was rich long alkyl chains and almost no heteroatom.The molecular weights for the aroamatic,resin and asphaltene fractions were in the following order:asphaltene>resin>aromatic.The contents of heteroatom(especially oxygen)and the aromaticity degree in these fractions increase with increasing the molecular weight.

    The importantdifferences between the resin and asphaltene fractions from DRMCT and conventional crude oils were that,the fractions from DRMCT contained lowermolecularweight,lowercontentofaliphatic hydrocarbons and higher aromaticity degree.It was also found that the asphaltene fraction from DRMCT,which contained higher molecular weight,had a similar aromatic ring structure with the resin fraction.The result revealed that the heaviest and the most complex components from DRMCT were not always composed of more condensed aromatic rings,butsome heterocyclic compounds and cycloparaf finic rings.Moreover,the less condensed aromatic ring for the asphaltene fraction from DRMCT was attributed to DRMCT's source,low rank coal.

    [1]M.Sun,X.X.Ma,Q.X.Yao,R.C.Wang,Y.X.Ma,G.Feng,J.X.Shang,L.Xu,Y.H.Yang,GC-MS and TG-FTIR study of petroleum ether extractand residue from low temperature coal tar,Energy Fuel25(2011)1140-1145.

    [2]D.Li,W.H.Li,L.W.Cui,X.Y.Yang,M.X.Zhang,S.H.Yan,Optimization of processing parameters and macrokinetics for hydrodenitrogenation of coal tar,Adv.Sci.Lett.4(2011)4-5.

    [3]T.Kan,H.Y.Wang,H.He,C.S.Li,S.J.Zhang,Experimentalstudy on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels,Fuel90(2011)3404-3409.

    [4]J.Kusy,L.Andel,M.Safarova,J.Vales,K.Ciahotny,Hydrogenation process of the tar obtained from the pyrolisis of brown coal,Fuel101(2012)38-44.

    [5]D.Li,Z.Li,W.H.Li,Q.C.Liu,Z.L.Feng,Z.J.Fan,Hydrotreating of low temperature coal tar to produce clean liquid fuels,Anal.Appl.Pyrolysis100(2013)245-252.

    [6]J.Long,B.X.Shen,H.Ling,J.G.Zhao,J.C.Lu,Novel solvent deasphalting process by vacuum residue blending with coal tar,Ind.Eng.Chem.Res.50(2011)11259-11269.

    [7]Q.Shi,N.Pan,H.Y.Long,D.C.Cui,X.F.Guo,Y.H.Long,K.H.Chung,S.Q.Zhao,C.M.Xu,C.S.Hsu,Characterization of middle-temperature gasification coal tar.Part 3:Molecular composition of acidic compounds,Energy Fuel27(2012)108-117.

    [8]Z.T.Li,Y.J.Wu,Y.Zhao,L.Wang,H.Zhu,L.Qin,F.Feng,W.Wang,Y.J.Wu,Analysis of coal tar pitch and smoke extract components and their cytotoxicity on human bronchial epithelial cells,Hazard.Mater.186(2011)1277-1282.

    [9]M.D.Guillen,M.J.Iglesias,A.Dominguez,C.G.Blanco,Semiquantitative FTIR analysis of a coal tar pitch and its extracts and residues in several organic solvents,Energy Fuel6(1992)518-525.

    [10]J.Alca?iz-Monge,D.Cazorla-Amorós,A.Linares-Solano,Characterisation of coal tar pitches by thermal analysis,infrared spectroscopy and solvent fractionation,Fuel80(2001)41-48.

    [11]G.Papole,W.W.Focke,N.M.Manyala,Characterization of medium-temperature Sasol-Lurgi gasifier coal tar pitch,Fuel98(2012)243-248.

    [12]M.J.Lazaro,A.A.Herod,R.Kandiyoti,Comparison of the fractionation of a coal tar pitch by solvent solubility and by planar chromatography,Fuel78(1999)795-801.

    [13]J.R.Kershaw,K.J.Black,Structuralcharacterization of coal-tar and petroleum pitches,Energy Fuel7(1993)420-425.

