• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of the fuel rod's arrangement cooled by turbulent nano fluids flow in pressurized water reactor(PWR)

    2017-06-01 03:19:58HatamiGanjiSohrabiaslJing

    M.Hatami*,M.J.Z.Ganji,I.Sohrabiasl,D.Jing *

    1 International Research Center for Renewable Energy,State Key Laboratory of Multiphase Flow in Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China

    2 Department of Mechanical Engineering,Esfarayen University of Technology,Esfarayen,North Khorasan,Iran

    3 Department of Renewable Energies Engineering,Faculty of New Sciences&Technologies,University of Tehran,Tehran,Iran

    4 Department of Mechanical Engineering,Babol University of Technology,Babol,Iran

    1.Introduction

    One of the most important applications of nano fluids is cooling process.Although using nano fluids as working fluids in the primary cooling loop of light water reactor(LWR)has a number of limitations because any change in the reactor core materials affects the criticality and hence the effective neutron multiplication factor,but some researchers worked on numerically[1,2].Anyway,many other applications of nano fluids for cooling processes are presented in the literature such as modeling TiO2nano fluid for cooling the fuel rods which is presentedviaFig.1 by Zarifi and Jahanfarnia[1].

    Nano fluids application is not limited for rod's cooling.For example,Aziz[3]considered the outcome of time-dependent chemical reaction on the flow of a viscous fluid past an unsteady stretching sheet.Also,magneto hydrodynamic squeezing flow of a viscous fluid between parallel disks was analyzed by Domairry and Aziz[4].Mustafaet al.[5]solved the problem of the fluid flow between parallel plates by Homotopy Analysis Method(HAM).Turkyilmazoglu[6]solved momentum and energy equations of nano fluids analytically to deduce the flow and heat transport phenomena in two theoretical cases,single phase and multi-phase.When the nanoparticles are uniformly distributed across the condensate boundary layer called it single phase and when the concentration of nanoparticles through the film is allowed to vary from the wall to the outer edge of the condensate film in the light of modified Buongiorno's nano fluid model named multi-phase.Solution of particle's motion in different fluids media has been considered by the authors widely[7-10].

    Comparison of the single and two-phase modeling forthe nano fluids has been considered by the researchers.For instance,Haghshenas Fardet al.[11]compared the results of the single phase and two phase numerical methods for nano fluids in a circular tube.They reported that for Cu-water the average relative error between experimental data and CFD results based on single-phase model was 16%while for two-phase model was 8%.In another numerical study,G?ktepeet al.[12]compared these two models for nano fluid convection at the entrance of a uniformly heated tube which found the same results and confirm the accuracy of two-phase modeling.Mohyud-Dinet al.[13]in an analytical study,considered the three dimensional heat and mass transfer with magnetic effects for the flow of a nano fluid between two parallel plates in a rotating system.As one of their main outcomes,thermophoresis and Brownian motion parameters are directly related to heat transfer but are inversely related to concentration pro file.Also they found that higher Coriolis forces decrease the temperature boundary layer thickness.Three-dimensional flow of nano fluids under the radiation(due to solar oretc.)has been analyzed by Hayatet al.[14]and Khanet al.[15].They also computed and examined the effects of different parameters on the velocity,temperature,skin friction coefficient and Nusselt number of nano fluid flow.Other works in the field of nano fluids flow and heat transfer analysis can be found in[16-22].

    Fig.1.Control volume between fuel rods filled by nano fluids[1].

    There are some simple and accurate approximation techniques for solving nonlinear differential equations called the Weighted Residuals Methods(WRMs).Collocation,Galerkin and Least Square Method(LSM)are examples of the WRMs which are introduced by Ozisik[23]for using in heat transfer problems.Stern and Rasmussen[24]used collocation method for solving a third order linear differential equation.Vaferiet al.[25]have studied the feasibility of applying Orthogonal Collocation method to solve diffusivity equation in the radial transient flow system.Recently Hatami and Ganji[26]used LSM for heat transfer study through porous fins also they used this accurate method for fully wet circular porous fin[27],semispherical porous fins[28]and straight solid and porous fins[29].Shaoqin and Huoyuan[30]developed and analyzed least-squares approximations for the incompressible magneto-hydrodynamic equations.Ghasemiet al.[31]found that LSM is more appropriate than other analytical methods for solving the nonlinear heat transfer equations.

    Based on the above short review,all the researches in this field focused on the application of nano fluids in a case study of cooling rods in pressurized water reactors(PWRs),so the lack of numerical optimization[32,33]study on the rods geometry cooled by nano fluids flow is observed to find the best conditions of cooling or heat transfer by Nusselt number analysis.In the present study,the authors aim to optimize the heat transfer mechanism for fuels rod in a typical PWR cooling by Al2O3nano fluids.

    2.Problem Description

    As described above nano fluids have many applications in industry in which one of them is cooling process in PWR.In this study as shown in Fig.2,an arrangement offuelrods for a typical PWR is considered which is cooled by Al2O3-water nano fluids.The main aim of this study is to find the best values for rod's diameters and distance from each other to reach the best cooling performance or maximum heat transfer by Nusselt number.