    [14]M.Poot,R.C.Everson,Extraction of coal-tar pitches with toluene near the critical point:gasification and coal hydrogenated pitches,Fuel78(1999)1017-1025.

    [15]C.Diaz,C.G.Blanco,NMR:A powerful tool in the characterization of coal tar pitch,Energy Fuel17(2003)907-913.

    [16]T.J.Morgan,A.George,P.Alvarez,M.Millan,A.A.Herod,R.Kandiyoti,Characterization of molecular mass ranges of two coal tar distillate fractions(Creosote and Anthracene oils)and aromatic standards by LD-MS,GC-MS,probe-MS and sizeexclusion chromatography,Energy Fuel22(2008)3275-3292.

    [17]H.Meng,C.T.Ge,N.N.Ren,W.Y.Ma,Y.Z.Lu,C.X.Li,Complex extraction of phenol and cresol from model coal tar with polyols,ethanol amines,and ionic liquids thereof,Ind.Eng.Chem.Res.53(2013)355-362.

    [18]K.L.White,B.L.Knutson,G.Kimber,Extraction of coal tar pitch using a mixture of compressed CO2and toluene,Ind.Eng.Chem.Res.38(1999)3360-3366.

    [19]E.R.Walter,M.A.Tejraj,S.Steve,M.W.Linette,Isolation and characterization of the saturate and aromatic fractions of a Maya crude oil,Energy Fuel14(2000)839-844.

    [20]H.Seki,F.Kumata,Structural change of petroleum asphaltenes and resins by hydrodemetallization,Energy Fuel14(2000)980-985.

    [21]Y.D.Sun,C.H.Yang,H.Zhao,H.H.Shan,B.X.Shen,In fluence of asphaltene on the residue hydrotreating reaction,Energy Fuel24(2010)5008-5011.

    [22]N.Aske,H.Kallevik,J.Sj?blom,Determination of saturate,aromatic,resin and asphaltenic(SARA)components in crude oils by means of infrared and near-infrared spectroscopy,Energy Fuel15(2001)1304-1312.

    [23]S.Akmaz,O.Iscan,M.A.Gurkaynak,M.Yasar,The structural characterization of saturate,aromatic,resin,and asphaltene fractions of Batiraman crude oil,Pet.Sci.Technol.29(2011)160-171.

    [24]J.Alcan?iz-Monge,D.Cazorla-Amoro?s,A.Linares-Solano,Characterisation of coal tar pitches by thermal analysis,infrared spectroscopy and solvent fractionation,Fuels80(2001)41-48.

    [25]M.Fossen,H.Kallevik,K.D.Knudsen,J.Sj?blom,Asphaltenes precipitated by a twostep precipitation procedure.2.Physical and chemical characteristics,Energy Fuel25(2011)3552-3567.

    [26]V.Calemma,P.Iwanski,M.Nali,R.Scotti,L.Montanari,Structural characterization of asphaltenes of different origins,Energy Fuel9(1995)225-230.

    [27]C.Chen,J.S.Gao,Y.J.Yan,Original preasphaltenes and asphaltenes in coals,Fuel Process.Technol.55(1998)143-151.

    [28]Z.H.Sun,D.Li,H.X.Ma,et al.,Characterization of asphaltene isolated from lowtemperature coal tar,Fuel Process.Technol.138(2015)413-418.

    [29]T.W.Yang,Investigation on Structures and Aromatic Characteristics of Heavy Oils,China University of Petroleum,2011.(in Chinese)

    [30]Y.D.Sun,In fluence of Residue Compostition on Hydrotreating Reaction Performance and Properties of Catalyst,East China University and Technology,2011.(in Chinese)

    国产精品98久久久久久宅男小说| 18禁美女被吸乳视频| 狠狠婷婷综合久久久久久88av| 五月开心婷婷网| 香蕉丝袜av| 国产伦人伦偷精品视频| av超薄肉色丝袜交足视频| 超色免费av| 女警被强在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 狂野欧美激情性xxxx| 成人影院久久| 高潮久久久久久久久久久不卡| 女人爽到高潮嗷嗷叫在线视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产成人一精品久久久| 性高湖久久久久久久久免费观看| 女警被强在线播放| 久久精品国产综合久久久| 狠狠精品人妻久久久久久综合| 久久av网站| 亚洲av国产av综合av卡| 成人影院久久| 婷婷成人精品国产| 亚洲精品国产精品久久久不卡| 欧美精品一区二区免费开放| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 精品少妇黑人巨大在线播放| bbb黄色大片| 看免费av毛片| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 免费观看a级毛片全部| 欧美精品av麻豆av| 激情视频va一区二区三区| 国产不卡av网站在线观看| 精品福利永久在线观看| 国产成人啪精品午夜网站| 两性午夜刺激爽爽歪歪视频在线观看 | 一区二区三区精品91| 久久久精品94久久精品| 建设人人有责人人尽责人人享有的| h视频一区二区三区| 高清黄色对白视频在线免费看| 首页视频小说图片口味搜索| 又黄又粗又硬又大视频| 亚洲成人免费av在线播放| 色94色欧美一区二区| 人人妻人人澡人人看| 丁香六月欧美| 亚洲少妇的诱惑av| 最近最新中文字幕大全免费视频| 国产片内射在线| 国产精品免费视频内射| 亚洲精品美女久久久久99蜜臀| 在线看a的网站| 欧美日韩视频精品一区| 操出白浆在线播放| 亚洲成国产人片在线观看| 免费在线观看黄色视频的| 亚洲综合色网址| 国产成人免费无遮挡视频| 欧美国产精品va在线观看不卡| 久久久久久免费高清国产稀缺| 波多野结衣av一区二区av| 国产一卡二卡三卡精品| 国产精品一区二区在线观看99| 一级片免费观看大全| 欧美日韩一级在线毛片| 精品久久蜜臀av无| 亚洲欧美日韩高清在线视频 | 亚洲精品久久成人aⅴ小说| 女性生殖器流出的白浆| 日韩人妻精品一区2区三区| 国产成人精品久久二区二区91| 99久久国产精品久久久| 18禁裸乳无遮挡动漫免费视频| 国产精品久久电影中文字幕 | 母亲3免费完整高清在线观看| 69精品国产乱码久久久| 国产男女内射视频| 啦啦啦视频在线资源免费观看| 黄色成人免费大全| 国产在线一区二区三区精| av欧美777| 女人久久www免费人成看片| 69av精品久久久久久 | 国产精品亚洲一级av第二区| 精品亚洲乱码少妇综合久久| 他把我摸到了高潮在线观看 | av电影中文网址| 一边摸一边做爽爽视频免费| 午夜免费成人在线视频| 久久av网站| 天天操日日干夜夜撸| 女人被躁到高潮嗷嗷叫费观| 日韩欧美一区视频在线观看| 色94色欧美一区二区| 亚洲一区二区三区欧美精品| 制服诱惑二区| 熟女少妇亚洲综合色aaa.