    3.Numerical Analysis

    The numerical simulation is performed with a three dimensional turbulent flow system.Dimensional governing equations are[2]:

    Continuity equation:

    Fig.2.Control volume of fuel rods considered in this study.

    Table 1Thermal propertied of Al2O3-water nano fluid in different volume of fraction[34]

    Table 2Different mesh and grid numbers for mesh independency study

    Momentum equations:

    Energy equation:

    where Γ=μ/Prand Γt=μt/Prtand

    where turbulent viscosity can be calculated by

    In this paper,RNGk-ε model is selected for turbulence model due to its efficiency in boundary layer modeling near walls.Transport equations for RNGk-ε are:

    and

    whereGkrepresents the generation of turbulence kinetic energy due to mean velocity gradients andGbrepresents the generation of kinetic turbulent energy due to buoyancy forces.In this method constants areC1ε=1.42 andC2ε=1.68[2].

    Thermal properties of Al2O3-water nano fluid can be used from Table 1 or by the following equations

    These types of dynamic viscosity(Eq.(10))and thermal conductivity(Eq.(11))are proposed by Wanget al.(1999)and Hamilton-Crosser(1962),respectively which is introduced in Ref.[2].For heat transfer analysis,heat transfer coefficient can be calculated by,

    Fig.3.Results of different generated meshes(Table 2)a)Nusselt number and b)Y+.

    Fig.4.Validation of the results by experimental work by Pak and Cho[34].

    Table 3Different geometries proposed by CCD for rod's diameter and distance

    And then the non-dimensional average Nusselt number(Nu)over the wall can be found by

    Also,Nazififardet al.[2]showed thatNucan be calculated by

    In this study,ANSYS-FLEUNT commercial software package is used to solve the set of Eqs.(1)-(7).As mentioned above,RNGk-ε turbulence model is used while the SIMPLEC algorithm is utilized to deal with the pressure-velocity coupling.The second order upwind scheme is performed to discretize the convection terms because it offers a better accuracy.The convergence criteria are set such that the residual errors for continuity,momentum,energy,kand ε reduce to less than 10-5.

    Fig.5.a and r parameters for geometry and 9 different geometries proposed by CCD.

    4.Optimization Analysis

    Generally,the structure of the relationship between the response and the independent variables is unknown.The first step in response surface methodology(RSM)is to find a suitable approximation to the true relationship.The most common forms are low order polynomials( first or second-order).Second order model can significantly improve the optimization process when a firstorder model suffers lack of fit due to interaction between variables and surface curvatures.A general second-order model is defined as[33]:

    Fig.6.Different temperature pro files for nano fluids cooling the fuel rods.

    wherexiandxjare the design variables andAare the tuning parameters.CCD or central composite design is one of modules in RSM to obtain the points of each factor according to their levels.CCD contains an imbedded factorial or fractional factorial design with center points that is augmented with a group of‘star points’that allow estimation of curvature.If the distance from the center of the design space to a factorial point is±1 unit for each factor,the distance from the center of the design space to a star point is±α with|α|> 1.In CCD technique,optimization is based on a parameter called “desirability”.Desirability is an objective function that ranges from zero outside of the limits to one at the goal.The numerical optimization finds a point that maximizes the desirability function.The characteristics of a goal may be altered by adjusting the weight or importance.For several responses and factors,all goals get combined into one desirability function.The goal of optimization is to find a good set of conditions that will meet all the goals,not to get to a desirability value of 1.0.Desirability reflects the desirable ranges for each response(di).The simultaneous objective function is a geometric mean of all transformed responses:

    Fig.7.Different velocity pro files for nano fluids cooling the fuel rods.

    Fig.8.Effect of different geometries on Nusselt number for 4.33%Al2O3 nano fluid.

    wherenis the number of responses in the measure.If any of the responses or factors falls outside their desirability range,the overall function becomes zero.For simultaneous optimization each response must have a low and high value assigned to each goal.On the CCD worksheet,the “Goal” field for responses must be one of the five choices: “none”, “maximum”, “minimum”, “target”,or “in range”,according their definition:

    Maximum:

    Fig.9.Effect of different nanoparticles volume fraction on Nusselt number for geometry number 8.

    Minimum:

    whereYiis theith response value andwtis the weight of that response.Weights give added emphasis to the goal.Weights greater than 1(maximum weight is 10),give more emphasis to the goal and less than 1(minimum weight is 0.1),give less emphasis to the goal.

    5.Results and Discussions

    As mentioned above,the main aim of this study is to optimize the fuel rod's arrangement in a pressurized water reactor(PWR),numerically.A sample case geometry is modeled by Solid Works software as shown in Fig.2 for mesh generation.After mesh generation and defining the boundary condition according to Fig.2,it is necessary to examine the mesh independency andY+ranges to be in acceptable ranges.Fig.3 shows the mesh independency study for six different mesh numbers detailed in Table 2.Meshes consist of QUADS and HEXAS cells as described in detailviaTable 2.As seen in this figure,mesh accuracy is suitable for about 600000 grid number,alsoY+is in acceptable range(below 10.0)for this mesh numbers for RNGk-ε turbulent model.To validate the results,a comparison of the optioned results(Nusselt number)with the previous experimental data by Pak and Cho[34]is performed which can be found in Fig.4.This figure also confirms the high accuracy of the applied numerical modeling compared to experimental results.After this validation,CCD is applied to find the most important cases for theaandrparameters(half of rod's distance and diameter)as shown in Fig.5.CCD proposed 9 critical designs for rod's arrangement as shown in Fig.5 and their details are presentedviaTable 3.All these nine geometries are designed and their results are excluded from 3D numerical modeling in various Reynolds number and nanoparticles concentration.Since this study focuses more on the optimization arrangement of fuel's rod,just Al2O3nanoparticles are considered due to its wide application in this purpose,while,as Turkyilmazoglu[35]discussed,many other types of nanoparticles can enhance the heat transfer or cooling process and can be examined in the optimized geometry.A short investigation of TiO2nanoparticles on the cooling performance also is done in the last section of current paper.