| 香蕉久久夜色| 久久毛片免费看一区二区三区| 亚洲五月婷婷丁香| 亚洲中文日韩欧美视频| 日韩 欧美 亚洲 中文字幕| a级毛片在线看网站| av天堂久久9| 黄色 视频免费看| 国产午夜精品久久久久久| 国产极品粉嫩免费观看在线| 又黄又粗又硬又大视频| 国产在线一区二区三区精| 亚洲av日韩精品久久久久久密| 麻豆av在线久日| 一本色道久久久久久精品综合| 欧美激情久久久久久爽电影 | 国产精品电影一区二区三区 | 狠狠婷婷综合久久久久久88av| 亚洲综合色网址| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜一区二区| 久久久久久亚洲精品国产蜜桃av| 欧美激情久久久久久爽电影 | 黑人操中国人逼视频| 波多野结衣av一区二区av| cao死你这个sao货| 脱女人内裤的视频| 精品亚洲成a人片在线观看| 51午夜福利影视在线观看| 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| 亚洲精品国产精品久久久不卡| 99久久精品国产亚洲精品| 黄色怎么调成土黄色| 色老头精品视频在线观看| 午夜视频精品福利| 国产午夜精品久久久久久| 国产区一区二久久| 国产亚洲一区二区精品| 国产精品av久久久久免费| 人妻久久中文字幕网| 中文字幕精品免费在线观看视频| 亚洲精品成人av观看孕妇| 成人av一区二区三区在线看| 18禁国产床啪视频网站| 亚洲一码二码三码区别大吗| 精品久久久久久电影网| 免费在线观看日本一区| 在线观看66精品国产| 丁香欧美五月| 免费高清在线观看日韩| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲情色 制服丝袜| 国产精品一区二区精品视频观看| 亚洲国产毛片av蜜桃av| 免费高清在线观看日韩| 三级毛片av免费| 成人精品一区二区免费| 久久久久久久国产电影| 久久久水蜜桃国产精品网| 色婷婷av一区二区三区视频| 国产精品1区2区在线观看. | cao死你这个sao货| 亚洲欧美日韩高清在线视频 | 久久久国产一区二区| 美女福利国产在线| 一边摸一边做爽爽视频免费| 久久久久精品人妻al黑| 欧美另类亚洲清纯唯美| 日韩中文字幕欧美一区二区| 考比视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 成人三级做爰电影| 国产高清视频在线播放一区| 老鸭窝网址在线观看| 国产日韩一区二区三区精品不卡| 久久久国产欧美日韩av| 交换朋友夫妻互换小说| 亚洲中文日韩欧美视频| 欧美黑人精品巨大| 精品国产一区二区久久| 亚洲精品成人av观看孕妇| 欧美日韩中文字幕国产精品一区二区三区 | 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| 国产色视频综合| 一区二区三区乱码不卡18| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 国产精品免费视频内射| 精品国产乱码久久久久久男人| 亚洲精品国产色婷婷电影| 成人国产一区最新在线观看| 丝袜人妻中文字幕| 国产成+人综合+亚洲专区| 久久毛片免费看一区二区三区| 99久久国产精品久久久| 午夜两性在线视频| 亚洲av第一区精品v没综合| 亚洲情色 制服丝袜| 在线观看人妻少妇| 最黄视频免费看| 在线 av 中文字幕| 国产精品一区二区在线观看99| 黑人猛操日本美女一级片| 男人舔女人的私密视频| 汤姆久久久久久久影院中文字幕| 99国产精品一区二区三区| 99精品欧美一区二区三区四区| 国产极品粉嫩免费观看在线| 天堂俺去俺来也www色官网| 日韩视频一区二区在线观看| 久久久久久久久免费视频了| 国产精品香港三级国产av潘金莲| 日本vs欧美在线观看视频| 一级a爱视频在线免费观看| 大香蕉久久网| 亚洲欧洲精品一区二区精品久久久| 大型黄色视频在线免费观看| 最新的欧美精品一区二区| 亚洲欧美一区二区三区久久| 国产一区二区三区综合在线观看| 伦理电影免费视频| 精品一区二区三卡| 精品国产乱码久久久久久小说| 亚洲午夜精品一区,二区,三区| av有码第一页| 淫妇啪啪啪对白视频| 一个人免费看片子| 狂野欧美激情性xxxx| 美女视频免费永久观看网站| 汤姆久久久久久久影院中文字幕| 