    Figs.6 and 7 present the temperature and velocity of the nano fluid between the rods in these geometries.This is completely evident that when the rod's diameter is larger or distance between the rods is smaller,thermal/velocity pro files around the neighborhood rods affect on each other.As seen in Fig.8,case 6 has the maximum Nusselt number among the tested cases,but it is necessary to check the other possible cases which are not designed.This fact is possible by response surface methodology(RSM)analysis which is introduced in the following.Fig.9 confirms that increasing the nanoparticle volume fraction makes an increase in heat transfer and Nusselt number consequently.

    RSM analysis results are presentedviaFigs.10-13 for low(around 10000)and high(around 40000)Reynolds numbers.As these figures confirm when distance parameter(a)is in the minimum level and diameter parameter(r)is in the maximum possible level,cooling the rods will be better due to higher Nusselt number in this situation.This result is independent from Reynolds number value(high or low)because in high and low Reynolds numbers the same results were observed.By calculating the desirability functions,the most efficient cases are presentedviaTables 4,5 for this problem.As seen in both tables,whena=6 andr=5 the best efficiency of cooling process will occur.Finally to show the effect of nanoparticles type on theNuvalues,Table 6 is presented when φ=4.33%.As seen,in all Reynolds numbers Al2O3has largerNunumber compared to TiO2due to its higher thermal conductivity.Also,this table shows the percentage improvement of nanoparticles on the cooling process which confirms that Al2O3averagely 17%and TiO210%improve the Nusselt numbers.

    6.Conclusions

    In this paper,a numerical optimization of the fuelrod's diameter and distance is performed for a typical pressurized water reactor(PWR)cooling by Al2O3-water nano fluid.Response surface methodology(RSM)by using computational fluid dynamic(CFD)outcomes is applied to find the best performance or maximum heat transfer for the cooling process.The tests are performed for three nano particles concentration and Reynolds numbers.Finally,a central composite design or CCD analysis is applied on the results to optimize the geometries.Results confirm that the optimum case is when the distance of the rods is minimum and diameter in the maximum values.

    Fig.11.Desirability function for 4.33%Al2O3-water nano fluid in low Reynolds flow(10000).

    Acknowledgments

    The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China(No.51422604,21276206)and the National 863 Program of China(No.2013AA050402).This work was also supported by the China Fundamental Research Funds for the Central Universities.

    Fig.10.Effect of geometry parameters on Nusselt number for 4.33%Al2O3-water nano fluid in low Reynolds flow(10000).

    Fig.12.Effect of geometry parameters on Nusselt number for 4.33%Al2O3-water nano fluid in high Reynolds flow(40000).

    Fig.13.Desirability function for 4.33%Al2O3-water nano fluid in high Reynolds flow(40000).

    Table 4Geometry optimization for 4.33%Al2O3-water nano fluid for turbulant and low Reynolds flow

    Table 5Geometry optimization for 4.33%Al2O3-water nano fluid for turbulant and high Reynolds flow

    Table 6Comparison of different nanoparticles on Nusselt improvement when φ=4.33%,a=7.1 and r=4.25

    [1]E.Zarifi,G.Jahanfarnia,Subchannel analysis of TiO2nano fluid as the coolant in VVER-1000 reactor,Prog.Nucl.Energy73(2014)140-152.

    [2]M.Nazi fifard,M.Nematollahi,K.Jafarpur,K.Y.Suh,Numerical simulation of water based alumina nano fluid in subchannel geometry,Sci.Technol.Nucl.Installations2012(2014),928406,http://dx.doi.org/10.1155/2012/928406.

    [3]M.Abd-El Aziz,Unsteady fluid and heat flow induced by a stretching sheet with mass transfer and chemical reaction,Chem.Eng.Commun.197(2010)1261-1272.

    [4]G.Domairry,A.Aziz,Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method,Math.Probl.Eng.2009(2009)603916.

    [5]M.Mustafa,T.Hayat,S.Obaidat,On heat and mass transfer in the unsteady squeezing flow between parallel plates,Meccanica47(2012)1581-1589.

    [6]M.Turkyilmazoglu,Analytical solutions of single and multi-phase models for the condensation of nano fluid film flow and heat transfer,Eur.J.Mech.B.Fluids53(2015)272-277.

    [7]M.Hatami,G.Domairry,Transient vertically motion of a soluble particle in a Newtonian fluid media,Powder Technol.253(February 2014)481-485.

    [8]M.Hatami,D.D.Ganji,Motion of a spherical particle on a rotating parabola using Lagrangian and high accuracy Multi-step Differential Transformation Method,Powder Technol.258(May 2014)94-98.

    [9]M.Hatami,D.D.Ganji,Motion of a spherical particle in a fluid forced vortex by DQM and DTM,Particuology16(October 2014)206-212.

    [10]A.S.Dogonchi,M.Hatami,G.Domairry,Motion analysis of a spherical solid particle in plane Couette Newtonian fluid flow,Powder Technol.274(April 2015)186-192.

    [11]M.Haghshenas Fard,M.Nasr Esfahany,M.R.Talaie,Numerical study of convective heat transfer of nano fluids in a circular tube two-phase model versus single-phase model,Int.Commun.Heat Mass Transfer37(2010)91-97.

    [12]S.G?ktepe,K.Atal?k,H.Ertürk,Comparison of single and two-phase models for nano fluid convection at the entrance of a uniformly heated tube,Int.J.Therm.Sci.80(2014)83-92.

    [13]S.T.Mohyud-Din,Z.A.Zaidi,U.Khan,N.Ahmed,On heat and mass transfer analysis for the flow of a nano fluid between rotating parallel plates,Aerosp.Sci.Technol.(2015),http://dx.doi.org/10.1016/j.ast.2015.07.020.

    [14]T.Hayat,M.Imtiaz,A.Alsaedi,M.A.Kutbi,MHD three-dimensional flow of nano fluid with velocity slip and nonlinear thermal radiation,J.Magn.Magn.Mater.396(2015)31-37.

    [15]J.A.Khan,M.Mustafa,T.Hayat,A.Alsaedi,Three-dimensional flow of nano fluid over a non-linearly stretching sheet:An application to solar energy,Int.J.Heat Mass Transf.86(2015)158-164.

    [16]M.Hatami,D.D.Ganji,Natural convection of sodium alginate(SA)non-Newtonian nano fluid flow between two vertical flat plates by analytical and numerical methods,Case Stud.Therm.Eng.2(March 2014)14-22.

    [17]M.Fakour,A.Vahabzadeh,D.D.Ganji,M.Hatami,Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls,J.Mol.Liq.204(April 2015)198-204.

    [18]S.E.Ghasemi,M.Hatami,A.Kalani Sarokolaie,D.D.Ganji,Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods,Physica E:Low-dimensional Syst.Nanostruct.70(June 2015)146-156.

    [19]S.E.Ghasemi,M.Hatami,G.H.R.Mehdizadeh Ahangar,D.D.Ganji,Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method,J.Electrost.72(1)(February 2014)47-52.

    [20]M.Rahimi-Gorji,O.Pourmehran,M.Hatami,D.D.Ganji,Statistical optimization of microchannel heat sink(MCHS)geometry cooled by different nano fluids using RSM analysis,Eur.Phys.J.Plus130(February 2015)22.

    [21]G.Domairry,M.Hatami,Squeezing Cu-water nano fluid flow analysis between parallel plates by DTM-Padé Method,J.Mol.Liq.193(May 2014)37-44.

    [22]A.R.Ahmadi,A.Zahmatkesh,M.Hatami,D.D.Ganji,A comprehensive analysis of the flow and heat transfer for a nano fluid over an unsteady stretching flat plate,Powder Technol.258(May 2014)125-133.

    [23]M.N.Ozisik,Heat Conduction,second ed.John Wiley&Sons Inc,USA,1993.

    [24]R.H.Stern,H.Rasmussen,Left ventricular ejection:Model solution by collocation,an approximate analytical method,Comput.Boil.Med.26(1996)255-261.

    [25]B.Vaferi,V.Salimi,D.Dehghan Baniani,A.Jahanmiri,S.Khedri,Prediction of transient pressure response in the petroleum reservoirs using orthogonal collocation,J.Pet.Sci.Eng.98-99(2012)156-163.

    [26]M.Hatami,D.D.Ganji,Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials(SiC and Si3N4),Ceram.Int.40(5)(June 2014)6765-6775.

    [27]M.Hatami,D.D.Ganji,Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis,Int.J.Refrig.40(April 2014)140-151.

    [28]M.Hatami,G.H.R.Mehdizadeh Ahangar,D.D.Ganji,K.Boubaker,Refrigeration efficiency analysis for fully wet semi-spherical porous fins,Energy Convers.Manag.84(August 2014)533-540.

    [29]S.E.Ghasemi,P.Valipour,M.Hatami,D.D.Ganji,Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method,J.Cent.South Univ.21(12)(December 2014)4592-4598.

    [30]G.Shaoqin,D.Huoyuan,Negative norm least-squares methods for the incompressible magneto-hydrodynamic equations,Acta Math.Sci.28 B(3)(2008)675-684.

    [31]S.E.Ghasemi,M.Hatami,D.D.Ganji,Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation,Case Stud.Therm.Eng.4(November 2014)1-8.

    [32]A.Aziz,Heat Conduction With Maple,R.T.Edwards,Philadelphia(PA),2006.

    [33]M.Hatami,Experimental optimization of the vanes geometry for a variable geometry turbocharger(VGT)using a Design of Experiment(DoE)approach,Energy Convers.Manag.106(2015)1057-1070.