曰老女人黄片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲中文日韩欧美视频| 老汉色av国产亚洲站长工具| 久久ye,这里只有精品| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 五月天丁香电影| 男女午夜视频在线观看| 一二三四社区在线视频社区8| 欧美人与性动交α欧美精品济南到| 啦啦啦视频在线资源免费观看| 免费黄频网站在线观看国产| cao死你这个sao货| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 日韩欧美三级三区| 99香蕉大伊视频| 国产免费视频播放在线视频| www.自偷自拍.com| 肉色欧美久久久久久久蜜桃| 一级毛片电影观看| 丁香欧美五月| 如日韩欧美国产精品一区二区三区| 国产免费视频播放在线视频| 国产成人系列免费观看| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频 | 午夜精品久久久久久毛片777| 美女福利国产在线| 侵犯人妻中文字幕一二三四区| 一本一本久久a久久精品综合妖精| 高清毛片免费观看视频网站 | 啦啦啦 在线观看视频| 最黄视频免费看| netflix在线观看网站| 日本欧美视频一区| 丝袜人妻中文字幕| 97人妻天天添夜夜摸| 精品国产一区二区三区久久久樱花| 天堂8中文在线网| avwww免费| av片东京热男人的天堂| 日韩欧美国产一区二区入口| 欧美精品一区二区免费开放| 建设人人有责人人尽责人人享有的| 亚洲一码二码三码区别大吗| 99国产精品一区二区三区| 久久久国产精品麻豆| 91大片在线观看| 国产淫语在线视频| 777米奇影视久久| 十八禁高潮呻吟视频| 男人操女人黄网站| 亚洲精品国产区一区二| 国产精品自产拍在线观看55亚洲 | 亚洲免费av在线视频| 黄色a级毛片大全视频| 久久久久久人人人人人| 91av网站免费观看| 男女高潮啪啪啪动态图| 不卡一级毛片| 国产成人精品在线电影| 免费久久久久久久精品成人欧美视频| 不卡一级毛片| 91av网站免费观看| 亚洲精品乱久久久久久| 日本vs欧美在线观看视频| 我要看黄色一级片免费的| 亚洲精品一二三| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区mp4| 成在线人永久免费视频| 一本色道久久久久久精品综合| 麻豆成人av在线观看| 国产精品.久久久| 久久久国产一区二区| 激情视频va一区二区三区| 人人妻人人爽人人添夜夜欢视频| 男人操女人黄网站| 岛国在线观看网站| 亚洲第一青青草原| 久久久精品国产亚洲av高清涩受| 国产精品98久久久久久宅男小说| 国产精品二区激情视频| 亚洲第一青青草原| 久久人人97超碰香蕉20202| av网站免费在线观看视频| 成人18禁在线播放| 少妇粗大呻吟视频| 国内毛片毛片毛片毛片毛片| 色综合欧美亚洲国产小说| 在线 av 中文字幕| 18禁国产床啪视频网站| 三级毛片av免费| 亚洲色图av天堂| 露出奶头的视频| 国产高清国产精品国产三级| 天堂俺去俺来也www色官网| 黄频高清免费视频| 中文字幕精品免费在线观看视频| 性色av乱码一区二区三区2| 欧美乱码精品一区二区三区| 俄罗斯特黄特色一大片| 一本久久精品| 一夜夜www| 又黄又粗又硬又大视频| 日本a在线网址| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| 国产精品久久久久成人av| 亚洲精品粉嫩美女一区| 一级片'在线观看视频| 不卡一级毛片| 国产免费福利视频在线观看| 日日爽夜夜爽网站| 色在线成人网| 1024视频免费在线观看| 国产免费视频播放在线视频| 