    [34]B.Pak,Y.Cho,Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle,Exp.Heat Transfer11(2)(1998).

    [35]M.Turkyilmazoglu,A note on the correspondence between certain nano fluid flows and standard fluid flows,J.Heat Transf.137(2)(2015)024501.

    国产一区亚洲一区在线观看| 女人被狂操c到高潮| 晚上一个人看的免费电影| 精品99又大又爽又粗少妇毛片| 中文在线观看免费www的网站| 亚洲最大成人中文| 精品一区二区三区人妻视频| 日韩中字成人| 久久婷婷人人爽人人干人人爱| 亚洲欧洲日产国产| 午夜老司机福利剧场| 精品久久久久久成人av| 国产精品一区二区在线观看99 | 国产 一区精品| 国产一区二区亚洲精品在线观看| 我要看日韩黄色一级片| 免费搜索国产男女视频| 直男gayav资源| 国产精品.久久久| 国产一区二区三区av在线| 欧美性猛交黑人性爽| 狠狠狠狠99中文字幕| 久久综合国产亚洲精品| 成人漫画全彩无遮挡| 亚洲av成人av| 床上黄色一级片| 国产成人精品婷婷| 国产国拍精品亚洲av在线观看| 亚洲欧洲日产国产| 国产精品女同一区二区软件| 国产精品精品国产色婷婷| 亚洲国产精品成人综合色| 亚洲婷婷狠狠爱综合网| 亚洲av免费高清在线观看| 国产精品美女特级片免费视频播放器| 99热全是精品| 国产91av在线免费观看| 成人美女网站在线观看视频| av天堂中文字幕网| 色吧在线观看| 亚洲欧美日韩高清专用| 亚洲精华国产精华液的使用体验| 中文欧美无线码| 最近视频中文字幕2019在线8| 人妻少妇偷人精品九色| 欧美日本视频| 美女大奶头视频| 视频中文字幕在线观看| 晚上一个人看的免费电影| 日本熟妇午夜| 国产伦精品一区二区三区视频9| 免费搜索国产男女视频| 在线播放国产精品三级| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 全区人妻精品视频| 亚洲怡红院男人天堂| 一区二区三区四区激情视频| av黄色大香蕉| 中文亚洲av片在线观看爽| 国产私拍福利视频在线观看| 亚洲四区av| 99久久成人亚洲精品观看| 岛国毛片在线播放| 国产精品一及| 国产真实乱freesex| 成人综合一区亚洲| 汤姆久久久久久久影院中文字幕 | 在线观看美女被高潮喷水网站| 在线免费观看不下载黄p国产| 美女被艹到高潮喷水动态| 国产女主播在线喷水免费视频网站 | 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 国产精品伦人一区二区| 亚洲色图av天堂| 国产一区二区在线观看日韩| 亚洲精品国产av成人精品| 内地一区二区视频在线| 夜夜看夜夜爽夜夜摸| 成人国产麻豆网| 毛片一级片免费看久久久久| 国产色爽女视频免费观看| 你懂的网址亚洲精品在线观看 | 97超碰精品成人国产| 亚洲精品亚洲一区二区| 两个人视频免费观看高清| 亚洲国产成人一精品久久久| 国产成人免费观看mmmm| 嫩草影院入口| 啦啦啦韩国在线观看视频| 边亲边吃奶的免费视频| 国产一区二区在线av高清观看| 亚洲成人久久爱视频| 亚洲人成网站高清观看| 亚洲精品aⅴ在线观看| 99在线人妻在线中文字幕| 水蜜桃什么品种好| 欧美日韩国产亚洲二区| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 国产精品野战在线观看| 国产免费一级a男人的天堂| av播播在线观看一区| 亚洲av.av天堂| 久久国内精品自在自线图片| 国产成人精品一,二区| 日本黄色视频三级网站网址| 天堂√8在线中文| 成人性生交大片免费视频hd| 搞女人的毛片| 婷婷六月久久综合丁香| 最近手机中文字幕大全| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| 亚洲av熟女| 欧美高清性xxxxhd video| .国产精品久久| 日韩欧美三级三区| 在线免费观看不下载黄p国产| 欧美人与善性xxx| 久久国产乱子免费精品| 春色校园在线视频观看| 中文字幕av在线有码专区| 国产av在哪里看| 观看美女的网站| 18禁动态无遮挡网站| 少妇高潮的动态图| 变态另类丝袜制服| 韩国高清视频一区二区三区| 国产精品久久久久久久电影| 日韩强制内射视频| 国产在线一区二区三区精 | 国产高清有码在线观看视频| 一级爰片在线观看| 国产爱豆传媒在线观看| 日本av手机在线免费观看| 精品久久久久久成人av| 中文亚洲av片在线观看爽| 国产高清视频在线观看网站| 国产美女午夜福利| 熟妇人妻久久中文字幕3abv| 最近最新中文字幕免费大全7| 日本欧美国产在线视频| 欧美激情国产日韩精品一区| 国产成人免费观看mmmm| 午夜福利在线观看吧| 午夜福利视频1000在线观看| 亚洲成人久久爱视频| 日本一本二区三区精品| 18+在线观看网站| 午夜福利高清视频| 精品人妻视频免费看| 五月伊人婷婷丁香| 亚洲精品国产成人久久av| 91精品国产九色| 三级男女做爰猛烈吃奶摸视频| 国产精品一及| 三级毛片av免费| 国产成人午夜福利电影在线观看| 国产午夜精品久久久久久一区二区三区| 女人十人毛片免费观看3o分钟| 99久久成人亚洲精品观看| 国产免费一级a男人的天堂| 狂野欧美激情性xxxx在线观看| 婷婷色av中文字幕| 国内精品美女久久久久久| 亚洲国产欧洲综合997久久,| 如何舔出高潮| 亚洲性久久影院| 亚洲美女视频黄频| 狂野欧美白嫩少妇大欣赏| 久久鲁丝午夜福利片| 国产精品久久久久久精品电影| 一个人观看的视频www高清免费观看| 中文字幕制服av| 欧美三级亚洲精品| 寂寞人妻少妇视频99o| 国产精品一区二区三区四区久久| 成人二区视频| 日本黄色视频三级网站网址| 一级毛片久久久久久久久女| 国产成人精品一,二区| 两个人的视频大全免费| 欧美性猛交╳xxx乱大交人| 1024手机看黄色片| 国产伦理片在线播放av一区| 亚洲欧美成人综合另类久久久 | 国产精品福利在线免费观看| 禁无遮挡网站| 少妇高潮的动态图| 日韩强制内射视频| 又黄又爽又刺激的免费视频.| 久久99精品国语久久久| 精品久久久久久久末码| 中文字幕av在线有码专区| 国产一区二区在线观看日韩| 99在线视频只有这里精品首页| 亚洲在久久综合| 免费不卡的大黄色大毛片视频在线观看 | 久久99热6这里只有精品| 国产精品一区二区在线观看99 | 一区二区三区四区激情视频| 国产激情偷乱视频一区二区| 97超视频在线观看视频| 晚上一个人看的免费电影| 天堂中文最新版在线下载 | 国产 一区精品| 亚洲va在线va天堂va国产| 久久久久免费精品人妻一区二区| 国产国拍精品亚洲av在线观看| 日本黄色片子视频| 国产女主播在线喷水免费视频网站 | 午夜福利在线观看吧| 精品久久久久久久人妻蜜臀av| 国产不卡一卡二| 老司机影院成人| 欧美激情国产日韩精品一区| 亚洲欧洲日产国产| 亚洲天堂国产精品一区在线| 午夜福利在线在线| 麻豆成人午夜福利视频| av天堂中文字幕网| 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 少妇的逼好多水| 欧美色视频一区免费| 又黄又爽又刺激的免费视频.| 免费无遮挡裸体视频| 男人舔奶头视频| 亚洲av成人av| 能在线免费观看的黄片| videos熟女内射| 在线播放无遮挡| 久久久亚洲精品成人影院| 国产成人精品婷婷| 在现免费观看毛片| 午夜久久久久精精品| 成年版毛片免费区| 亚洲成人精品中文字幕电影| 国产成人精品婷婷| 午夜爱爱视频在线播放| 99久久成人亚洲精品观看| 国产精品.久久久| 日韩欧美精品v在线| 99九九线精品视频在线观看视频| 国产精品国产三级国产专区5o | 男人和女人高潮做爰伦理| 久久鲁丝午夜福利片| a级毛片免费高清观看在线播放| 国产在线一区二区三区精 | 亚洲国产色片| 99视频精品全部免费 在线| 一级二级三级毛片免费看| 欧美一级a爱片免费观看看| 精华霜和精华液先用哪个| 精品一区二区三区视频在线| 国语自产精品视频在线第100页| 国产亚洲最大av| av免费在线看不卡| 国产片特级美女逼逼视频| 国产精品一区二区三区四区免费观看| 国产精品女同一区二区软件| 大又大粗又爽又黄少妇毛片口| 91av网一区二区| 欧美色视频一区免费| 人妻制服诱惑在线中文字幕| 日本免费a在线| 成人欧美大片| 国产av不卡久久| 亚洲不卡免费看| 汤姆久久久久久久影院中文字幕 | 日韩欧美精品免费久久| 精品酒店卫生间| 成人漫画全彩无遮挡| 99热精品在线国产| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| av在线观看视频网站免费| 亚洲欧美日韩高清专用| 亚洲中文字幕日韩| 美女内射精品一级片tv| 亚洲国产精品合色在线| 在线观看美女被高潮喷水网站| 国产探花在线观看一区二区| 亚洲精品乱久久久久久| av黄色大香蕉| 久久久久久伊人网av| 91精品国产九色| 中文字幕av成人在线电影| 日本一二三区视频观看| 久久久久久久久久久免费av| 