精品视频人人做人人爽| 欧美日韩一级在线毛片| 水蜜桃什么品种好| 国产男女超爽视频在线观看| 亚洲欧美日韩高清在线视频 | 亚洲第一欧美日韩一区二区三区 | 成年人黄色毛片网站| 亚洲欧美精品综合一区二区三区| 人成视频在线观看免费观看| 国产精品1区2区在线观看. | 99热网站在线观看| 久久久国产欧美日韩av| 国产亚洲欧美精品永久| 国产高清激情床上av| 国产亚洲午夜精品一区二区久久| 一进一出好大好爽视频| av天堂久久9| 欧美老熟妇乱子伦牲交| 人人妻人人添人人爽欧美一区卜| 国产一区二区激情短视频| 丁香六月欧美| 国产av精品麻豆| 一本久久精品| 最近最新中文字幕大全免费视频| av免费在线观看网站| 中国美女看黄片| 一边摸一边做爽爽视频免费| tocl精华| 天天躁夜夜躁狠狠躁躁| 国产区一区二久久| 午夜福利欧美成人| 国产亚洲欧美在线一区二区| 精品国产乱子伦一区二区三区| 人人妻人人爽人人添夜夜欢视频| xxxhd国产人妻xxx| 国产亚洲欧美在线一区二区| 99九九在线精品视频| 99国产综合亚洲精品| 在线观看舔阴道视频| 国产av精品麻豆| 午夜福利影视在线免费观看| 最近最新中文字幕大全免费视频| 欧美精品亚洲一区二区| 视频在线观看一区二区三区| 午夜两性在线视频| 99精品久久久久人妻精品| 91字幕亚洲| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品第一综合不卡| 久久久久国产一级毛片高清牌| av在线播放免费不卡| 成人18禁在线播放| 十八禁网站免费在线| xxxhd国产人妻xxx| 亚洲人成77777在线视频| 日韩免费高清中文字幕av| 中文字幕人妻丝袜制服| 亚洲色图av天堂| 这个男人来自地球电影免费观看| 亚洲精品国产区一区二| 女警被强在线播放| 少妇精品久久久久久久| 亚洲国产中文字幕在线视频| 亚洲精品一二三| 人人妻人人添人人爽欧美一区卜| 色94色欧美一区二区| 一本综合久久免费| 老鸭窝网址在线观看| 国产视频一区二区在线看| 成年人黄色毛片网站| 老熟妇仑乱视频hdxx| 国产精品秋霞免费鲁丝片| 女人高潮潮喷娇喘18禁视频| 熟女少妇亚洲综合色aaa.| 他把我摸到了高潮在线观看 | 欧美激情高清一区二区三区| 蜜桃国产av成人99| 超色免费av| 日本黄色视频三级网站网址 | 成人手机av| 国产精品久久久久久精品古装| 免费在线观看黄色视频的| 97在线人人人人妻| 欧美中文综合在线视频| 久久av网站| 国产免费视频播放在线视频| 一夜夜www| 中文字幕精品免费在线观看视频| 电影成人av| 动漫黄色视频在线观看| 99热国产这里只有精品6| 极品少妇高潮喷水抽搐| 午夜激情久久久久久久| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美网| 免费观看av网站的网址| 亚洲精品一卡2卡三卡4卡5卡| 中文欧美无线码| 在线亚洲精品国产二区图片欧美| 中文字幕色久视频| a级片在线免费高清观看视频| 亚洲精品久久午夜乱码| 国内毛片毛片毛片毛片毛片| 在线观看66精品国产| 国产熟女午夜一区二区三区| 免费黄频网站在线观看国产| 久久ye,这里只有精品| 日韩三级视频一区二区三区| 国产在视频线精品| 亚洲av国产av综合av卡| 亚洲全国av大片| 日韩中文字幕视频在线看片| 亚洲第一青青草原| 王馨瑶露胸无遮挡在线观看| 纵有疾风起免费观看全集完整版| 亚洲熟女毛片儿| 精品国产乱码久久久久久小说| 一个人免费看片子| 久久影院123| 久久精品人人爽人人爽视色| 五月天丁香电影| 亚洲五月婷婷丁香| 亚洲少妇的诱惑av| 亚洲欧洲日产国产| 亚洲精品国产精品久久久不卡| 夜夜骑夜夜射夜夜干| av超薄肉色丝袜交足视频| 国产成人欧美| 成人国语在线视频| kizo精华| 