视频中文字幕在线观看| 久久久久久久久久成人| 综合色av麻豆| 小蜜桃在线观看免费完整版高清| 成年女人永久免费观看视频| 亚洲丝袜综合中文字幕| 国产精品一区二区三区四区久久| 内地一区二区视频在线| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类| 久久久午夜欧美精品| 麻豆成人午夜福利视频| 永久免费av网站大全| 最近中文字幕高清免费大全6| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 99久久成人亚洲精品观看| 久久精品国产自在天天线| 欧美丝袜亚洲另类| av播播在线观看一区| 久久精品夜色国产| 波多野结衣高清无吗| 麻豆成人午夜福利视频| 天堂中文最新版在线下载 | 久久婷婷人人爽人人干人人爱| 极品教师在线视频| 3wmmmm亚洲av在线观看| 亚洲人成网站在线播| 精品人妻视频免费看| 人妻系列 视频| 国内少妇人妻偷人精品xxx网站| 国产精华一区二区三区| 国产成人精品久久久久久| 欧美日本视频| 国国产精品蜜臀av免费| 国产在线男女| 国产男人的电影天堂91| 免费人成在线观看视频色| 国产高清视频在线观看网站| 免费观看精品视频网站| 99在线人妻在线中文字幕| 国产成人精品一,二区| 日韩欧美三级三区| 久久久精品大字幕| АⅤ资源中文在线天堂| 国产欧美日韩精品一区二区| 色综合站精品国产| 看黄色毛片网站| 精品久久国产蜜桃| 国产午夜精品一二区理论片| 九九热线精品视视频播放| 天堂网av新在线| 亚州av有码| 十八禁国产超污无遮挡网站| 日韩欧美三级三区| 国产免费又黄又爽又色| 少妇的逼好多水| 免费观看精品视频网站| 久久精品综合一区二区三区| 国产欧美日韩精品一区二区| 一边亲一边摸免费视频| 十八禁国产超污无遮挡网站| 欧美精品国产亚洲| 一级毛片aaaaaa免费看小| АⅤ资源中文在线天堂| 小蜜桃在线观看免费完整版高清| 国产精品一区二区三区四区久久| 国产精品电影一区二区三区| 一级毛片电影观看 | 亚洲怡红院男人天堂| 午夜精品国产一区二区电影 | 国产精品一区二区在线观看99 | 狂野欧美白嫩少妇大欣赏| 边亲边吃奶的免费视频| 免费黄色在线免费观看| 久久热精品热| 亚洲人与动物交配视频| 午夜福利在线在线| 免费看日本二区| 97人妻精品一区二区三区麻豆| 蜜桃亚洲精品一区二区三区| av免费观看日本| 老司机福利观看| www日本黄色视频网| 干丝袜人妻中文字幕| 国产精品无大码| 啦啦啦啦在线视频资源| 91av网一区二区| 人妻系列 视频| 日本与韩国留学比较| 女人被狂操c到高潮| 只有这里有精品99| 91精品国产九色| 色噜噜av男人的天堂激情| 久久久久久久国产电影| 日日撸夜夜添| 成人综合一区亚洲| 狂野欧美激情性xxxx在线观看| 日韩在线高清观看一区二区三区| 搡老妇女老女人老熟妇| 亚洲成色77777| 最后的刺客免费高清国语| 欧美日韩一区二区视频在线观看视频在线 | 日本-黄色视频高清免费观看| 亚洲四区av| 纵有疾风起免费观看全集完整版 | 精品99又大又爽又粗少妇毛片| 日韩精品有码人妻一区| 尤物成人国产欧美一区二区三区| 亚洲国产欧美在线一区| 午夜免费男女啪啪视频观看| 精品免费久久久久久久清纯| 免费一级毛片在线播放高清视频| 国产精品久久久久久精品电影| 国产乱来视频区| 久久久久久久久久久免费av| 国产高清国产精品国产三级 | 老司机影院毛片| av在线天堂中文字幕| 亚洲在线观看片| 色噜噜av男人的天堂激情| 少妇熟女欧美另类| 欧美三级亚洲精品| 欧美激情在线99| 看片在线看免费视频| 久久久成人免费电影| 久久精品国产99精品国产亚洲性色| 91久久精品电影网| 一边摸一边抽搐一进一小说| 欧美人与善性xxx| 欧美精品国产亚洲| 蜜桃久久精品国产亚洲av| 亚洲精品日韩在线中文字幕| 免费观看的影片在线观看| 欧美激情久久久久久爽电影| 91久久精品国产一区二区三区| 国产精品麻豆人妻色哟哟久久 | 高清av免费在线| 小蜜桃在线观看免费完整版高清| 日本av手机在线免费观看| h日本视频在线播放| 一区二区三区乱码不卡18| 国产精品久久久久久久电影| 国产麻豆成人av免费视频| 中文欧美无线码| 亚洲人成网站在线播| 国产精品,欧美在线| 成人一区二区视频在线观看| 我要搜黄色片| 一级黄色大片毛片| 人妻少妇偷人精品九色| 美女大奶头视频| 亚洲美女搞黄在线观看| 国产高清视频在线观看网站| 亚洲成av人片在线播放无| 18禁在线无遮挡免费观看视频| 九草在线视频观看| 大香蕉97超碰在线| 又粗又爽又猛毛片免费看| 免费看av在线观看网站| 久久久成人免费电影| 亚洲三级黄色毛片| 深爱激情五月婷婷| 一个人看的www免费观看视频| 午夜福利视频1000在线观看| 神马国产精品三级电影在线观看| 成人亚洲精品av一区二区| 久久久久久久久大av| 国产精品电影一区二区三区| 校园人妻丝袜中文字幕| 插逼视频在线观看| 精品无人区乱码1区二区| eeuss影院久久| 午夜久久久久精精品| 亚洲欧洲日产国产| 国产亚洲精品av在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文字幕日韩| 免费在线观看成人毛片| 亚洲怡红院男人天堂| 联通29元200g的流量卡| 综合色丁香网| 日本免费在线观看一区| 国产乱来视频区| 亚洲av成人精品一二三区| 欧美一级a爱片免费观看看| 乱人视频在线观看| 亚洲av二区三区四区| 国产片特级美女逼逼视频| 村上凉子中文字幕在线| 国产大屁股一区二区在线视频| 国产精品日韩av在线免费观看| 精品少妇黑人巨大在线播放 | 久久久亚洲精品成人影院| 国产v大片淫在线免费观看| 美女黄网站色视频| 尾随美女入室| 日韩高清综合在线| 汤姆久久久久久久影院中文字幕 | 中文字幕久久专区| 免费看美女性在线毛片视频| 熟女电影av网| 成年免费大片在线观看| 国产成人免费观看mmmm| 日韩在线高清观看一区二区三区| 精品久久久久久久末码| 亚洲精品乱码久久久久久按摩| 午夜福利成人在线免费观看| 国产成人精品婷婷| 亚洲欧美日韩东京热| 亚洲最大成人手机在线| 国产真实伦视频高清在线观看| 国产亚洲av片在线观看秒播厂 | 边亲边吃奶的免费视频| 欧美成人精品欧美一级黄| 色吧在线观看| 亚洲国产日韩欧美精品在线观看| 国模一区二区三区四区视频| 午夜福利在线在线| 级片在线观看| 国产亚洲最大av| 九草在线视频观看| 简卡轻食公司| 免费播放大片免费观看视频在线观看 | 最近中文字幕2019免费版| 51国产日韩欧美| 欧美bdsm另类| 国产精品野战在线观看| 男女视频在线观看网站免费| 日韩欧美 国产精品| 国产一级毛片在线| 免费电影在线观看免费观看| 色5月婷婷丁香| 亚洲va在线va天堂va国产| 日产精品乱码卡一卡2卡三| 又爽又黄a免费视频| 综合色av麻豆| 欧美区成人在线视频| a级毛色黄片| 日韩精品有码人妻一区| 成人午夜精彩视频在线观看| 亚洲婷婷狠狠爱综合网| 汤姆久久久久久久影院中文字幕 | 又爽又黄a免费视频| 国产高清国产精品国产三级 | 国产精品美女特级片免费视频播放器| 在线观看一区二区三区| a级一级毛片免费在线观看| 亚洲av熟女| 国产爱豆传媒在线观看| 免费黄网站久久成人精品| 亚洲欧洲日产国产| 女人久久www免费人成看片 | 久久久久精品久久久久真实原创| 美女被艹到高潮喷水动态| 女人十人毛片免费观看3o分钟| 国产精品综合久久久久久久免费| 免费黄网站久久成人精品| 久久久久久久午夜电影| av天堂中文字幕网| 桃色一区二区三区在线观看| 国产精品人妻久久久影院| 一个人看视频在线观看www免费| 亚洲四区av| eeuss影院久久| 国产激情偷乱视频一区二区| 欧美xxxx黑人xx丫x性爽| 国产精品国产三级专区第一集| 午夜久久久久精精品| 超碰av人人做人人爽久久| 你懂的网址亚洲精品在线观看 | 久久久久久伊人网av| 日日摸夜夜添夜夜添av毛片| 国产亚洲av嫩草精品影院| 欧美日韩精品成人综合77777| 可以在线观看毛片的网站| 卡戴珊不雅视频在线播放| 日韩精品青青久久久久久| 午夜久久久久精精品| 一个人免费在线观看电影| 边亲边吃奶的免费视频| 直男gayav资源| 欧美一区二区亚洲| 永久网站在线| 亚洲人成网站在线播| 淫秽高清视频在线观看| 亚洲中文字幕日韩| 特大巨黑吊av在线直播| 欧美性猛交黑人性爽| 美女脱内裤让男人舔精品视频| 婷婷色av中文字幕| 精品久久国产蜜桃| 精品国产一区二区三区久久久樱花 | 欧美+日韩+精品| 在线免费十八禁| 国产精品久久久久久精品电影| 麻豆成人av视频| 1024手机看黄色片| 日韩制服骚丝袜av| 麻豆成人av视频| 国产精品一区www在线观看| 久久婷婷人人爽人人干人人爱| av在线亚洲专区| 国产精品久久久久久精品电影小说 | 国产亚洲一区二区精品| 久久人人爽人人爽人人片va| 三级经典国产精品| 国产亚洲一区二区精品| 变态另类丝袜制服| 国产老妇女一区| 亚洲欧美精品综合久久99| 男女国产视频网站| 亚洲欧美精品自产自拍| 高清毛片免费看| 亚洲av一区综合| 天天躁夜夜躁狠狠久久av| 99久久成人亚洲精品观看| 午夜亚洲福利在线播放| 久久精品人妻少妇| 国产成人精品一,二区| 天天躁日日操中文字幕| 国产一区二区三区av在线|