黑人操中国人逼视频| 交换朋友夫妻互换小说| 每晚都被弄得嗷嗷叫到高潮| 日韩中文字幕视频在线看片| a级片在线免费高清观看视频| 亚洲中文日韩欧美视频| 满18在线观看网站| 999精品在线视频| 国产97色在线日韩免费| 国产91精品成人一区二区三区 | 大型av网站在线播放| 在线观看www视频免费| 国产一区二区在线观看av| 久久精品熟女亚洲av麻豆精品| 午夜免费鲁丝| 性色av乱码一区二区三区2| 亚洲中文字幕日韩| 日本vs欧美在线观看视频| 久久精品国产亚洲av香蕉五月 | 丝瓜视频免费看黄片| 美女扒开内裤让男人捅视频| 在线天堂中文资源库| 国产精品熟女久久久久浪| 90打野战视频偷拍视频| 老熟妇乱子伦视频在线观看| 亚洲天堂av无毛| 一个人免费看片子| 人人澡人人妻人| 大陆偷拍与自拍| 国产精品99久久99久久久不卡| 两性夫妻黄色片| 波多野结衣av一区二区av| 久久国产精品人妻蜜桃| 久久中文字幕人妻熟女| 天堂俺去俺来也www色官网| 99热网站在线观看| 欧美老熟妇乱子伦牲交| 一本久久精品| 青草久久国产| 国产精品久久久av美女十八| 黄色a级毛片大全视频| 男女之事视频高清在线观看| 999久久久精品免费观看国产| 夜夜夜夜夜久久久久| 1024香蕉在线观看| 一本久久精品| 欧美成狂野欧美在线观看| 色在线成人网| 国产成人av激情在线播放| 亚洲九九香蕉| 999久久久精品免费观看国产| 18禁裸乳无遮挡动漫免费视频| 亚洲av美国av| 超碰成人久久| 久久香蕉激情| 午夜福利乱码中文字幕| 色综合婷婷激情| 一边摸一边抽搐一进一小说 | 成年版毛片免费区| 操出白浆在线播放| 久久久精品免费免费高清| 亚洲成人手机| 亚洲一区二区三区欧美精品| 97在线人人人人妻| 两个人看的免费小视频| 黑丝袜美女国产一区| 午夜两性在线视频| 国产单亲对白刺激| 久久久久精品人妻al黑| 亚洲午夜精品一区,二区,三区| 在线观看免费午夜福利视频| 一区福利在线观看| 91精品国产国语对白视频| 啪啪无遮挡十八禁网站| 日韩制服丝袜自拍偷拍| 久久ye,这里只有精品| 国内毛片毛片毛片毛片毛片| 国产一区二区三区视频了| 精品午夜福利视频在线观看一区 | 91大片在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品中文字幕在线视频| 午夜激情久久久久久久| videosex国产| 黄网站色视频无遮挡免费观看| 亚洲精品乱久久久久久| 在线天堂中文资源库| 国产精品99久久99久久久不卡| 精品一区二区三区四区五区乱码| a级片在线免费高清观看视频| 老司机深夜福利视频在线观看| 麻豆国产av国片精品| h视频一区二区三区| 午夜福利视频精品| 国产黄色免费在线视频| 少妇精品久久久久久久| 啦啦啦在线免费观看视频4| 亚洲av欧美aⅴ国产| 99国产极品粉嫩在线观看| 久久久久久久久免费视频了| 国产成人精品无人区| 日韩欧美国产一区二区入口| 丰满迷人的少妇在线观看| 亚洲国产精品一区二区三区在线| 大型黄色视频在线免费观看| 制服人妻中文乱码| 男女免费视频国产| www.自偷自拍.com| 亚洲情色 制服丝袜| 国产成人精品无人区| 日韩制服丝袜自拍偷拍| 欧美久久黑人一区二区| 亚洲七黄色美女视频| 伊人久久大香线蕉亚洲五| 伦理电影免费视频| 精品免费久久久久久久清纯 | 黑丝袜美女国产一区| 亚洲精品国产区一区二| 夫妻午夜视频| 日韩欧美免费精品| 久久久久久人人人人人| 久久午夜综合久久蜜桃| 黑丝袜美女国产一区| 亚洲精品一卡2卡三卡4卡5卡| 美女主播在线视频| 一区二区日韩欧美中文字幕| 久久精品国产综合久久久| 最新的欧美精品一区二区| 伊人久久大香线蕉亚洲五| 2018国产大陆天天弄谢| 国产午夜精品久久久久久| 亚洲熟女毛片儿|